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Abstract. Hyperspectral image reconstruction from a compressive snapshot is
an dispensable step in the advanced hyperspectral imaging systems to solve the
low spatial and/or temporal resolution issue. Most existing methods extensively
exploit various hand-crafted priors to regularize the ill-posed hyperspectral re-
construction problem, and are incapable of handling wide spectral variety, often
resulting in poor reconstruction quality. In recent year, deep convolution neural
network (CNN) has became the dominated paradigm for hyperspectral image re-
construction, and demonstrated superior performance with complicated and deep
network architectures. However, the current impressive CNNs usually yield large
model size and high computational cost, which limit the wide applicability in
the real imaging systems. This study proposes a novel lightweight hyperspec-
tral reconstruction network via effective deep feature hallucination, and aims to
construct a practical model with small size and high efficiency for real imaging
systems. Specifically, we exploit a deep feature hallucination module (DFHM)
for duplicating more features with cheap operations as the main component, and
stack multiple of them to compose the lightweight architecture. In detail, the
DFHM consists of spectral hallucination block for synthesizing more channel
of features and spatial context aggregation block for exploiting various scales
of contexts, and then enhance the spectral and spatial modeling capability with
more cheap operation than the vanilla convolution layer. Experimental results on
two benchmark hyperspectral datasets demonstrate that our proposed method has
great superiority over the state-of-the-art CNN models in reconstruction perfor-
mance as well as model size.

Keywords: Hyperspectral image reconstruction · Lightweight network· Feature
hallucination.

1 Introduction

Hyperspectral imaging (HSI) systems is able of capturing the detailed spectral distribu-
tion with decades or hundreds of bands at each spatial location of a scene. The abun-
dant spectral signature in HSI possesses the deterministic attributes about the lighting
and imaged object/material, which greatly benefits the characterization of the captured
scene in wide fields, including remote sensing [14, 4], vision inspection [23, 24], med-
ical diagnosis [3, 20] and digital forensics [10]. To capture a full 3D HSI, the con-
ventional hyperspectral sensors have to employ multiple exposures to scan the target
scene [9, 6, 5, 26], and require long imaging time failing in dynamic scene capturing.
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To enable the HS image measurement for moving objects, various snapshot hyperspec-
tral imaging systems [12, 18] have been exploited by mapping different spectral bands
(either single narrow band or multiplexed ones) to different positions and then collect-
ing them by one or more detectors, which unavoidably cause low-resolution in spatial
domain. Motivated by the compressive sensing theory, a promising imaging modality:
coded aperture snapshot spectral imaging (CASSI) [29, 13, 1] has attracted increasing
attention. With the elaborated optical design, CASSIs encode the 3D HSI into a 2D
compressive snapshot measurement, and require a reconstruction phase to recover the
underlying 3D cubic data on-line.

Although extensive studies [17, 39, 27, 25, 2, 43, 44, 32] have been exploited, to
faithfully reconstruct the desirable HSI from its compressive measurement is still the
bottleneck in the CASSIs. Due to the ill-posed nature of the reconstruction problem,
traditional model-based methods widely incorporate various hand-crafted priors of the
underlying HSIs, such as the total variation [33, 34, 40, 2], sparsity [11, 30, 2] and low-
rankness [19, 42], and demonstrate some improvements in term of the reconstruction
performance. However, the hand-crafted priors are empirically designed, and usually
deficient to model the diverse attributes of the real-world spectral data.

Recently, deep convolutional neural network (DCNN) [36, 8, 22, 35, 31] has pop-
ularly been investigated for HSI reconstruction by leveraging its powerful modeling
capability and automatically learning of the inherent priors in the latent HSI using the
previously collected external dataset. Compared with the model-based methods, these
deep learning-based paradigms have prospectively achieved superior performance, and
been proven to provide fast reconstruction in test phase. However, the current researches
mainly focus on designing more complicated and deeper network architecture for pur-
suing performance gain, and thus cause a large-scale reconstruction model. However,
the large-scale model would restrict wide applicability for being implanted in real HSI
systems. More recently, incorporating the deep learned priors with iterative optimiza-
tion procedure has been investigated to increase the flexibility of deep reconstruction
model, and the formulated deep unrolling based optimization methods e.g., LISTA [15]
ADMMNet [21, 37] and ISTA-Net [41] have manifested acceptable performance for the
conventional compressive sensing problem but still have insufficient spectral recovery
capability for the HSI reconstruction scenario.

