
Cross-Attention Transformer for Video
Interpolation

Hannah Halin Kim[0000−0003−2588−0190], Shuzhi Yu[0000−0003−2514−381X],
Shuai Yuan[0000−0003−4039−0464], and Carlo Tomasi[0000−0001−6104−6641]

Duke University, Durham NC 27708, USA
{hannah,shuzhiyu,shuai,tomasi}@cs.duke.edu

Abstract. We propose TAIN (Transformers and Attention for video
INterpolation), a residual neural network for video interpolation, which
aims to interpolate an intermediate frame given two consecutive image
frames around it. We first present a novel vision transformer module,
named Cross-Similarity (CS), to globally aggregate input image features
with similar appearance as those of the predicted interpolated frame.
These CS features are then used to refine the interpolated prediction. To
account for occlusions in the CS features, we propose an Image Attention
(IA) module to allow the network to focus on CS features from one
frame over those of the other. TAIN outperforms existing methods that
do not require flow estimation and performs comparably to flow-based
methods while being computationally efficient in terms of inference time
on Vimeo90k, UCF101, and SNU-FILM benchmarks.

1 Introduction

Video interpolation [1,2,3,4,5,6,7] aims to generate new frames between consec-
utive image frames in a given video. This task has many practical applications,
ranging from frame rate up-conversion [8] for human perception [9], video edit-
ing for object or color propagation [10], slow motion generation [11], and video
compression [12].

Recent work on video interpolation starts by estimating optical flow in both
temporal directions between the input frames. Some systems [3,4,5,13,14,15]
use flow predictions output by an off-the-shelf pre-trained estimator such as
FlowNet [16] or PWC-Net [17], while others estimate flow as part of their own
pipeline [7,11,18,19,20,21,22,23,24]. The resulting bi-directional flow vectors are
interpolated to infer the flow between the input frames and the intermediate
frame to be generated. These inferred flows are then used to warp the input
images towards the new one.

While these flow-based methods achieve promising results, they also come
with various issues as follows. First, they are computationally expensive and
rely heavily on the quality of the flow estimates (see Figure 1). Specifically,
state-of-the art flow estimators [16,17,25] require to compute at least two four-
dimensional cost volumes at all pixel positions. Second, they are known to suffer

320



2 H. Kim et al.

Network Inference Time PSNR

N
o

F
lo
w EDSC 19.37 ± 0.06 34.84

CAIN 25.21 ± 0.45 34.65
TAIN (ours) 32.59 ± 0.82 35.02

F
lo
w

DAIN 168.56 ± 0.33 34.71
BMBC 333.24 ± 6.60 35.01
ABME 116.66 ± 1.07 36.18

VFIformer 476.06 ± 11.92 36.50

Fig. 1: Inference times (in milliseconds per frame prediction) of existing video
interpolation methods and TAIN (ours) on a single P100 GPU. The inference
times are computed as average and standard deviation over 300 inferences using
two random images of size 256×256 as input. As a reference, we also list perfor-
mance (PSNR) on Vimeo-90k [7]. Flow-based methods (red) have much higher
inference times compared to TAIN (blue) and other non-flow-based methods
(green). Bold values show the best performance in each panel, and underlined
bold values show the best performance across both panels. Best viewed in color.

at occlusions, where flow is undefined; near motion boundaries, where flow is dis-
continuous; and in the presence of large motions [26,27]. For instance, RAFT [25]
achieves an End-Point Error (EPE) of 1.4 pixels on Sintel [28], but the EPE rises
to 6.5 within 5 pixels from a motion boundary and to 4.7 in occlusion regions.
Warping input images or features with these flow estimates will lead to poor
predictions in these regions. This is especially damaging for video interpolation
as motion boundaries and occlusions result from motion [26], and are therefore
important regions to consider for motion compensation. Further, these flow es-
timators are by-and-large trained on synthetic datasets [28,29] to avoid the cost
and difficulties of annotating real video [30], and sometimes fail to capture some
of the challenges observed in real data, to which video interpolation is typically
applied.

Apart from flow inputs, many of these methods also utilize additional inputs
and networks to improve performance, which adds to their computational com-
plexity. These include depth maps [5], occlusion maps [5,7,11,14,31], multiple
input frames [32] for better flow estimation, image classifiers (e.g., VGG [33],
ResNet [34]) pretrained on ImageNet [35] for contextual features [1,2,3,11,31], ad-
versarial networks for realistic estimations [31], and event cameras [36,37,38,39]
to detect local brightness changes across frames. Instead, we achieve competi-
tive performance with a single network that uses two consecutive input frames
captured with commonly available devices.

The proposed TAIN system (Transformers and Attention for video INterpo-
lation) is a residual neural network that requires no estimation of optical flow.
Inspired by the recent success of vision transformers [40,41,42,43], we employ a
novel transformer-based module named Cross Similarity (CS) in TAIN. Video

321



Cross-Attention Transformer for Video Interpolation 3

interpolation requires the network to match corresponding points across frames,
and our CS transformer achieves this through cross-attention. Vision Transform-
ers typically use self-attention to correlate each feature of an image to every other
feature in the same image. The resulting similarity maps are then used to collect
relevant features from other image locations. Our CS module instead compares
features across frames, namely, between an input frame and the current interme-
diate frame prediction. High values in this cross-frame similarity map indicate
features with similar appearance. These maps are then used to aggregate fea-
tures from the appropriate input image to yield CS features, and these are used
in turn to refine the frame prediction. While there exists recent work on video
interpolation that utilize vision transformers [22,32], our CS is specifically de-
signed for video interpolation as it computes cross-frame similarity rather than
within-frame self-similarity.

