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Abstract. In-Betweening is the process of drawing transition frames
between temporally-sparse keyframes to create a smooth animation se-
quence. This work presents a novel transformer based in betweening
technique that serves as a tool for 3D animators. We first show that
this problem can be represented as a sequence to sequence problem and
introduce TweenTransformers - a model that synthesizes high-quality
animations using temporally-sparse keyframes as input constraints.
We evaluate the model’s performance via two complementary methods
- quantitative evaluation and qualitative evaluation. The model is com-
pared quantitatively with the state-of-the-art models using LaFAN1, a
high-quality animation dataset. Mean-squared metrics like L2P, L2Q,
and NPSS are used for evaluation. Qualitatively, we provide two straight-
forward methods to assess the model’s output. First, we implement a cus-
tom ThreeJs-based motion visualizer to render the ground truth, input,
and output sequences side by side for comparison. The visualizer renders
custom sequences by specifying skeletal positions at temporally-sparse
keyframes in JSON format. Second, we build a motion generator to gen-
erate custom motion sequences using the model. Code can be found in
https://github.com/Pavi114/motion-completion-using-transformers

Keywords: Motion In-betweening · Kinematics · Transformer · LAFAN1

1 Introduction

Realistic and accurate animation generation is an important but challenging
problem with many applications, including animating 3D characters in films,
real-time character motion synthesis in Video Games, and Educational appli-
cations. One widely used method to generate animations is via motion inbe-
tweening, commonly known as tweening. It generates intermediate frames called
”inbetweens” between two temporally sparse keyframes to deliver an illusion of
movement by smoothly transitioning from one position to another.

In traditional animation pipelines, animators manually draw motion frames
between a set of still keyframes indicative of the most critical positions the
body must be at during its motion sequence. Recent improvements include Mo-
tion Capture (MOCAP) technologies [9], and query-based methods [15, 20] to
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generate animations. However, MOCAP technology is expensive, and human-
drawn animations are preferred. With the rise of computer-aided animation,
deep learning-based algorithms have enabled the smooth generation of keyframes
from sparse frames by learning from large-scale motion capture data. Existing
models currently use Recurrent Neural Networks (RNNs) [7, 10], Long Short
Term Memory Networks (LSTMs) [8], and BERT-based models [3, 4].

The complexity in generating character animations includes 1) replicating
complex human behavior to create realistic characters, 2) predominantly used
transition generation methods are either expensive or inefficient, 3) RNNs /
LSTMs, though they can capture long-term dependencies, cannot be parallelized
due to the sequential processing of input, resulting in longer training times, and
4) RNNs / LSTMs do not support transfer learning making it hard to use pre-
trained models.

Inspired by the concept of self-attention to capture long-term dependencies,
this paper proposes a transformer-based model to generate realistic animation
sequences. Model generalization constitutes the main effort this framework puts
into improving the performance of machine learning predictions. This would be
analogous to large text transformer models like GPT-3 [2]. This work not only
eases the effort put in by the animators but also helps researchers by unblock-
ing transfer learning for the task of inbetweening, thus introducing a level of
generalization into the model.

Overall, the contributions in this paper can be summarized as follows:

1. Represent motion in-betweening as a sequence to sequence problem where
the input sequence consists of keyframes and the output sequence represents
the complete and smoothed motion sequence.

2. Set a baseline for the input sequence by filling the frames between the
keyframes with interpolated values.

3. Experiment with the efficiency and viability of using transformers to achieve
sequence to sequence translation for human motion and compare them with
the existing results.

4. Evaluate the model against other state-of-the-art models [4, 8, 17] for the
same task using L2P, L2Q, and NPSS metrics.

5. Build a visualizer and a motion generator that qualitatively evaluates the
output of the model in comparison to the ground truth and input sequences.

2 Related Work

The problem is analogous to machine translation, where sequence to sequence
(seq2seq) architectures are prevalent [1,19,22]. ”Encoder-only” models like BERT
[3] is designed to learn the context of a word based on all its surroundings
(left and right of the word), making them suitable for feature extraction, sen-
timent classification, or span prediction tasks but not for generative tasks like
translation or sequence completion. The pre-training objectives used by encoder-
decoder transformers like T5 [18] include a fill-in-the-blank task where the model
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predicts missing words within a corrupted piece of text that is analogous to in-
betweening when motion sequences replace sentences.

Early works in human motion prediction include using Conditional Restricted
Boltzmann Machines (RBMs) [21] to encode the sequence information in la-
tent variables and predict using decoders. More recently, many RNN-based ap-
proaches like Encoder-Recurrent-Decoder (ERD) networks [5] propose separat-
ing spatial encoding and decoding from the temporal dependencies. Other recent
approaches investigate new architectures like transformers [13] and loss functions
to further improve prediction of human motion [6, 12].