To this end, this study aims to exploit a practical deep reconstruction model with
small size and high efficiency for being easily embedded in the real imaging systems,
and proposes a novel lightweight hyperspectral reconstruction network (LWHRN) via
hallucinating/duplicating the effective deep feature from the already learned ones. As
proven in [16], the learned feature maps in the well-trained deep models such as in
the ResNet-50 using the ImageNet dataset may have abundance or even redundant in-
formation, which often guarantees the comprehensive understanding of the input data,
and some features can be obtained with a more cheap transformation operation from
other feature maps instead of the vanilla convolution operation. Inspired by the above
insight, we specifically exploit a deep feature hallucination module (DFHM) for syn-
thesizing more features with cheap operations as the main components of our LWHRN
model, and stack multiple of them to gradually reconstruct the the residual component
un-recovered in the previous phase. Concretely, the DFHM consists of spectral hal-

165



Lightweight Hyperspectral Image Reconstruction 3

Scene Objective

Lens

Code 

aperture

Relay

Lens
Dispersive

Prism

2D

Detector

Measure Phase

Compressive 

Image

Reconstruction 

Model

R
e
c
o

n
s
t
r
u

c
t
e
d

H
S

I

Fig. 1. The schematic concept of the CASSI system.

lucination block (SHB) for synthesizing more channel of features and spatial context
aggregation block (SCAB) for exploiting various scales of contexts, where both SHB
and SCAB are implemented using depth-wise convolution layer instead of the vanilla
convolution layer, which can be expected to enhance the spectral and spatial modeling
capability with the more cheap operation. Experimental results on two benchmark hy-
perspectral datasets demonstrate that our proposed LWHRN manifests great superiority
over the state-of-the-art CNN models in reconstruction performance as well as model
size.

In summary, the main contributions are three-fold:

1. We present a novel lightweight hyperspectral reconstruction network from a single
snapshot measurement, which employs multiple reconstruction modules to gradu-
ally recover the residual HS components by alternatively incorporating spectral and
spatial context learning.

2. We exploit a deep feature hallucination module (DFHM) as the main component
of the multi-stage reconstruction module, which consists of a spectral hallucination
block (SHB) for synthesizing more channel of features and a spatial context aggre-
gation block (SCAB) for exploiting various scales of contexts using more cheap
depth-wise convolution than the vanilla convolution.

3. We conduct extensive experiments on two benchmark HSI datasets, and demon-
strate superior results over the SoTA reconstruction models in term of the recon-
struction performance, model size and computational cost.

2 Related Work

Recently, the hyperspectral reconstruction in the computational spectral imaging have
attracted extensive attention, and different kinds of methods, which are mainly divided
into optimization-based methods and deep learning-based methods, have been proposed
for improving reconstruction performance. In this section, we briefly survey the related
work.
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2.1 Optimization-based methods

The HSI reconstruction from a snapshot measurement is inherently a inverse problem,
and can be intuitively formulated as the minimization problem of the reconstruction
error of the the observed snapshot. Since the number of the unknown variables in the
latent HSI is much larger than the known variables in the observed snapshot image, this
inverse problem has severe ill-posed nature, and would cause quite un-stable solution
via directly optimization. Existing methods have striven to incorporate various hand-
crafted priors such as modeling the spatial structure and spectral characteristics of the
latent HSI, into the inverse problem, and then formulate as a regularization term for
robust optimization. Taking the high dimensionality of spectral signatures into account-
ing, different image local priors for characterizing the spectral image structure within a
local region have popularly been exploited. For example, Wang et al. [33] exploited a
Total Variation (TV) regularized model by imposing the first-order gradient smoothness
prior for spectral image reconstruction while Yuan et. al. [40] proposed to employ a gen-
eralized alternating projection to solve the TV-regularized model (GAP-TV). Further,
Kittle et. al. [17] explored two-step iterative shrinkage/thresholding method (TwIST)
for optimization. Although the incorporation of the TV prior for the HSI reconstruction
potentially benefits both boundary preservation and smooth region recovery, the recon-
structed result may loss some detail structure. Motivated by the successful application
in the blind compressed sensing (BCS) [25], sparse representation algorithms have been
applied for HSI reconstruction from the snapshot image, which optimizes the represen-
tation coefficients with the sparsity prior constraint on the learned dictionary for local
image patches [18]. Later, Yuan et. al. imposed the compressibility constraint instead
of sparsity prior and proposed a global-local shrinkage prior to learn the dictionary and
representation coefficients [39]. Moreover, Wang et. al. [30] incorporated the non-local
similarity into a 3D non-local sparse representation model for boosting reconstruction
performance. However, the hand-crafted image priors are not always sufficient to cap-
ture the characteristics in various spectral images, and thus cause unstable reconstruc-
tion performance. Furthermore, the suitable priors for different images would be varied,
and to discover a proper prior for a specific scene is a hard task in the real scenario.

