This ACCV 2022 workshop paper, provided here by the Computer Vision Foundation, is the author-created
version. The content of this paper is identical to the content of the officially published ACCV 2022
LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/accv

Convolutional point Transformer

Chaitanya Kaul! (), Joshua Mitton!, Hang Dai?, and Roderick
Murray-Smith!

! School of Computing Science, University of Glasgow, G12 S8RZ
2 Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE

chaitanya.kaul@glasgow.ac.uk

Abstract. We present CpT: Convolutional point Transformer — a novel
neural network layer for dealing with the unstructured nature of 3D point
cloud data. CpT is an improvement over existing MLP and convolution
layers for point cloud processing, as well as existing 3D point cloud pro-
cessing transformer layers. It achieves this feat due to its effectiveness in
creating a novel and robust attention-based point set embedding through
a convolutional projection layer crafted for processing dynamically local
point set neighbourhoods. The resultant point set embedding is robust
to the permutations of the input points. Our novel layer builds over local
neighbourhoods of points obtained via a dynamic graph computation at
each layer of the network’s structure. It is fully differentiable and can
be stacked just like convolutional layers to learn intrinsic properties of
the points. Further, we propose a novel Adaptive Global Feature layer
that learns to aggregate features from different representations into a
better global representation of the point cloud. We evaluate our models
on standard benchmark ModelNet40 classification and ShapeNet part
segmentation datasets to show that our layer can serve as an effective
addition for various point cloud processing tasks while effortlessly in-
tegrating into existing point cloud processing architectures to provide
significant performance boosts.

1 Introduction

3D data takes many forms. Meshes, voxels, point clouds, multi view 2D images,
RGB-D are all forms of 3D data representations. Amongst these, the simplest raw
form that 3D data can exist in is a discretized representation of a continuous sur-
face. This can be visualized as a set of points (in R3) sampled from a continuous
surface. Adding point connectivity information to such 3D point cloud represen-
tations creates representations known as 3D meshes. Deep learning progress on
processing 3D data was initially slow primarily due to the fact that early deep
learning required a structured input data representation as a prerequisite. Thus,
raw sensor data was first converted into grid-like representations such as voxels,
multi view images, or data from RGB-D sensors was used to interpret geometric
information. However, such data is computationally expensive to process, and
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Fig. 1: Overview of the structure of (a) PointNet, (b) DGCNN, (c) Point Trans-
former, and, (d) Convolutional point Transformer illustrating the differences
between these point based convolution layers. Global Feature denotes max or
average pooling operations, MHSA denotes multi-head self attention, IPA de-
notes InterPoint Attention.

in many cases, it is not the true representation of the 3D structure that may
be required for solving the task. Modern applications of point clouds require a
large amount of data processing. This makes searching for salient features in
their representations a tedious task. Processing 3D meshes (along with added
3D point cloud information), requires dealing with their own sets of complexi-
ties and combinatorial irregularities, but such structures are generally efficient to
process due to knowledge of point set connectivity. This motivation has sparked
interest in processing 3D points directly at a point level instead of converting
the points to intermediate representations. Lack of any general structure in the
arrangement of points serves as a challenge in the ability to process them. This
is due to the fact that point clouds are essentially set representations of a con-
tinuous surface in a 3D space. The seminal works on processing points proposed
approaches to deal with this lack of order by constructing set based operations
to ingest 3D points directly. They then created a symmetric mapping of such set
based representations in a high dimensional space [22,42]. This representation
was further processed by symmetry preserving operations to create a feature
representation of the point cloud, before passing them through multi layer per-
ceptrons for solving the task. Representations created on a per-point basis are
generally not robust as there is no concept of locality in the data representations
used to create them. Various methods have been introduced in literature to add
the notion of locality to point set processing [23, 16, 38, 33, 10, 11].
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Recently proposed transformer architectures have found great success in lan-
guage tasks due to their ability to handle long term dependencies well [31].
These models have been successfully applied to various computer vision appli-
cations [2, 3] and are already even replacing the highly successful CNNs as the
de facto approach in many applications [35,19]. Even though various domains
of vision research have adopted the transformer architecture, their applications
to 3D point cloud processing are still very limited [44, 4]. This leaves a gap in
the current research on processing points with transformer based structures.