To account for occlusions or motion boundaries, we use CS scores in an Image
Attention (IA) module based on spatial attention [44]. Given a feature in the
tentative frame prediction, its maximum similarity score from our CS module
will indicate whether or not a similar feature exists in either input frame. This
maximum score will be high if such a feature exists and low if it does not. If the
feature in the current frame prediction is occluded in one of the input images,
the corresponding score will likely be low. Features at positions that straddle a
motion boundary in the frame prediction often have a low maximum score as
well. This is because boundary features contain information about pixels from
both side of the boundary, and the particular mixture of information will change
if the two sides move differently. The CS features aggregated from these low
maximum similarity scores will not help in refining the current frame prediction,
and our IA module learns to suppress them.

Thanks to CS transformer and IA module, TAIN improves or performs com-
parably to existing methods on various benchmarks, especially compared to those
that do not require flow estimation. Our contributions are as follows:

– A novel Cross Similarity module based on vision transformer that aggregates
features of the input image frames that have similar appearance to predicted-
frame features. These aggregated features help refine the frame prediction.

– A novel Image Attention module that gives the predictor the ability to weigh
features in one input frame over those in the other. This information is shown
to be especially helpful near occlusions and motion boundaries.

– State-of-the-art performance on Vimeo-90k, UCF101, and SNU-FILM among
methods that do not require optical flow estimation.

2 Related Work

2.1 Video Interpolation

Deep learning has rapidly improved the performance of video interpolation in
recent work. Long et al. [45] are the first to use a CNN for video interpolation.
In their system, an encoder-decoder network predicts the intermediate frame

322



4 H. Kim et al.

directly from two image frames using inter-frame correspondences. Subsequent
work can be categorized largely into kernel-, flow-, and attention-based.

Kernel-based approaches compute the new frame with convolutions over
local patches, and use CNNs to estimate spatially-adaptive convolutional ker-
nels [2,6,46]. These methods use large kernel sizes to accommodate large motion,
and large amounts of memory are required as a result when frames have high res-
olution. Niklaus et. al propose to use separable convolutional kernels to reduce
memory requirements and further improve results. Since kernel-based methods
cannot handle motion larger than the pre-defined kernel size, EDSC [2] estimates
not only adaptive kernels, but also offsets, masks, and biases to retrieve informa-
tion from non-local neighborhoods. EDSC achieves the current state-of-the-art
performance among methods that do not require optical flow.

Flow-based approaches to video interpolation rely on bi-directional flow
estimates using off-the-shelf pre-trained flow estimators (e.g. FlowNetS, PWC-
Net) [3,4,5,13,14,15], or estimate flow as part of their pipeline [7,11,18,19,20,21,22,23,24].
Most of these methods assume linear motion between frames and use the esti-
mated flow to warp input images and their features to the intermediate time
step for prediction. In order to avoid making this linear motion assumption, Gui
et al. [18] do not predict flow between two input frames but instead attempt to
produce flow directly between the intermediate frame being predicted and the
two input frames. Park et al. [23] do compute a tentative intermediate frame
from the given flow estimates, but they re-estimate flow between the tentative
predicted frame and the input images. These new estimates are then used for a
final estimation of the intermediate frame. Multiple optical flow maps have also
been used to account for complex motion patterns and mitigate the resulting
prediction artifacts [15,21]. While these flow-based methods show promising re-
sults, they are computationally expensive. We do not require flow estimates in
our approach.

Some approaches [5,14,31] integrate both flow-based and kernel-based
methods by combining optical flow warping with learned adaptive local kernels.
These methods perform robustly in the presence of large motions and are not
limited by the assumption of a fixed motion range. They use small kernels that
require less memory but are still expensive.

Recently, work by Choi et al. [1] proposes a residual network called CAIN
that interpolates video through attention mechanism [44] without explicit
computation of kernels or optical flow to curb model complexity and computa-
tional cost. The main idea behind their design is to distribute the information in
a feature map into multiple channels through PixelShuffle, and extract motion
information by processing the channels through a Channel Attention module. In
our work, we extend CAIN with a novel vision transformer module and spatial
attention module, still without requiring flow estimates or adaptive kernels.

2.2 Vision Transformers

Transformers [42,43] have shown success in both computer vision [40,41,47] and
natural language processing [42,48] thanks to their ability to model long-range

323



Cross-Attention Transformer for Video Interpolation 5

dependencies. Self-attention [42,48] has shown the most success among various
modules in the transformer architecture, and derives query, key, and value vectors
from the same image. Due to their content-adaptive nature, transformers have
also been applied to video interpolation. Shi et. al [32] consider four frame inputs
and propose to use a self-attention transformer based on SWIN [49] to capture
long-range dependencies across both space and time. Lu et. al [22] propose a
self-attention transformer along with a flow estimator to model long-range pixel
correlation for video interpolation. Their work currently achieves the state-of-
the-art performance on various video interpolation benchmarks. Different from
existing work, we do not use self-attention in our work, but instead use cross-
attention. In self-attention, query, key, and value are different projections of the
same feature. We use cross-attention, where query and key are the same projec-
tions (shared weights) of different features. Specifically, our transformer module
selects and refines features based on the similarities between the interpolated
frame (query) and the two input frames (keys) while handling the occlusions
that occur in the two input frames. On the other hand, existing transformer-
based methods compare the features of the input frames without any explicit
consideration of the interpolated frame or occlusions.