2.2 Deep learning-based methods

Benefiting from the powerful modeling capability, deep learning-based methods have
been widely used for image restoration tasks including HSI reconstruction. The deep
learning-based HSI reconstruction methods can implicitly learn the underlying prior
from the previously prepared training samples instead of manually designing priors
for modeling the spatial and spectral characteristics of the latent HSI, and then con-
struct a mapping model between the compressed snapshot image and the desirable HSI.
Various deep networks have been proposed for the HSI reconstruction problem. For
example, Xiong et al [36] employed several vanilla convolution layer-based network
(HSCNN) to learn a brute-force mapping between the latent HS image and its spec-
trally under-sampled projections, and demonstrated the feasibility for HSI reconstruc-
tion from a common RGB image or a compressive sensing (CS) measurement. Wang
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et al. [35] proposed a joint coded aperture optimization and HSI reconstruction net-
work for simultaneously learning the optimal sensing matrix and the latent HS image in
an end-to-end framework while Miao et al. [22] developed a λ-net by integrating both
the sensing mask and the compressed snapshot measurement for hierarchically recon-
structing the HSI with a dual-stage generative model. Later Wang et al. [31] conducted
multi-stage deep spatial-spectral prior (DSSP) modeling to incorporate both local co-
herence and dynamic characteristics for boosting the HSI reconstruction performance.
Although promising performance has been achieved with the deep networks, the current
researches mainly focus on designing more complicated and deeper network architec-
ture for pursuing performance gain, and thus cause a large-scale reconstruction model.
However, the large-scale model would restrict wide applicability for being implanted in
real HSI systems.

In order to enhance the flexibility and interpretability of the deep reconstruction
model, several works recently incorporated the deep learned priors into iterative opti-
mization procedure, and proposed the deep unrolling based optimization methods in
natural compressive sensing, e.g., LISTA [15] ADMMNet [21, 37] and ISTA-Net [41].
These methods unroll the iterative optimization procedure into a serial of learnable sub-
problems, and aim at simultaneously learning the network parameters for modelling
the deep priors and the image updating parameters according to the reconstruction for-
mula. However, they were proposed for solving natural compressive sensing problem
via elaborately modelig the latent spatial structure, and are insufficient to capture the
spectral prior in the high-dimensional HSIs. In order to effectively model the prior in the
spectral domain, Choi et al. [8] proposed a convolutional auto-encoder network to learn
spectral prior, and then incorporated the deep image priors learned in pretraining phase
into the optimization procedure as a regularizer. Wang et al. [32] further conducted both
spectral and non-local (NLS) prior learning, and combined the model-based optimiza-
tion method with the NLS-based regularization for robust HSI reconstruction. Although
these unrolling methods have manifested acceptable performance for the conventional
compressive sensing problem but still have insufficient spectral recovery capability.

3 Proposed lightweight hyperspectral reconstruction network

In this section, we first present the formulation problem of the measure and reconstruc-
tion phases in the coded aperture snapshot spectral imaging (CASSI) system, and then
introduce our lightweight hyperspectral reconstruction model including the overview
architecture and the proposed residual reconstruction module: deep feature hallucina-
tion module.