The basic intuition of our work lies in three simple points. First, transformers
have been shown to be intrinsically invariant to the permutations in the input
data [41] making them ideal for set processing tasks. Second, 3D points pro-
cessed by most existing deep learning methods exploit local features to improve
performance. However, these techniques treat points at a local scale to keep
them invariant to input permutations leading to neglecting geometric relation-
ships among point representations, and the inability of said models to capture
global concepts well. Third, existing methods rely on one symmetric aggrega-
tion function (eg. max pooling) to aggregate the features that point operators
(such as MLPs and 1D Convolutions) learn. This function is likely to leave out
important feature information about the point set. To address these points, we
propose CpT: Convolutional point Transformer. CpT differs from existing point
cloud processing methods due to the following reasons:

i) CpT uses a K-nearest neighbour graph at every layer of the model. Such a
dynamic graph computation [33] requires a method to handle the input data,
in order to create a data embedding that can be fed into a transformer layer.
Towards this end, we propose a novel Point Embedding Module that first
constructs a dynamic point cloud graph at every stage of the network, and
creates a point embedding to feed into a transformer layer for its processing.

ii) Transformers employ multi-head self attention to create contextual embed-
dings. Such an attention mechanism works to enhance the learning of features
in the data. However, it has been shown that adding sample wise attention to
data can help improve the performance of a transformer model even further
[27, 8,24, 6]. To this end, we propose to add an InterPoint Attention Module
(Figure 2 (c)) to the Transformer which learns to enhance the output by
learning to relate each point in the input to every other point. This helps
capture better geometric relationships between the points and aids in better
learning of the local and global concepts in the data. The resultant trans-
former block, i.e., the CpT layer (shown in Figure 2 (a)) is a combination
of multi-head self attention operation, followed by an InterPoint Attention
module. The @, K,V attention projections in this block are convolutional in
nature to facilitate learning spatial context.

iii) We propose a novel Global Feature Aggregation layer (Figure 2 (b)) that
learns to aggregate features from multiple symmetric global representations
of the points through a spatial attention mechanism. Our main novelty here
lies in the adaptive nature of this layer’s information aggregation as it scales
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the attention output through multiplication with a vector 5 and learns to
weight the attention aggregated output over the training of the model.

We evaluate CpT on 3-point cloud processing tasks — classification of Mod-
elNet40 CAD models and estimating their normals, and segmentation on the
ShapeNet part dataset. We perform extensive experiments and multiple studies
and ablations to show the robustness of our proposed model. Our results show
that CpT can serve as an accurate and effective backbone for various point cloud
processing tasks.

2 Related Literature

Processing Point Clouds using Deep Learning. The lack of a grid-like
structure to points makes applying convolutions directly on them a tedious task.
Due to this reason, all previous works in processing 3D points using deep learn-
ing required the points to be first converted to a structured representation like
voxels, depth maps, multiple 2D views of an object, etc, and then process the
resultant representation with conventional deep models [29,45,21]. This pro-
cess has massive computational overheads which result from first converting the
data to the grid-like representation and then training large deep learning models
on it. The first methods that proposed to treat points as set embeddings in a
3D space were PointNet [22] and Deep Sets [42]. They took the approaches of
creating data embeddings that preserve point set symmetry using permutation
invariance and permutation equivariance respectively. This drastically reduced
the computational overhead as the models used to train the data worked directly
on the raw data points, and the models used to train on such data were not very
large scale, and yet accurate. These models however, suffered from the drawback
of only looking globally at the points. This meant that the higher dimension em-
beddings created by such methods were not robust to occlusions as the represen-
tations only took the particular input point into consideration while creating its
representation. This drawback was tackled in works where local neighbourhoods
of points were taken into consideration to compute per point representations.
PointNet+-+ [23] used farthest point sampling to estimate the locality of points
first, before processing them via weight-shared multilayer perceptrons (MLPs).
ECC Nets [26] proposed the Edge Conv operation over a local neighbourhoods
of points. Dynamic Graph CNNs [33] created local neighbourhoods by comput-
ing a graphical representation of the points before every shared-weighted MLP
layer to create a sense of locality in the points. Parameterized versions of convo-
lution operations for points have also been proposed such as Spider CNN [3§],
and PointCNN [16]. Previous work with kernel density functions to weight point
neighbourhoods [36] treated convolutional kernels as non linear functions of the
3D points containing both weight and density estimations. The notion of looking
both locally and globally at points was proposed in SAWNet [10]. Other notable
approaches that process 3D points as a graph either densely connect local neigh-
bourhoods [43], operate on a superpoint graph to create contextual relationships
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[13], or use spectral graph convolutions to process the points [32].