3 Method

The proposed TAIN method for video interpolation aims to predict frame It ∈
Rh×w×3 at time t = 0.5, given two consecutive images I0, I1 ∈ Rh×w×3 at
times 0 and 1. We do not require any computation of flow, adaptive convolution
kernel parameters, or warping, but instead utilize cross-similarity transformer
and spatial attention mechanism. Specifically, a novel vision transformer module
called the Cross Similarity (CS) module globally aggregates features from input
images I0 and I1 that are similar in appearance to those in the current prediction
Ît of frame It (Section 3.2). These aggregated features are then used to refine the
prediction Ît, and the output from each residual group is a new refinement. To
account for occlusions of the interpolated features in the aggregated CS features,
we propose an Image Attention (IA) module to enable the network to prefer CS
features from one frame over those of the other (Section 3.3). See Figure 2 for an
overview of the network. Before describing our network we summarize CAIN [1],
on which our work improves.

3.1 CAIN

CAIN [1] is one of the top performers for video interpolation and does not re-
quire estimation of flow, adaptive convolution kernels, or warping. Instead, CAIN
utilizes PixelShuffle [50] and a channel attention module. PixelShuffle [50] rear-
ranges the layout of an image or a feature map without any loss of information.
To down-shuffle, activation values are merely rearranged by reducing each of the
two spatial dimensions by a factor of s and increasing the channel dimension by
a factor of s2. Up-shuffling refers to the inverse operation. This parameter-free

324



6 H. Kim et al.

D
ow

nS
hu

ffl
e

- concatenate

C
on

v

R
es

G
ro

up

C
on

v

U
pS

hu
ffl

e




   

IA

C
S

C
S

(a) TAIN

Key
Projector

Query
Projector

Value
Projector

Dot 

Product SoftMax

Aggregator



- sum

Max

(b) CS

Conv + Softmax

Conv + ReLU

(c) IA

Fig. 2: (a) Overview of the proposed TAIN network for video interpolation. The
two consecutive frames I0 and I1 are down-shuffled and concatenated along
the channel dimension. They are then processed with five residual groups (Res-
Groups) with a (b) CS transformer and an (c) IA module before being up-shuffled
back to the original resolution to yield the final prediction Ît. The output from
each ResGroup is a refinement of the output from the previous block.

operation allows CAIN to increase the receptive field size of the network’s convo-
lutional layers without losing any information. CAIN first down-shuffles (s = 8)
the two input images and concatenates them along the channel dimension before
feeding them to a network with five ResGroups (groups of residual blocks). With
the increased number of channels, each of the blocks includes a channel attention
module that learns to pay attention to certain channels to gather motion infor-
mation. The size of the features remains h/8×w/8×192 throughout CAIN, and
the final output map is up-shuffled back to the original resolution of h× w × 3.

3.2 Cross Similarity (CS) Module

All points in the predicted frame It appear either in I0 or I1 or in both, except
in rare cases where a point appears for a very short time between the two con-
secutive time frames. These ephemeral apparitions cannot be inferred from I0 or
I1 and are ignored here. For the remaining points, we want to find features of I0

325



Cross-Attention Transformer for Video Interpolation 7

I0 Ît (r=1) Ît (r=2) Ît (r=3) Ît (r=4) Ît (r=5)

I1 D1 (r=1) D1 (r=2) D1 (r=3) D1 (r=4) It

Fig. 3: Visualization of intermediate predictions and their cross similarity maps
D1 with I1 across all five ResGroups (r = 1 . . . 5) using an example from Mid-
dlebury [51] dataset. The first column shows the two input frames, I0 (top) and
I1 (bottom). The next four columns show the predicted intermediate frame Ît
after each of the first four residual blocks with a query point highlighted in blue
(top), and its corresponding similarity map D1 from our CS module with the
point of highest similarity highlighted in red (bottom). The values in the similar-
ity maps D1 show large scores (closer to white) whenever query and key features
are similar in appearance. The last column shows the final output from TAIN
(top), which is not used in any CS module, and the ground-truth intermediate
frame It (bottom) as a reference.

or I1 that are similar in appearance to the features in the predicted intermediate
frame Ît, and use them to refine Ît. We use a transformer to achieve this, where
we compare each feature from Ît with features from I0 and I1, and use similar
features to refine Ît.