3.1 CASSI observation model

CASSI [29, 13, 1] encodes the 3D hyperspectral data of a scene into a 2D compressive
snapshot image. we denote the intensity of the incident light for a spectral scene as
X(h,w, λ), where h and w are the spatial index (1 5 h 5 H , 1 5 w 5 W ) and λ is
the spectral index (1 5 λ 5 Λ). The incoming light can be collected by the objective
lens, and then spatially modulated using a coded aperture, which creates a transmission
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function T (h,w) for the mathematical implementation. Next the modulated scene is
spectrally dispersed with a wavelength-dependent dispersion function ψ(λ) by the dis-
perser, and a charge-coupled device (CCD) is adopted to detect the spatial and spectral
coded scene as a snapshot image. The schematic concept of this measurement phase in
the CASSI is shown in Fig. 1. Mathematically, the observation procedure for measuring
the 2D snapshot image can be formulated as:

Y (h,w) =
∑

T (h− ψ(λ))X(h− ψ(λ), w, λ). (1)

For simplicity, we reformulate the observation model in Eq. 1 as a matrix-vector
form, which is expressed as:

Y = ΦX (2)

where Φ ∈ <(W+Λ−1)H×WHΛ is the measurement matrix of CASSI, and is the com-
bination operation jointly determined by T (h,w) and ψ(λ). Y ∈ <(W+Λ−1)H and
X ∈ <WHΛ represent the vectorized expression of the compressive image and the full
3D HSI, respectively.

Give the observed compressive snapshot Y, the goal of the HSI reconstruction in
the CASSI is to recover the underlying 3D spectral image X, which is a severe ill-posed
inverse problem. The traditional model-based methods usually result in insufficient per-
formance while the existing deep learning-based paradigms usually yield large-scale
model and then restrict its wide applicability in the real HSI systems despite the promis-
ing performance. This study aims to exploit a lightweight deep reconstruction model for
not only maintaining the reconstruction performance but also reducing model size and
computational cost.

3.2 Overview of the lightweight reconstruction model

The conceptual architecture of the proposed lightweight reconstruction model (LWHRN)
is illustrated in Fig. 2(a). which includes an initial reconstruction module and multiple
lightweight deep feature hallucination modules (DFHM) for hierarchically reconstruct-
ing the un-recovered residual spatial and spectral components with cheaper operation
than the vanilla convolution layers. The DFHM module is composed of a spectral hal-
lucination block (SHB) for duplicating more spectral feature maps using depth-wise
convolution and a spatial context aggregation block (SCAB) for exploiting the multiple
contexts in various receptive fields. In order to reduce the complexity and the model
parameter, we elaborately design both SHB and SCAB with more cheap operation but
maintaining the amount of the learned feature maps for guaranteeing the reconstruc-
tion performance, and construct the lightweight model for practical application in real
HSI systems. Moreover, we employ the residual connection structure to learn the un-
recovered component in the previous module, and gradually estimate the HS image
from coarse to fine.

Concretely, given the measured snapshot image Y, the goal is to recover the full
spectral image X using the LWHRN model. Firstly, as shown in Fig 2(a), an initial
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Fig. 2. The conceptual architecture of the proposed lightweight reconstruction model.

reconstruction module, which consist of several vanilla convolution layers, transforms
the 2D compressed image Y into multi-channel of feature maps, and then predict an
initial HSI: X0 with Λ spectral bands. The initial reconstruction can be formulated as:

X(0) = fIni−rec(Y), (3)

where fIni−rec(·) represents the overall transformation of the initial reconstruction
module. In our experiments, we simply employ 3 convolution layers with kernel size
3× 3, and a RELU activation layer follows after each convolution. Then, multiple deep
feature hallucination modules (DFHM) with cheap operation and residual connection
are stacked to form our backbone architecture, which can hierarchically predict the
residual components to reconstruct the latent HSI from coarse to fine. Let Xk denotes
the output of the k− th DFHM module, the (k+1)− th DFHM module with the resid-
ual connection aims to learn a more reliable reconstruction of the latent HSI, which is
expressed as

Xk+1 = Xk + fDFHM (Xk), (4)

where fDFHM (·) denotes the transformation operators in the MFHM module. The
MFHM module consists of a spectral hallucination blocks and a spatial context ag-
gregation block, which are implemented to capture sufficient channel of feature maps
based on cheap depth-wise convolution operation instead of the vanilla convolution,
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and is expected to reconstruct more reliable structures in both spatial and spectral di-
rections. Moreover, we adopt the residual connection in the MFHM module to model
only the un-recovered components in the previous module as shown in Fig. 2(a). Next,
we would present the detail structure of our proposed DFHM module.