Attention Mechanisms in Vision. Various attention mechanisms exist in
the deep learning literature, with one of the first works introducing them for nat-
ural language understanding being [20]. The first attention mechanisms applied
to vision were based on self attention via the squeeze-and-excite operation of SE
Nets [7]. This attention mechanism provided channel-wise context for feature
maps and was widely successful in increasing the accuracy over non attention
based methods on ImageNet. It was extended in [1] to non-local networks, and
in [25] to fully convolutional networks for medical imaging applications. One
of the first works that combined channel-wise self attention with spatial atten-
tion for images [34, 9] first created attention maps across the entire feature map,
followed by a feature map re-calibration step to only propagate the most im-
portant features in the networks forward. FatNet [11] successfully applied this
concept to point clouds by first applying spatial attention over feature groups of
local regions of points, followed by feature weighting using a squeeze-and-excite
operation.

Transformers in 2D and 3D Vision. A concurrent line of upcoming work
applies the dot product attention to input data for its efficient processing. The
Vision Transformer (ViT) [3] was the first real application of the Transformer to
vision. It employed a Transformer encoder to extract features from image patches
of size 16 x 16. An embedding layer converted the patches into a transformer-
friendly representation and added positional embedding to them. This general
structure formed the basis of initial transformer based research in vision, but
required large amounts of data to train. DETR [2] was the first detection model
created by processing the features of a Convolutional Neural Network by a trans-
former encoder, before adding a bipartite loss to the end to deal with a set
based output. The Convolutional Vision Transformer (CvT) [35] improved over
the ViT by combining convolutions with Transformers via a novel convolutional
token embedding and a convolutional projection layer. The recently proposed
Compact Convolutional Transformer (CCT) [5] improve over the ViT and CvT
models by showing that with the right size and tokenization, transformers can
perform head-to-head with state of the art CNN models on small scale datasets.
The Swin Transformer [19] proposed a hierarchical transformer network whose
representations are computed with shifted windows.

The application of the transformer to point cloud processing is limited. Ex-
isting works include the Point Transformer [44] which applies a single head of
self attention on the points to create permutation invariant representations of
local patches obtained via K-NN and furthest point sampling, and the Point
Cloud Transformer [4] which applies a novel offset attention block to 3D point
clouds. Over work extends over the existing literature to create a novel trans-
former block that performs feature wise as well as pointwise attended features
of the input for its accurate and effective processing.
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3 Convolutional Point Transformer

Notation. We denote a set of N-points with a D-dimensional embedding in the
Ith CpT layer as, X! = {x},... x4}, where x! € RP. For K nearest neighbours
of point i (i € {1...N}), we define the set of all nearest neighbours for that point
to be AX! ={x} —xl ... x} —x}, where jy : jr € {1,...,N} A (jr #14).