While transformers typically use self-similarity [42,48], wherein query, key,
and value are based on similarities within the same feature array, we extend
this notion through the concept of cross-image similarity. Specifically, we use
features from the input images I0 or I1 (first column in Figure 3) as keys and
values, and features from the current frame prediction Ît (the remaining images
in the first row of Figure 3), as queries. Given a query feature normalized to have
unit Euclidean norm (e.g., features for the blue points on the ball in the first
row of Figure 3), our CS module compares it to all the similarly-normalized key
features through a dot product, which are then Softmax-normalized to obtain the
corresponding similarity mapsD (e.g., images in the second row of Figure 3). The
similarity matrixD is used to find the location of the largest similarity score (e.g.,
red dots in the the second row of Figure 3), where we retrieve our value features
(equation (3) later on), which are projections of the input image features, to
yield aggregated input features S based on similarity. These aggregated features
are then used to refine the intermediate prediction of Ît.

Mathematical Formulation Let X ∈ Rh/s×w/s×d denote the (down-shuffled)
feature map from one of the input images I0, I1 ∈ Rh×w×3 and let Y ∈ Rh/s×w/s×d

326



8 H. Kim et al.

(a) I0 (b) I1 (c) Ît (d) A0 (e) A1

Fig. 4: Visualization of Image Attention maps (d) A0 and (e) A1 using an exam-
ple from Middlebury [51] (White is large and black is small). For visualization
purposes only, we add a square patch to (a) I0 on the person’s chest, and show
that the IA module assigns a higher weight to the CS features from I1 on the
person’s chest in (c) Ît than to those from I0, which the patch occludes.

denote the feature map of the predicted intermediate frame Ît ∈ Rh×w×3. Let
M i represent feature at pixel location i in a given feature map M . Our CS mod-
ule computes query feature map Q ∈ Rh/s×w/s×d from Y . It also computes key
feature map K ∈ Rh/s×w/s×d and value feature map V ∈ Rh/s×w/s×d from X
as follows for all pixel locations i, j:

Qi = WqkY
i, Kj = WqkX

j, V j = WvX
j . (1)

The matrices Wqk,Wv ∈ Rd×d are learnable. Note that we use cross-attention
where the query and key features are the same projections (shared weights Wqk)
of different features. This is different from the self-attention transformers used
in existing work [22,32], where the query, key, and value features are different
projections (no shared weights) of the same features.

Each query feature Qi is compared with all the key features Kj to compute
a similarity matrix Di ∈ Rh/s×w/s that captures their similarity:

Di = sim(Qi,Kj) =
exp(QiTKj/

√
d)∑

j exp(Q
iTKj/

√
d)

. (2)

Using this similarity matrix Di, the CS module finally computes the ag-
gregated similarity feature Si ∈ Rh/s×w/s×d by taking the value feature V imax

at location imax corresponding to the maximum similarity score for each query
feature Qi and adding the result to Y i

Si = Y i + αV imax , (3)

where α is a learnable scalar parameter initialized to zero.

3.3 Image Attention (IA) Module

We propose an Image Attention (IA) module based on spatial attention [44]
to weigh our two CS features S0 and S1 computed from the input frames as
shown above. The IA module enables TAIN to prioritize or suppress features

327



Cross-Attention Transformer for Video Interpolation 9

from one input image over those from the other for a given spatial location. This
is useful especially at occlusions, where a feature from It appears in one input
image (likely yielding high similarity scores) but not in the other (likely yielding
low similarity scores). This also helps on motion boundaries, where features
encode information from both sides of the boundary. As the two sides move
relative to each other, the specific mixture of features changes. The IA module
compares the two CS feature maps S0 and S1 to construct two IA weight maps
A0, A1 ∈ [0, 1]h/s×w/s×1 where A0 + A1 = 1h/s×w/s×1 as shown below. These
weight maps are multiplied with the corresponding CS maps S0 and S1 before
they are concatenated and fed to the next ResGroup. See Figure 4.

Mathematical Formulation Let S′ ∈ Rh/s×w/s×2(d+1) be the concatena-
tion of S0, S1, and the two maximum similarity maps D0 and D1 along the
channel dimension. Our IA module first computes image attention weights A ∈
[0, 1]h/s×w/s×2 by applying two 1× 1 convolutional layers with ReLU and Soft-
max on S′ as shown in Figure 2c. More formally, we compute A as:

A = σ(W2 ∗ (ρ(W1 ∗ S′))) (4)

where σ(·) denotes the Softmax function, ρ(·) denotes the ReLU function, andW1

and W2 are the weights of the two 1×1 convolution layers. This image attention
weight map A can be seen as a concatenation of maps A0, A1 ∈ [0, 1]h/s×w/s×1

where A0 + A1 = 1 which are used to weigh the aggregated similarity features
S0 and S1 to obtain the weighted features S̃0 and S̃1:

S̃0 = A0 ⊙ S0 and S̃1 = A1 ⊙ S1 , (5)

where ⊙ is the element-wise product. Note that this is different from the channel
attention module from CAIN [1]. The channel attention module computes a (2d)-
dimensional vector weight over the channel dimension, while the IA module
computes a h/s× w/s weight over the spatial dimension.

3.4 TAIN Architecture and Training Details

Figure 2a shows an overview of the TAIN network for video interpolation. TAIN
extends CAIN by applying the proposed CS transformer and IA module after
each of the intermediate ResGroups. Each CS transformer obtains query features
Q from the features Y from the previous ResGroup, and key and value features
from one of the two input image features X0 or X1. We remove the residual
connections around each ResGroup so that the output from each ResGroup is
a new refinement of the output from the previous ResGroup. Figure 3 shows
sample predictions after each of the five ResGroups that the query features are
based on. With the IA module, the CS features S0 and S1 are weighted based on
their maximum similarity scores from D0 and D1. The two weighted CS features,
S̃0 and S̃1, are then used to refine the prediction in the next ResGroup.