3.3 The DFHM Module

In the HSI reconstruction task from a snapshot image, it require to simultaneously
model detail spatial structure and abundant spectral characteristics for reconstructing
more plausible HSIs. It is an extreme challenging task to reliably reconstruct the high-
dimensional signal in both spectral and spatial dimensions. The existing deep models
generally deepen and widen the network architecture to learn large amount of feature
maps for boosting the recovering performance, which unavoidably causes large-scale
model size and high computational cost. Inspired by the insight that some feature maps
in the well-trained networks may be obtained by employing specific transformation
operations on the already learned features, we deploy the vanilla convolution layer to
learn feature maps with small number of channels (reduced spectral), and then adopt
the more cheap depth-wise convolution operation transforming the previously learned
ones to obtain more hallucinated spectral information, dubbed as spectral hallucination
block (SHB). Moreover, with the concatenated spectral reduced and hallucinated fea-
ture maps, we further conduce the depth-wise convolution with various kernel sizes to
capture multi-scale spatial context, and then aggregate them as the final feature map,
dubbed as spatial context aggregation block (SCAB). Since the SCAB mainly is com-
posed of depth-wise convolution, it also can greatly decrease the parameter compared
with vanilla convolution. Finally, a point-wise convolution layer is used to estimate the
un-recover residual component in the previous module. To this end, we construct the
deep feature hallucination module (DFHM) with a SHB and a SCAB to reciprocally
hallucinate more spectral information and spatial structure with various scale of con-
texts, following a point-wise convolution to achieve the output. The DFHM structure is
ahown in Fig. 2(b). Next, we embody the detailed description of the SHB and SCAB.
Spectral hallucination block (SHB): Given the reconstructed HSI Xk ∈ RH×W×Λ

at the k − th DFHM module, the DFHM first transforms it to a feature map with C
channels: X(k) ∈ RH×W×C , where large number channel (spectral) should have better
representative capability. The SHB aims to further learn deeper representative features
with the same channel number. Instead of directly learning the deeper feature with the
required spectral number, the SHB first employs a pair of vanilla convolution/RELU
layer to obtain a feature map with the reduced spectral channel number C

S , and then
adopts a set of linear operations on the reduced spectral feature to hallucinate more
spectral features. Finally, the hallucinated spectral features by linear operations and the
the spectral reduced feature have been stacked together as the final learned feature map
of the SHB. Specifically, we use the depth-wise convolution, which is much cheaper
operation than the vanilla convolution layer, to implement the linear operation. The
mathematical formula of the SHB can be expressed as:
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X
(k)
RSF = fRSF (X(k)), (5)

X
(k)
SH = fSH(X

(k)
RSF ), (6)

X
(k)
SHB = Concat(X

(k)
RSF ,X

(k)
SH) (7)

where X
(k)
RSF ∈ RH×W×C

S , X
(k)
SH ∈ RH×W×C(S−1)

S and X
(k)
SHB ∈ RH×W×C rep-

resent the spectral reduced feature, the hallucnated spectral feature, and the outputed
feature map of the SHB, respectively. fRSF (·) denotes the transformation of a vanilla
convolution/RELU layer with the spatial kernel size 3×3 to reduce the spectral channel
number fromC to C

S while fSH is the transformation of a set of depth-wise convolution
layers with the spatial kernel size 3× 3.

It should noted if a vanilla convolution with kernel size d× d is employed to trans-
form the feature map X(k) into a deeper feature with the same spectral number, the num-
ber of the parameters by ignoring the bias term for simplicity would beC ·d·d·C. While
the parameter number in the proposed SHB with the spectral reduced vanilla convolu-
tion and the spectral hallucinated depth-wise convolution isC ·d ·d× C

S +d ·d ·(C− C
S ).

Thus, the compression ratio of the parameters with the SHB can be calculated as

rp =
C · d · d · C

C · d · d× C
S + d · d · (C − C

S )
≈ S (8)

Similarly, we can obtain the theoretical speed-up ratio by replacing the vanilla con-
volution layer with the SHB as S. Therefore, the proposed SHB can not only learn the
same amount of feature map but also greatly reduce the parameter number as wells as
speed-up the computation.

Table 1. Performance comparisons on the CAVE and Harvard datasets (3% compressive ratio).
The best performance is labeled in bold, and the second best is labeled in underline.