Initial approaches in motion in-betweening focused on generating missing
frames by integrating keyframe information with spacetime models [24]. The
following widely successful method for inbetweening adopted a probabilistic ap-
proach, framing it as a Maximum Aposterior Optimization problem (MAP) [14],
dynamical Gaussian process model [23] or as Markov models with dynamic auto-
regressive forests [11]. The latest deep learning approaches include works by
Holden et al. [10], and Harvey et al. [7] and helped RNNs dominate this field.
The latest work using RNN focuses on augmenting a Long Short Term Mem-
ory(LSTM) based architecture with time-to-arrival embeddings and a scheduled
target noise vector, allowing the system to be robust to target distortions [8].
Some recent work includes BERT-based encoder-only models [3, 4] that pre-
dict the entire sequence in one pass and deep learning approaches for interpo-
lation [16]. However, BERT-based models will be less effective than encoder-
decoder models for generative tasks.

3 Methodology

The following sections detail the model architecture, Tween Transformers, to
perform motion frame completion similar to sentence completion.

3.1 Tween Transformers (TWTR)

The architecture of Tween Transformers (TWTR) consists of four main compo-
nents:

1. Input masking module
2. Input encoding neural network that encodes each motion sequence and con-

verts the input to a set of sequential tokens
3. Transition generation network that includes a standard transformer com-

prising of encoder and decoder modules with feed-forward and multi-head
attention networks.

4. Output decoding neural network that computes a sequence of character mo-
tion.

While the transition generation module learns the temporal dependencies, the
input and output encoding networks aim to learn spatial dependencies between
the different body joints for encoding and decoding motion sequences. Finally,
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Fig. 1: Model Architecture of TWTR

the model also uses multiple losses, including forward kinematics loss, to improve
the realism of the generated sequences. It is assumed that the input has both
position (x, y, z) and orientation (q0, q1, q2, q3) variables. Therefore, a single
pose can be defined with a root position coordinate P ∈ R3 and a quaternion
matrix Q ∈ RJ×4, where J represents the joint number of the input pose (here,
22). The following sections discuss the architecture of the model in detail, as
indicated in Figure 1.

Input Masking There are multiple keyframe gaps k specified in the model
configuration. The frames belonging to the keyframe gap are filled with interpo-
lated values that are derived from the frames constituting the two ends of the
keyframe gap. Two kinds of interpolations are carried out and compared. They
are implemented in the following ways:

– positions and rotations are linearly interpolated
– positions are linearly interpolated while rotations are spherically interpolated

Input Encoding As seen in Figure 1, model encoding has three modules -
Input Sequence Encoding, Positional Encoding, and Keyframe Embedding.
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1. Input Sequence Encoding:
The input sequence encoder network is a set of three Linear encoders that are
fully connected two-layer Feed-Forward Networks (FFN) with ReLU activa-
tions. The input sequence encoder takes in the global root position root p,
local quaternions q, and global root velocity root v and outputs a set of ”se-
quential tokens.” The hidden size of the FFNs are 16, 8, and 8 for q, root p,
and root v respectively. The output sizes of the FFNs are defined by the
embedding hyperparameter. The outputs from the FFNs are concatenated
to form the output of the input sequence encoding network. Equation (1)
describes the Linear Encoder and equation (2) describes the Input Sequence
Encoder.

L(x) = Linear(ReLU(Linear(x))) (1)

I(root p, root v, q) = Lp(root p) ∥ Lv(root v)

∥Lq(q1) ∥ ... ∥ Lq(qJ)
(2)

where root p ∈ R3, root v ∈ R3, qi ∈ R4, I denotes the Input Sequence
Encoder, and L denotes the Linear Encoder.

2. Positional Encoding: Positional encoding, a popular method introduced by
Vaswani et al. [22], involves adding a set of predefined sinusoidal and cosine
signals to introduce temporal knowledge to the transformer model. The posi-
tional encoding for source Zs = [ztta,2i] and target Zt = [ztta,2i] is computed
using equation (3)

ztta,2i = sin(
tta

basis2i/d
)

ztta,2i+1 = cos(
tta

basis2i/d
)

(3)

where tta is the number of timesteps until arrival and the basis component
influences the rate of change in frequencies along the embedding dimension
d. A basis of 10,000 is used.