In order to train the network for cases of occlusions and large motion, we
add synthetic moving occlusion patches to the training data. Specifically, we

328



10 H. Kim et al.

first randomly crop a square patch of size between 21 × 21 and 61 × 61 from
a different sample in the training set. This cropped patch is pasted onto the
input and label images and translated in a linear motion across the frames. We
apply this occluder patch augmentation to first pre-train on TAIN and then
fine-tune on the original training dataset. Following CAIN [1], we also augment
the training data with random flips, crops, and color jitter.

Following the literature [1,3,6,7,11,31], we train our network using the L1

loss on the difference between the predicted Ît and true It intermediate frames:
∥Ît − It∥1. As commonly done in the flow literature [52,53], we also include
an L1 loss on the difference between the gradients of the predicted and true
intermediate frames: ∥∇Ît −∇It∥1. We use the weighted sum of the two losses
as our final training loss: L = ∥Ît − It∥1 + γ∥∇Ît −∇It∥1, where γ = 0.1.

Another common loss used in the literature [1,2,3,11,31] is perceptual loss:

∥ϕ
(
Ît

)
−ϕ (It) ∥22, where ϕ (·) is a feature from a ImageNet pretrained VGG-19.

As this loss depends on another network, adding to the computational complex-
ity, we do not use this loss and still show performance improvements.

We implement TAIN in PyTorch [54] 1 and train our network with a learning
rate of 10−4 through Adam [55] optimizer.

4 Datasets and Performance Metrics

As customary [1], we train our model on Vimeo90K [7], and evaluate it on four
benchmark datasets for video interpolation, i.e., Vimeo90K [7], UCF101 [56],
SNU-FILM [1], and Middlebury [51]. Vimeo90K [7] consists of 51,312 triplets
with a resolution of 256 × 448 partitioned into a training set and a testing
set. UCF101 [56] contains human action videos of resolution 256 × 256. For
the evaluation of video interpolation, Liu et al. [57] constructed a test set by
selecting 379 triplets from UCF101. The SNU Frame Interpolation with Large
Motion (SNU-FILM) [1] dataset contains videos with a wide range of motion
sizes for evaluation of video interpolation methods. The dataset is stratified
into four settings, Easy, Medium, Hard, and Extreme, based on the temporal
gap between the frames. Middlebury [51] includes 12 sequences of images for
evaluation. The images are combination of synthetic and real images that are
often used as evaluation for video interpolation.

Following the literature, we use Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index (SSIM) [58] to measure performance. For the Mid-
dlebury dataset [51], we use Interpolation Error (IE).

5 Results

We first compare TAIN with the current state-of-the-art methods on video inter-
polation with two frame inputs in Table 1. Top panel of Table 1 lists kernel-based

1 Code is available at https://github.com/hannahhalin/TAIN.

329

https://github.com/hannahhalin/TAIN


Cross-Attention Transformer for Video Interpolation 11

Table 1: Comparison to the existing methods across Vimeo90k, UCF101, SNU,
and Middlebury (M.B.) datasets. Top panel shows kernel-based methods (K),
second panel shows attention-based methods (Att.), third panel shows methods
based on both kernels and flow (K+F), and bottom panel shows flow-based
methods. Higher is better for PSNR and SSIM, and lower is better for IE. Bold
values show the best performance in each panel, and underlined values show the
best performance across all panels. TAIN (ours) outperforms existing methods
based on kernel and attention, and performs comparably to those based on flow
on Vimeo90k, UCF101, and SNU datasets.

Method
Vimeo90k UCF101 SNU-easy SNU-extreme M.B.

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM IE

K

SepConv 33.79 97.02 34.78 96.69 39.41 99.00 24.31 84.48 2.27
EDSC 34.84 97.47 35.13 96.84 40.01 99.04 24.39 84.26 2.02

A
tt
. CAIN 34.65 97.29 34.91 96.88 39.89 99.00 24.78 85.07 2.28

TAIN (Ours) 35.02 97.51 35.21 96.92 40.21 99.05 24.80 85.25 2.35

K
+
F AdaCoF 34.47 97.30 34.90 96.80 39.80 99.00 24.31 84.39 2.24

MEMC 34.29 97.39 34.96 96.82 - - - - 2.12
DAIN 34.71 97.56 34.99 96.83 39.73 99.02 25.09 85.84 2.04

F
lo
w

TOFlow 33.73 96.82 34.58 96.67 39.08 98.90 23.39 83.10 2.15
CyclicGen 32.09 94.90 35.11 96.84 37.72 98.40 22.70 80.83 -
BMBC 35.01 97.64 35.15 96.89 39.90 99.03 23.92 84.33 2.04
ABME 36.18 98.05 35.38 96.98 39.59 99.01 25.42 86.39 2.01

VFIformer 36.50 98.16 35.43 97.00 40.13 99.07 25.43 86.43 1.82

methods, i.e., SepConv [2] and EDSC [2], second panel lists attention-based
methods, i.e., CAIN [1] and TAIN (ours), third panel lists methods based on
both kernels and flow estimations, i.e., AdaCoF [31], MEMC [14], and DAIN [5],
and bottom panel lists flow-based methods, i.e., TOFlow [7], CyclicGen [59],
BMBC [4], ABME [23], and VFIformer [22]. Bold values show the highest per-
formance in each panel while underlined values show the highest performance
across all panels. TAIN outperforms existing kernel-based methods across all
benchmarks. Comparing to the flow-based methods, TAIN outperforms all listed
methods except for ABME and VFIformer. However, as shown in Figure 1, the
inference times of AMBE and VFIformer are about 4 and 15 times longer, re-
spectively, than those of TAIN. DAIN and BMBC take around 5 times longer
than TAIN to inference while performing comparably to TAIN.