Method CAVE Harvard Params (MB) Flops(G)
PSNR SSIM SAM PSNR SSIM SAM

TwIST (−) (−) (−) 27.16 0.924 0.119 (−) (−)
3DNSR (−) (−) (−) 28.51 0.940 0.132 (−) (−)
SSLR (−) (−) (−) 29.68 0.952 0.101 (−) (−)

HSCNN[36] 24.94 0.736 0.452 35.09 0.936 0.145 312 87
HyperReconNet [35] 25.18 0.825 0.332 35.94 0.938 0.160 581 152

λ-Net [22] 24.77 0.816 0.314 36.73 0.947 0.141 58247 12321
DeepSSPrior[31] 25.48 0.825 0.324 37.10 0.950 0.137 341 89

Our 27.44 0.830 0.302 37.26 0.951 0.133 197 49

Spatial context aggregation block (SCAB): It is known that the reliable spectral re-
covery of a specific pixel would greatly depend on the around spatial context, and the
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required spatial range may be changed according to the physical characteristics of the
pixel.The ordinary convolution networks usually carry out the context exploitation of
the same spatial range for all pixels regardless to the pixel characteristic, which may
yield non-optimal spectral reconstruction. To this end, we attempt to learn the feature
by exploiting multiple spatial contexts under various receptive fields with the cheap
depth-wise convolution operation, and adaptively aggregate them to a compact repre-
sentation with a point-wise convolution, dubbed as Spatial context aggregation block
(SCAB). Given the spectral hallucinated features X

(k)
SHB of the SHB, the SCAB firstly

adopts a mixed depth-wise convolutional layer (dubbed as MixConv) [28] to adaptively
exploit the spatial dependency in different sizes of local spatial regions for param-
eter reduction. In the detailed implementation, the spectral hallucinated feature map
X̄

(k)
SHB ∈ RH×W×C is partitioned into M groups: X̄

(k)
SHB = [X1,X2, · · · ,XM ] via

evenly dividing the channel dimension, where Xm ∈ RH×W×Lm (Lm = L/M ) repre-
sents the feature maps in the m − th group. The MixConv layer is deployed to exploit
different spatial contexts for different groups via using depth-wise convolution layers.
Let’s denote the parameter set of the MixConv layer as Θ

(k)
Mix = {θ1, θ2, · · · , θM}

in the M group of depth-wise convalution layers, where the parameters for different
groups have various spatial kernel sizes for exploring spatial contexts in different local
regions with θm ∈ Rsm×sm×Lm , the MixConv layer is formulated as:

X
(k)
Mix =Concat(fθ1dp(X1), fθ2dp(X2), · · · , fθMdp (XM )), (9)

where fθmdp (·) represents the depth-wise convolutional layer with the weight parameter
θm (for simplicity, we ignore the bias parameters). With the different kernel spatial sizes
at different groups, the spatial correlation in various local regions is simultaneously in-
tegrated for extracting high representative features in one layer. Moreover, we employ
the depth-wise convolution operations in all groups, which can greatly reduces the pa-
rameters ( 1

Lm
) compared with a vanilla convolution layer for being easily implanted in

the real imaging systems, and expect more reliable spatial structure reconstruction via
concentrating on spatial context exploration. Finally, a point-wised convolution layer
is employed to estimate the residual component of the k − th DFHM module, and is
expressed as:

X̄k = fPW (X
(k)
Mix). (10)

4 Experimental results

To demonstrate the effectiveness of our proposed lightweight reconstruction model, we
conduct comprehensive experiments on two hyperspectral datasets including the CAVE
[38] dataset and the Harvard dataset [7]. The CAVE dataset consists of 32 images with
spatial resolution 512 × 512 and 31 spectral channels ranging from 400nm to 700nm
while the Harvard dataset is composed of 50 outdoor images captured under daylight
conditions with the spatial resolution are 1040 × 1392 and the spectral wavelength
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HS Image/              HSCNN              HyperReconNet DeePSSPrior Our
Snapshot Image     (21.19, 0.717, 0.27)      (23.28, 0.807, 0.177)       (22.85, 0.818, 0.202)    (24.76, 0.801, 0.150)

(a)

HS Image/                          HSCNN                     HyperReconNet DeepSSPrior Our

Snapshot Image             (36.48, 0.953, 0.203)     (36.52, 0.954, 0.207)       (36.95, 0.958, 0.195)     (37.71, 0.954, 0.195) 

(b)

Fig. 3. Visualization results of two example images compared with the SoTA deep learning mod-
els: HSCNN [36], HyperReconNet [35], DeepSSPrior [31], and our proposed lightweight models,
where the three values under the reconstruction represents the PSNR, SSIM and SAM, respec-
tively.