The Convolutional point Transformer (CpT) layer is shown in Figure 2. Our
main contributions are the Point Embedding Module (Section 3.1), the Inter-
Point Attention Module with a convolutional attention projection (Section 3.2)
and the Adaptive Global Feature module (Section 3.3). We use CpT in 3 dif-
ferent newtwork architectures - PointNet [22], DGCNN [33], Point Transformer
[44]. We do this by replacing the point convolution layers in PointNet, the Edge-
Conv layer in DGCNN and the attention layer in Point Transoformer with CpT.
The information flow in all these architectures is similar. When an input point
cloud of size N x 3 is passed through the architecture, a graph of the points
is computed via finding its K-Nearest Neighbours based on Euclidean distance.
This representation is then passed through a point embedding layer that maps
the input data into a representation implicitly inclusive of the nearest neigh-
bours of the points. This is done via a 2D convolution operation whose degree
of overlap across points can be controlled through the length of the stride. A
multi-head attention operation is then applied to this embedded representation
which is followed InterPoint Attention. The multi-head attention can be seen as
learning relevant features of a points embedding as a function of its K nearest
neighbours. Such an attention mechanism learns to attend to the features of the
points rather than the points themselves (column-wise matrix attention), i.e. for
a set of points in a batch, it learns to weight individual feature transformations.
The InterPoint Attention on the other hand can be interpreted as learning the
relationships between different the points themselves, within a batch (a row-wise
matrix attention operating per point embedding, rather than per individual fea-
ture of the points). Each attention block is followed by a residual addition and
a combination of LayerNormalization and 2 1D Convolutions. These operations
form one CpT layer. We update the graph following these operations and pass
it into the next CpT layer. The output of the final CpT layer in all network
architectures is fed through our Adaptive Global Feature module. It progres-
sively learns to attend to features of max pooled and average pooled global
representations of the features during training, to create a richer final feature
representation.

3.1 Point Embedding Module

The point embedding module takes a k-NN graph as an input. The general struc-
ture of the input to this module is denoted by (B, f, N, AX!) € R(BXfXNXAXi'),
where B and f are the batch size and input features respectively. This layer is
essentially a mapping function Fy that maps the input into an embedding Fjy.
This operation is denoted by,

y = Fy(I(B, f, N, AX})),y € R(EX/*Eo),
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Fig.2: The CpT Transformer Block with Dot Product Attention and InterPoint
Attention are shown in (a). (¢) shows the inner workings of the InterPoint At-
tention module. Flow of information is sequential from top to bottom. (b) shows
the Adaptive Global Feature module. AP is average pooling and MP is max
pooling. the Flow of information is from left to right.

There are many choices available for the mapping function Fy. We use a
convolution operation with a fixed size padding and stride. This allows us to
train this module in a end-to-end setting along with the rest of the network as
it is fully differentiable and can be plugged anywhere in the architecture.

3.2 Convolutional point Transformer Layer

Our Convolutional point Transformer layer uses a combination of multi-head self
attention and InterPoint attention to propagate the most important, salient fea-
tures of the input through the network. The CpT layer leverages spatial context
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and moves beyond a fully connected projection, by using a convolution layer to
sample the attention matrices. Instead of creating a more complicated network
design, we leverage the ability of convolutions to learn relevant feature sets for
3D points. Hence, we replace the original fully connected layers in the attention
block with depthwise convolution layers which forms our convolutional projec-
tion to obtain the attention matrices. The general structure of the CpT layer is
shown in Figure 2 (a). The functionality of the rest of the transformer block is
similar to ViT [3] where normalization and feedforward layers are added after
every attention block and residual mappings are used to enhance the feature
learning. The notable difference from ViT is that the feedforward layers are re-
placed with 1D convolution operations.

Formally, the projection operation of the CpT layer is denoted by the follow-
ing operation,

zf/k/” = Conwvolution(z;, p, s),

where 29/%/ is the input for the Q/K/V attention matrices for the i-th layer
and z; is the input to the convolution block. The convolution operation is im-
plemented as a depthwise separable convolution operation with tuples of kernel
size p and stride s. We now formalize the flow of data through the entire CpT
block for a batch size B as,

out! = Y(MHSA(")) + 21/,

where out{ is the output of the multi-head attention block, M HSA is the multi-
head attention given by MHSA(-) = softmax(%‘/). V/d is used to scale the

attention weights to avoid gradient instabilities. v is the layer normalization
operation. The addition denotes a residual connection. This output is further
processed as in a vanilla transformer in the following way,

out? = y(FF(out?)) + out?.