Figure 5 visualizes examples of predictions from TAIN and the best perform-
ing methods in each panel of Table 1. Compared with kernel- and attention-
based methods, TAIN is able to find the correct location of the moving object,
e.g. shovel and hula hoop in red box, while keeping the fine details, e.g. shaft of
the shovel, letters on the plane, and the hula hoop.

330



12 H. Kim et al.

Input I0 Label It EDSC CAIN

Input I1 DAIN VFI Ours

Input I0 Label It EDSC CAIN

Input I1 DAIN VFI Ours

Input I0 Label It EDSC CAIN

Input I1 DAIN VFI Ours

Fig. 5: Visualization of our proposed method and its comparison to the current
state-of-the-art methods [1,2,5,22] on examples from Vimeo90k and UCF101.

Inference Time Figure 1 compares the inference time of TAIN and other state-
of-the-art methods listed in Table 1. To measure time, we create two random
images of size 256×256, the same size as those of UCF101 dataset, and evaluate
it 300 times using a P100 GPU and report their average and standard deviation.
As mentioned above, TAIN achieves competitive performance as the existing
flow-based methods while taking a fraction of time for inference.

331



Cross-Attention Transformer for Video Interpolation 13

(a) Ît (b) I1

Query Qi

Key at
maxDi

1

Similarity
Map Di

1

Fig. 6: Visualization of patches with the highest similarity scores from D in our
proposed CS transformer. Top panel shows an example of (a) Ît and (b) I1 from
the test set of Vimeo90k [7] dataset. Example query features in Ît are shown with
‘+’ mark, and their key feature with the highest similarity score are shown in
I1 in corresponding colors. Bottom panel shows 31× 31 patches extracted from
the query points (‘+’ in Ît), their corresponding key patches with the highest
similarity score (‘+’ in I1), and their corresponding similarity map Di

1 with the
highest score circled. Our CS module successfully aggregates similar appearance
features when refining the interpolation prediction Ît.

6 Ablation Study

Visualization of the Components of CS Module We visualize the com-
ponents of our proposed CS module using an example from the test set of
Vimeo90k [7] dataset in Figure 6. The top panel of this figure shows (a) Ît
and (b) I1, where example query features Qi are shown with ‘+’ mark in (a)
and their corresponding key features with the highest similarity score are shown
with ‘+’ mark in (b) with the corresponding colors. Bottom panel shows 31×31
patches extracted from the location ‘+’ of each query Qi and key Ki

1 features
from (a) Ît and (b) I1, respectively. We also include visualization of the corre-
sponding similarity maps Di

1 and highlight their maximum score. As shown, our
CS module successfully extracts similar appearance features when refining Ît.

332



14 H. Kim et al.

Table 2: Performance changes with our proposed modules: IA - Image Attention
module; CS - Cross-Similarity transformer; #RG - Number of ResGroups. Us-
ing all the components yields the best overall performance. While increasing the
number of ResGroups yields consistently higher performance, the performance
plateaus after 5 ResGroups, which we use for TAIN (top row).

IA CS #RG
Vimeo90k UCF101 SNU-easy SNU-extreme M.B.

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM IE

5 35.02 97.51 35.21 96.92 40.21 99.05 24.80 85.25 2.35

4 34.82 97.38 35.22 96.92 40.20 99.05 24.76 84.97 2.39

6 35.06 97.52 35.22 96.92 40.20 99.05 24.74 85.09 2.33

7 35.06 97.53 35.22 96.92 40.21 99.05 24.75 85.09 2.32

5 34.81 97.40 35.17 96.91 40.14 99.04 24.81 85.21 2.49

5 34.76 97.38 35.05 96.88 40.00 99.02 24.82 85.28 2.66

Effect of Each Component Table 2 shows the performance changes with
varying combinations of our proposed components, i.e., Image Attention (IA),
Cross-Similarity transformers (CS), and the number of ResGroups (RG). Com-
paring the first four rows that list performances with the changing number of
ResGroups from 4 to 7, we see that the performance increases with the num-
ber of ResGroups. However, it plateaus after 5 ResGroups, which we choose to
use for TAIN (top row) for computational efficiency. In addition, each of the two
main components, IA and CS module, contributes to the success of our method.

7 Conclusion

We propose TAIN, an extension of the CAIN network, for video interpolation.
We utilize a novel vision transformer we call Cross Similarity module to aggre-
gate input image features that are similar in appearance to those in the predicted
frame to further refine the prediction. To account for occlusions in these aggre-
gated features, we propose a spatial attention module we call Image Attention to
suppress any features from occlusions. Combining both these components, TAIN
outperforms existing methods that do not require flow estimation on multiple
benchmarks. Compared to methods that utilize flow, TAIN performs comparably
while taking a fraction of their time for inference.