3. Keyframe Embedding: Following previous works [4], the model incorporates
additive keyframe embeddings. The keyframe embeddings Ekf classify the
frames in the sequence into keyframes, unknown frames, and ignored frames.
They’re represented by learnable embedding vectors {ê0, ê1, ê2} respectively.
The keyframe embeddings are represented by equation (4), where etkf ∈
{ê0, ê1, ê2} and T is the sequence length. The embeddings are added to the
input sequence, similar to positional encodings.

Ekf = [e1kf , e
2
kf , ..., e

T
kf ] (4)

Transformer A transformer consists of multiple encoder and decoder layers.
Each encoder consists of a multi-head self-attention layer (MHSA) and a feed-
forward network (FFN) and each decoder consists of a masked multi-head self-
attention layer (MMHSA), multi-head attention layer (MHA) and a feed-forward
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network. The attention function leveraged in the transformer maps a query and
a set of key-value pairs - all vectors - to an output. The processing of a single
attention head can be represented as follows:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (5)

where Q = WqA represents a query matrix, K = WkA represents a key
matrix, and V = WvA represents a value matrix. Wq, Wk, and Wv are the cor-
responding weight matrices, and dk represents the dimension of the key matrix.
The Query matrix can be interpreted as the keyframe for which Attention is cal-
culated. The Key and Value matrices represent the keyframes that are ”attended
to,” i.e., how relevant that keyframe is to the query keyframe. In MMHSA, the
target is masked before applying the attention mechanism. All the attention
outputs are concatenated and sent to the FFN.

Output Decoding The decoder takes in the concatenated ”sequential tokens”
outputted by the Input Sequence Encoder and outputs the global root position
root p, local quaternions q, and global root velocity root v. To reverse engineer
the spatial dependencies, each of the three FFNs, one for each output, comprises
two linear layers with ReLU activation. The hidden size of the FFNs is the same
as in the Input Sequence Encoder. The output sizes of the FFNs are defined
by the original dimensions of the three parameters. Equation (6) describes the
Output Decoder.

O(x) = (Lp(x[: dp]),Lv(x[dp : dp + dv), Q) (6)

Q =


Lq(x [ dp + dv : dp + dv + dq])

Lq(x [ dp + dv + dq : dp + dv + 2× dq]
...

Lq(x [ dp + dv + (J − 1)× dq : dp + dv + J × dq]


Where dp, dv, and dq are embedding dimensions for p, v, and q. x [ i : j]

represents a tensor containing the values in x from the ith index to the (j− 1)th

index. J denotes the number of joints in the skeleton, Q ∈ RJ×4 denotes the
tensor of stacked quaternions, O denotes the Output Decoder, and L denotes
the Linear Encoder.

3.2 Loss Computation

Given a collection of predicted motion sequences and the ground truth, inbe-
tweening loss is computed as the scaled sum of two individual losses - Recon-
struction loss and Forward Kinematics (FK) loss.

L = αrLR + αfkLFK (7)

where αr and αFK are constants to balance the disparity of individual losses.
For training we use αr = 100 and αFK = 1.
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Reconstruction Loss LR Reconstruction loss evaluates the ability of the
model to ”reconstruct” the target sequence from the input sequence. Recon-
struction loss accounts for the difference in output and target quaternions values
and is computed using an L1 norm. While Harvey et al. [8] compute and sum
reconstruction losses for q, x, and contacts, they acknowledge that the most
important component is q. Reconstruction loss is computed using equation (8).

LR =
1

NT

N−1∑
n=0

T−1∑
t=0

q̂tn − qtn (8)

where q̂tn is the rotational quaternion of the predicted motion sequence n
at time t. q refers to the ground truth quaternion. N refers to the number of
sequences, and T refers to the length of each motion sequence.

Forward Kinematics Loss LFK Forward Kinematics loss compares the dif-
ference in the global positions of joints between the ground truth and the model’s
output. Forward Kinematics loss evaluates the ability of the model to ”under-
stand” the relationships between relative angles and global positions. Although
the offsets of various joints in the skeleton are not provided to the model, it
learns to respect human geometry and maintain correct posture by minimizing
the Forward Kinematics loss. The Forward Kinematics loss is computed using
equation (9).

LFK = ||p̂global − pglobal||1 + ||q̂global − qglobal||1 (9)

where p̂global and q̂global can be derived from the local coordinates using
Forward Kinematics FK(p̂local, q̂local) and, similarly pglobal and qglobal can be
derived from the local coordinates using Forward Kinematics FK(plocal, qlocal).

3.3 Training

Following previous works [8, 17], the entire dataset was split into windows of
maximum length Tmax = 65. To construct each batch, the number of start key-
frames is set to 10 and the number of end keyframes to be 1. The number of
in-between frames is sampled from the range [5, 44] without replacement.