FF here denotes the feedforward 1D convolution layers. The InterPoint attention
is then computed on this output as,

outé = y(IPA(out?)B ) + out?,

which is then processed in a similar manner by layer normalization and feedfor-
ward layers as,
out? = y(FF(out?) + out®.

Following this step, the graph is recomputed and the process restarts for the
[ + 1-th layer.

3.3 Adaptive Global Feature

The Adaptive Global feature layer (Figure 2 (b)) takes the output of the last
CpT layer in a network and learns to create a robust attention-based global
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representation from it. The output of the final CpT layer are passed through
max pooling and average pooling operations. Then attention weights o1 and o5
are learnt to weight these global representations before combining them via an
aggregation function. The output of this aggregation function is further scaled
via a vector B. ( is initialized as a vector of all zeros, and the same shape as
the pooled feature outputs. It gradually learns to assign weight to the attended
features as the training progresses. Let the pooling operations, P be defined as
the set, P = {AP, M P}. The output of the Adaptive Global Feature layer is
denoted by,

2
AGF =B() o0;-P)+ AP+ MP
i=1

4 Experiments and Results

We evaluate our model on two different datasets for point cloud classification,
part segmentation and surface normal estimation tasks. For classification and
surface normal estimation, we use the benchmark ModelNet40 dataset [37] and
for object part segmentation, we use the ShapeNet Part dataset [40].

4.1 Implementation Details

Unless stated otherwise, all our models are trained in PyTorch on a batch size of
32 for 250 epochs. SGD with an initial learning rate of 0.1 and momentum 0.9 is
used. We use a cosine annealing based learning rate scheduler. The momentum
for batch normalization is 0.9. Batch Normalization decay is not used. Dropout,
wherever used, is used with a rate of 0.5. Custom learning rate schedules are used
for the segmentation tasks after initial experimentation. For the classification
and 3D indoor scene segmentation tasks, we compute dynamic graphs using
20 nearest neighbours, while for the part segmentation task, we use 40 nearest
neighbours. We use NVIDIA A6000 GPUs for our experiments.

4.2 Classification with ModelNet40

The ModelNet40 dataset [37] contains meshes of 3D CAD models. A total of
12,311 models are available belonging to 40 categories, split into a training-
test set of 9,843-2,468 respectively. We use the official splits provided for all
our experiments and datasets to keep a fair comparison. In terms of data pre-
processing, we follow the same steps as [22]. We uniformly sample 1024 points
from the mesh surface and rescale the point cloud to fit a unit sphere. Data
augmentation is used during the training process. We perturb the points with
random jitter and scalings during the augmentation process.

It can be seen from the results that CpT outperforms existing classification
methods, including the Point Transformer [44]. CpT, when replacing the point
convolution in PointNet and the EdgeConv in DGCNN, can be seen to provide
significant performance boosts. In the Static Graph approach, the K-NN graph
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Method Class Accuracy (%) Instance Accuracy (%)
3D ShapeNets [40] 77.3 84.7
VoxNet [21] 83.0 85.9
PointNet [22] 86.0 89.2
PointNet++ [23] - 90.7
SpiderCNN [38] - 90.5
PointWeb [43] 89.4 92.3
PointCNN [16] 88.1 92.2
Point2Sequence [17]  90.4 92.6
ECC [26] 83.2 87.4
DGCNN [33] 90.2 92.2
FatNet [11] 90.6 93.2
KPConv [30] - 92.9
SetTransformer [14] - 90.4
PCT [4] - 93.2
PointTransformer [44] 90.6 93.7
CpT (PointNet*) 88.1 90.9
CpT (Static Graph) 90.3 92.1
CpT (DGCNN) 90.9 93.9

Table 1: Classification results on the ModelNet40 dataset. CpT (PointNet*) and
CpT (DGCNN*) denote the backbone architecture the CpT layer was placed in.
All trained architectures use our Adaptive Global Feature module.

is only computed once (in the first CpT layer) and the same graph (and it’s
features) is used by the subsequent layers in the network. Here, even when we
do not recompute the graph at every layer, CpT outperforms Dynamic Edge
Conditioned Filters (ECC) [26] and performs at par with DGCNN. Dynamic
graph computations before every layer help CpT surpass the accuracy of all ex-
isting graph and non graph based approaches, including outperforming existing
transformer based approaches [4, 44].