Acknowledgments: This research is based upon work supported in part by
the National Science Foundation under Grant No. 1909821 and by an Amazon
AWS cloud computing award. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

333



Cross-Attention Transformer for Video Interpolation 15

References

1. Choi, M., Kim, H., Han, B., Xu, N., Lee, K.M.: Channel attention is all you need
for video frame interpolation. In: AAAI. (2020)

2. Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive separable
convolution. In: IEEE International Conference on Computer Vision. (2017)

3. Niklaus, S., Liu, F.: Softmax splatting for video frame interpolation. In: IEEE
Conference on Computer Vision and Pattern Recognition. (2020)

4. Park, J., Ko, K., Lee, C., Kim, C.S.: Bmbc: Bilateral motion estimation with bi-
lateral cost volume for video interpolation. In: European Conference on Computer
Vision. (2020)

5. Bao, W., Lai, W.S., Ma, C., Zhang, X., Gao, Z., Yang, M.H.: Depth-aware video
frame interpolation. In: IEEE Conference on Computer Vision and Pattern Recog-
nition. (2019)

6. Niklaus, S., Mai, L., Wang, O.: Revisiting adaptive convolutions for video frame
interpolation. In: IEEE Winter Conference on Applications of Computer Vision.
(2021)

7. Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with
task-oriented flow. International Journal of Computer Vision (IJCV) 127 (2019)
1106–1125

8. Bao, W., Zhang, X., Chen, L., Ding, L., Gao, Z.: High order model and dynamic
filtering for frame rate up conversion. IEEE Transactions on Image Processing PP
(2018) 1–1

9. Kuroki, Y., Nishi, T., Kobayashi, S., Oyaizu, H., Yoshimura, S.: A psychophysical
study of improvements in motion-image quality by using high frame rate. Journal
of The Society for Information Display - J SOC INF DISP 15 (2007)

10. Meyer, S., Cornillère, V., Djelouah, A., Schroers, C., Gross, M.H.: Deep video color
propagation. In: BMVC. (2018)

11. Jiang, H., Sun, D., Jampani, V., Yang, M.H., Learned-Miller, E., Kautz, J.: Su-
per slomo: High quality estimation of multiple intermediate frames for video in-
terpolation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. (2018) 9000–9008

12. Wu, C., Singhal, N., Krähenbühl, P.: Video compression through image interpola-
tion. In: European Conference on Computer Vision (ECCV). (2018)

13. Niklaus, S., Liu, F.: Context-aware synthesis for video frame interpolation. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). (2018)

14. Bao, W., Lai, W.S., Zhang, X., Gao, Z., Yang, M.H.: Memc-net: Motion estima-
tion and motion compensation driven neural network for video interpolation and
enhancement. IEEE Transactions on Pattern Analysis and Machine Intelligence
(2018)

15. Hu, P., Niklaus, S., Sclaroff, S., Saenko, K.: Many-to-many splatting for efficient
video frame interpolation. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). (2022) 3553–3562

16. Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., van der
Smagt, P., Cremers, D., Brox, T.: Flownet: Learning optical flow with convolutional
networks. In: Proceedings of the IEEE International Conference on Computer
Vision (ICCV). (2015)

17. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Pwc-net: Cnns for optical flow using pyra-
mid, warping, and cost volume. In: Conference on Computer Vision and Pattern
Recognition. (2018)

334



16 H. Kim et al.

18. Gui, S., Wang, C., Chen, Q., Tao, D.: Featureflow: Robust video interpolation via
structure-to-texture generation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). (2020)

19. Liu, Z., Yeh, R., Tang, X., Liu, Y., Agarwala, A.: Video frame synthesis using
deep voxel flow. In: Proceedings of International Conference on Computer Vision
(ICCV). (2017)

20. Xiang, X., Tian, Y., Zhang, Y., Fu, Y., Allebach, J.P., Xu, C.: Zooming slow-mo:
Fast and accurate one-stage space-time video super-resolution. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
(2020)

21. Danier, D., Zhang, F., Bull, D.: St-mfnet: A spatio-temporal multi-flow network for
frame interpolation. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). (2022) 3521–3531

22. Lu, L., Wu, R., Lin, H., Lu, J., Jia, J.: Video frame interpolation with transformer.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). (2022) 3532–3542

23. Park, J., Lee, C., Kim, C.S.: Asymmetric bilateral motion estimation for video
frame interpolation. In: International Conference on Computer Vision. (2021)

24. Choi, M., Lee, S., Kim, H., Lee, K.M.: Motion-aware dynamic architecture for
efficient frame interpolation. In: Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV). (2021) 13839–13848

25. Teed, Z., Deng, J.: Raft: Recurrent all-pairs field transforms for optical flow. In:
European Conference on Computer Vision, Springer (2020) 402–419

26. Kim, H.H., Yu, S., Tomasi, C.: Joint detection of motion boundaries and occlusions.
In: British Machine Vision Conference (BMVC). (2021)

27. Yu, S., Kim, H.H., Yuan, S., Tomasi, C.: Unsupervised flow refinement near motion
boundaries. In: British Machine Vision Conference (BMVC). (2022)

28. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie
for optical flow evaluation. In A. Fitzgibbon et al. (Eds.), ed.: European Conference
on Computer Vision. Part IV, LNCS 7577, Springer-Verlag (2012) 611–625

29. Mayer, N., Ilg, E., Häusser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox,
T.: A large dataset to train convolutional networks for disparity, optical flow, and
scene flow estimation. In: IEEE International Conference on Computer Vision and
Pattern Recognition. (2016) arXiv:1512.02134.