ranging from 420nm to 720nm. In our experiment, we randomly select 20 images in
the CAVE and 10 image in the Harvard dataset as the testing samples and the rest for
training. For simulating the 2D snapshot image, we synthesize the transmission func-
tion T (h,w) of the coded aperture in the HS imaging system via randomly generating
a binary matrix according to a Bernoulli distribution with p = 0.5, and then create the
snapshot measurements by transforming the original HSI with the synthesized trans-
formation function. To prepare training samples, we extract the corresponding snap-
shot/HSI patches with spatial size of 48 × 48 from the training images. We implement
our overall network by stacking 9 DFHM modules following the same number of stages
in the conventional deep models: HSCNN [36] and DeepSSPrior [31] for fair compar-
ison in model parameter and computational cost. Moreover, we quantitatively evaluate
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Table 2. Ablation study on the CAVE dataset. The best performance is labeled in bold, and the
second best is labeled in underline.

Metrics w/o SCAB w/o SCAB w/o SCAB SHB + SCAB
(S = 2) (S = 3) (S = 4) (S = 2)

PSNR 26.98 26.63 26.13 27.44
SSIM 0.813 0.805 0.813 0.830
SAM 0.307 0.324 0.327 0.302

Parameter(MB) 40 35 32 42

the HS image reconstruction performance using three metrics including the peak signal-
to-noise ratio (PSNR), structural similarity (SSIM) and spectral angle mapper (SAM).
Comparison with the SoTA methods: We compare our proposed method with several
state-of-the-art HSI reconstruction methods, including three traditional methods with
hand-crafted prior modeling , i.e, TwIST with TV prior [40], 3DNSR and SSLR with
NLS prior [30, 11], and four deep learning-based methods, i.e., HSCNN [36], Hyper-
ReconNet [35], λ-net [22] and Deep Spatial Spectral Prior (DeepSSPrior) [31]. Our
lightweight model was implemented by stacking 9 MFHM modules with the compres-
sion ratio : S = 2 (in the SHB). The compared quantitative results are illustrated in
Table 1, which verifies that our proposed lightweight models can not only achieve
promising reconstruction performance but also greatly reduce the parameter as well
as computational cost. Moreover, we also provide the compared visualization results
of our lightweight model with the HSCNN[36], HyperReconNet [35] and DeepSSPrior
[31] in Fig. 3, which also demonstrated the better reconstruction performance by our
method.
Ablation study: As introduced in Section 2, we compress the spectral channel from C
to C

S , and then hallucinate more spectral features using cheap depth-wise convolution
operation in the SHB, where the hyper-parameter S can be adjusted according to the
compression ratio of the parameter in the SHB. What is more, the following SCAB is
incorporated for exploiting multi-scale spatial contexts with cheap operation, which can
be plugged in or ignored in the DFHM module. To verify the effect of the compression
ratio S and the additional SCAB, we carried out experiments by varying S from 2 to 4,
and w/o the incorporation of the SCAB on the CAVE dataset. The ablation results are
shown in Table 2. From Table 2, we observe that the compressive ratio 2 achieves the
best performance while increasing the compression ratio will yield a little performance
drop but with smaller parameter number. Moreover, the incorporation of the SCAB can
further boost the reconstruction performance, whilst causes few parameter raising.

5 Conclusions

This study proposed a novel lightweight model for efficiently and effectively recon-
struct a full hyperspectral image from a compressive snapshot measurement. Although
the existing deep learning based models have achieved remarkable performance im-
provement compared with the traditional model-based methods for hyperspectral image
reconstruction, it still confronts the difficulties to embed the deep models in real HSI

175



Lightweight Hyperspectral Image Reconstruction 13

systems due to large-scale model size. To this end, we exploited an efficient deep fea-
ture hallucination module (DFHM) to construct our lightweight models. Specifically,
we elaborated the DFHM by a vanilla convolution-based spectral reduced layer and
a depth-wise convolution-based spectral hallucination layer to learn sufficient feature
maps with cheap operation. Moreover, we further incorporated a spatial context ag-
gregation block to exploit multi-scale context in various receptive fields for boosting
reconstruction performance. Experiments on two datasets demonstrated that our pro-
posed method achieved superior performance over the SoTA models as well as greatly
reduced the parameters and computational cost.
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