4.3 Segmentation results with ShapeNet Part

The ShapeNet Part dataset [40] contains 16,881 3D shapes from 16 object cate-
gories. A total of 50 object parts are available to segment. We sample 2048 points
from each shape and follow the official training-testing splits for our experiments.
Our results on the dataset are summarized in Table 2, while the visualizations
produced by our model are shown in Figure 3. We train two CpT models for this
task, with a DGCNN backbone, and a Point Transformer backbone. We note
that CpT (DGCNN*) outperforms DGCNN by 0.9% on the IoU metric while
CpT (PointTransformer*) out performs the point transformer by 0.2%.
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Fig. 3: Visualizing the segmentation results from the ShapeNet Part Dataset.
Ground truth images are in the top row and their corresponding segmentation

maps in the bottom row..

Method [ToU
Kd-Net [12] 82.3
SO-Net [15] 84.6
PointNet++ [23] 85.1
SpiderCNN [38] 85.3
SPLATNet [28] 85.4
PointCNN [16] 86.1
PointNet [22] 83.7
DGCNN [33] 85.1
FatNet [11] 85.5
Point ASNL [39)] 86.1
RSCNN (18] 86.2
KPConv [30] 86.4
PCT [4] 86.4
PointTransformer [44] 86.6
CpT (DGCNN™) 85.9
CpT (PointTransformer™) [86.8

Table 2: Results on the ShapeNet Part Segmentation dataset. CpT (DGCNN*)
and CpT (PointTransformer*) denote the backbone architecture the CpT layer

was placed in.

4.4 Normal Estimation

We estimate normals of the ModelNet40 dataset where each point cloud has a
corresponding normal label. Normals are crucial in understand the shape and
underlying geometry of 3D objects. We train 2 backbone architectures for this
task — CpT (PointNet*) and CpT (DGCNN™). Our results are summarized in ta-
ble 3. It can be seen that, when replacing the point convolution in PointNet, and
the EdgeConv in DGCNN with our CpT layer, we get significant performance

boosts over the baseline models.
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Method l Error

PointNet [22] | 0.47
CpT (PointNet*)| 0.31
DGCNN [33] | 0.29
CpT (DGCNN*)|0.15

Table 3: Results on the normal estimation task. Results on the PointNet and
DGCNN backbones are reported. The reported error is the average cosine dis-
tance error. Lower is better.

5 Ablation Study

In this section, we detail experiments of our extensive studies to shed light at
the inner workings of the CpT layer. We conducted a series of ablation studies to
highlight how the different building blocks of CpT come together. The DGCNN
backbone is used for these experiments.

Static v/s Dynamic Graphs. We trained two CpT models for these exper-
iments. The K-NN graph computation is only done before the first CpT Layer
in the Static CpT model. The results for this experiment are shown in Table 1.
Computing the graph before each transformer layer helps boost CpT’s instance
accuracy by 1.8%.

Global Representations vs Graph Representations. We compared dy-
namic graph computation with feeding point clouds directly into the CpT layer.
This equates to removing the K nearest neighbour step from the layer in Fig-
ure 2 (a). As the points were directly fed into CpT, we also replaced the Point
Embedding Module with a direct parameterized relational embedding This re-
lation was learnt using a convolution operation. The rest of the layer structure
remained unchanged. The resultant model trained on global representations per-
formed well. The results are summarized in Table 4. PointNet [22] is added to
the table for reference as it also takes a global point cloud representation as an
input. The CpT with dynamic graph computation outperforms both methods,
but it is interesting to note that the CpT model that works directly on the entire
point cloud manages a higher class accuracy than PointNet.