30. Yuan, S., Sun, X., Kim, H., Yu, S., Tomasi, C.: Optical flow training under limited
label budget via active learning. In: European Conference on Computer Vision
(ECCV). (2022)

31. Lee, H., Kim, T., Chung, T.y., Pak, D., Ban, Y., Lee, S.: Adacof: Adaptive collab-
oration of flows for video frame interpolation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). (2020)

32. Shi, Z., Xu, X., Liu, X., Chen, J., Yang, M.H.: Video frame interpolation trans-
former. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). (2022) 17482–17491

33. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition (2014)

34. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
(2016) 770–778

35. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition. (2009) 248–255

335



Cross-Attention Transformer for Video Interpolation 17

36. Yang, M., Liu, S.C., Delbruck, T.: A dynamic vision sensor with 1% temporal
contrast sensitivity and in-pixel asynchronous delta modulator for event encoding.
IEEE Journal of Solid-State Circuits 50 (2015) 2149–2160

37. Tulyakov, S., Gehrig, D., Georgoulis, S., Erbach, J., Gehrig, M., Li, Y., Scara-
muzza, D.: Time lens: Event-based video frame interpolation. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. (2021)
16155–16164

38. Zhang, X., Yu, L.: Unifying motion deblurring and frame interpolation with events.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). (2022) 17765–17774

39. Tulyakov, S., Bochicchio, A., Gehrig, D., Georgoulis, S., Li, Y., Scaramuzza, D.:
Time lens++: Event-based frame interpolation with parametric non-linear flow
and multi-scale fusion. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). (2022) 17755–17764

40. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale (2021)

41. Huang, Z., Wang, X., Wei, Y., Huang, L., Shi, H., Liu, W., Huang, T.S.: Ccnet:
Criss-cross attention for semantic segmentation (2020)

42. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need (2017)

43. Jiang, S., Campbell, D., Lu, Y., Li, H., Hartley, R.: Learning to estimate hidden
motions with global motion aggregation (2021)

44. Zhang, X., Wang, T., Qi, J., Lu, H., Wang, G.: Progressive attention guided recur-
rent network for salient object detection. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). (2018)

45. Long, G., Kneip, L., Alvarez, J.M., Li, H., Zhang, X., Yu, Q.: Learning image
matching by simply watching video. In Leibe, B., Matas, J., Sebe, N., Welling,
M., eds.: Computer Vision – ECCV 2016, Cham, Springer International Publishing
(2016) 434–450

46. Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive convolution.
In: IEEE Conference on Computer Vision and Pattern Recognition. (2017)

47. Ramachandran, P., Parmar, N., Vaswani, A., Bello, I., Levskaya, A., Shlens, J.:
Stand-alone self-attention in vision models (2019)

48. Galassi, A., Lippi, M., Torroni, P.: Attention in natural language processing. IEEE
Transactions on Neural Networks and Learning Systems 32 (2021) 4291–4308

49. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. (2021) 10012–
10022

50. Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert,
D., Wang, Z.: Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network (2016)

51. Baker, S., Roth, S., Scharstein, D., Black, M.J., Lewis, J., Szeliski, R.: A database
and evaluation methodology for optical flow. In: 2007 IEEE 11th International
Conference on Computer Vision. (2007) 1–8

52. Brox, T., Bregler, C., Malik, J.: Large displacement optical flow. In: 2009 IEEE
Conference on Computer Vision and Pattern Recognition, IEEE (2009) 41–48

53. Janai, J., Guney, F., Ranjan, A., Black, M., Geiger, A.: Unsupervised learning of
multi-frame optical flow with occlusions. In: Proceedings of the European Confer-
ence on Computer Vision (ECCV). (2018)

336



18 H. Kim et al.

54. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala,
S.: Pytorch: An imperative style, high-performance deep learning library. In:
Advances in Neural Information Processing Systems 32. Curran Associates, Inc.
(2019) 8024–8035

55. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014)

56. Soomro, K., Zamir, A.R., Shah, M.: UCF101: A dataset of 101 human actions
classes from videos in the wild. CoRR abs/1212.0402 (2012)

57. Liu, Z., Yeh, R., Tang, X., Liu, Y., Agarwala, A.: Video frame synthesis using
deep voxel flow. In: Proceedings of International Conference on Computer Vision
(ICCV). (2017)

58. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from
error visibility to structural similarity. IEEE Transactions on Image Processing 13
(2004) 600–612

59. Liu, Y., Liao, Y., Lin, Y.Y., Chuang, Y.Y.: Deep video frame interpolation using
cyclic frame generation. In: AAAI. (2019)

337


	Cross-Attention Transformer for Video Interpolation