Model [Class Accuracy (%)
PointNet [22] 86.2
CpT (No locality) 87.6
CpT (Dynamic Graph) 90.6

Table 4: Comparison of different input representations.
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Number of Nearest Neighbours for dynamic graph computation.
We also experiment with the number of nearest neighbours used to construct
the graph. CpT layers implemented with 20 nearest neighbour graphs performs
the best. This is due to the fact that for large distances beyond a particular
threshold, the euclidean distance starts to fail to approximate the geodesic dis-
tance. This leads to capturing points that may not lie in the true neighbourhood
of the point while estimating its local representation.

k [Class Accuracy (%)

10 89.6
20 90.6
30 90.3
40 90.4

Table 5: CpT with different number of nearest neighbours.

CpT Robustness. We test the robustness of CpT towards classifying sparse
datasets by sampling point clouds at various resolutions from the ModelNet40
dataset and evaluating CpT’s performance on them. We sample 1024, 768, 512,
256 and 128 points for each CAD model in the dataset, keeping the input point
clouds’ resolution small. Figure 4 (a) shows the robustness of CpT compared to
PointNet and DGCNN. CpT is not tied to observing input data through receptive
fields like CNNs in order to construct its feature space. Even at very small
resolutions of the point cloud, the multi-head attention and InterPoint attention
learns to model long range dependencies in the input points well to create a local
and global understanding of the shape. This leads to a high performance even
when there are a small sample of points available.

Robustness to Random Point Dropout Robustness to Purturbation

Overall Accuracy (%)

Overall Accuracy (%)

0 e e o 0 1000 1200 o 02 0s os os . 12
Number of Points Perturbation Ratio
—e—Overall Accuracy PointNet (%) —e—Overall Accuracy DGCNNN (%) Overall Accuracy y CPT (%) —e—Overall Accuracy PointNet (%) —e—Overall Accuracy DGCNNN (%) Overall Accuracy CpT (%)
(a) Effect of randomly dropping out points (b) Effect of adding perturbations to points
on performance of CpT. on the performance of CpT.

Fig. 4: Comparing the robustness of CpT to PointNet [22] and DGCNN [33]
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To observe the effect of perturbations on CpT’s performance, we perturb
each point in the point clouds independently using Gaussian noise. Our results
(summarized in Figure 4 (b)) show that our network still manages to remain
robust to the added noise even during high amounts of perturbations. The X-
axis of the graph in Figure 4 (b)) shows the amount of standard deviation of
the Gaussian noise which is linearly increased to perturb the points by a larger
amount.

6 Conclusions and Future Work

In this paper, we proposed CpT: Convolutional point Transformer. We showed
how transformers can be effectively used to process 3D points with the help of
dynamic graph computations at each intermediate network layer. The main con-
tributions of our work include, first, a Point Embedding Module capable of taking
a dynamic graph as an input and transforming it into a transformer friendly data
representation. Second, the InterPoint Attention Module which uses self atten-
tion to facilitate cross talk between the points in an arbitrary batch. Through
this work, we have shown for the first time that different self attention meth-
ods can be efficiently used inside a single transformer layer for 3D point cloud
processing ([44] only uses one form of self attention while [4] only uses an offset
attention operator). We also proposed an Adaptive Global Feature module that
compliments CpT by learning to attend to the most important features inside
different global representations of point cloud features. CpT outperforms most
existing convolutional and transformer based approaches for point cloud process-
ing on a variety of benchmark tasks. To improve performance, future directions
of this research lie in learning to sample points uniformly along the manifold of
the 3D point cloud to preserve its local shape. This can lead to learning better
local representations of the data and in turn, creating models with improved
accuracy. Our results already show that CpT is capable of taking local context
and processing it effectively with global information present in the points. We
have shown how CpT can be easily integrated into various existing architectures
that are used for processing 3D points. We believe that CpT can serve as an
effective backbone for future point cloud processing tasks and be extended to
various applications.
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