The weight associated with the number of in-between frames nin is set to be
inversely proportional to it, wnin

= 1
nin

. This prevents overfitting on the windows
with a large number of in-between frames. Shorter windows are sampled more
often as they are more abundant and hence harder to overfit. Therefore, the
number of unique non-overlapping sequences of a given total length 10+1+nin

is approximately inversely proportional to nin. Finally, given the total sampled
sequence length, the sequence start index is sampled uniformly at random in the
range [0, Tmax(1 + 10 + nin)].
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Fig. 2: Stills from the Ground Truth, LERP, Model Output, and Smoothed Out-
put sequences at different timestamps for the action ”Aiming2” performed by
subject ”Subject5”. Considering the frames at t = 20, it is clear that the output
produced by our model resembles the ground truth more than the interpolated
sequence.

4 Setup and Experimental Results

4.1 Evaluation Metrics

The model is evaluated against the L2P, L2Q, and NPSS metrics used in previous
studies on the subject five sequences of the LAFAN1 dataset. The L2P defines the
average L2 distances of the positions between the predicted motion sequence and
the ground truth sequence. Equation 10 shows the L2P calculation. Similarly, the
L2Q defines the average L2 distances of the global quaternions. A combination of
local quaternions, positions, and motion sequence properties is used to compute
these metrics. Equation 11 shows the L2Q calculation.

L2P =
1

NT

N−1∑
n=0

T−1∑
t=0

p̂tn − pn
t (10)

L2Q =
1

NT

N−1∑
n=0

T−1∑
t=0

q̂tn − qn
t (11)

where q̂ is the rotational quaternion of the predicted motion sequence n at
time t. q refers to the ground truth quaternion. Similarly, p̂ refers to the position
of the predicted motion sequence p refers to the ground truth position. N refers
to the number of sequences, and T refers to the length of each motion sequence.

Normalized Power Spectrum Similarity (NPSS) is an approach comparing an-
gular frequencies with the ground truth. It is an Earth Mover Distance (EMD)
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Fig. 3: Still from the Motion Generator

based metric over the power spectrum which uses the squared magnitude spec-
trum values of the Discrete Fourier Transform coefficients. Equation (12) com-
putes the NPSS metric.

NPSS =

∑N−1
i=0

∑T−1
j=0 wi,j ∗ emdi,j∑N−1

i=0

∑T−1
j=0 wi,j

(12)

where emdi,j refers to the EMD distance, and wi,j refers to the weights.
Harvey et al. [8] state that the L2P metric is a better metric than any angular

loss for assessing the visual quality of transitions with global displacements as
it helps us weigh the positions of the bones and joints. Hence, they argue that
L2P is a much more critical metric than L2Q and NPSS.

4.2 Dataset

The publicly available Ubisoft La Forge Animation (LaFAN1) Dataset was used
for all the experiments. Introduced by Harvey et al. [8] in Ubisoft, LaFAN1
consists of general motion capture clips in high definition. The motion sequences
are in BVH format. The LaFAN1 dataset comprises five subjects, 77 sequences,
and 496,672 motion frames at 30fps for a total of 4.6 hours. There are around 15
themes, from everyday actions like walking, sprinting, and falling to uncommon
actions like crawling, aiming, and a few sports movements. Similar to other
works [4,8,17], all subject five sequences were used for testing and benchmarking,
with the remaining used for training.

4.3 Data Preprocessing

First, the local position and orientation values from the BVH files provided in the
LaFAN1 dataset [7] are extracted. 22 joints are considered for the skeleton model.
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(a) Comparision of model performance at
keyframe gap = 30with three commonly
used metrics - L2P, L2Q, and NPSS

(b) L2P Loss vs Keyframe Gap

(c) NPSS Loss vs Keyframe Gap (d) L2Q Loss vs Keyframe Gap

Forward Kinematics was used to compute the absolute positions of each joint
from the relative positions (relative to hip) given in the dataset. Positions are
modeled as standard matrices, and orientations are modeled using quaternions.
Further, global position and root velocity are computed from local positions
using Forward kinematics.

4.4 Hyperparameters

Most hyperparameters from previous baselines are retained in order to show the
relative improvement in performance using Transformers. This study presents
a novel hyperparameter comparison using different interpolation techniques -
Linear and Spherical, to compare the performance of several baseline studies. A
batch size of 64 for 100 epochs was used. Adam optimizer with a learning rate of
10−4 along with a constant dropout of 0.2 was utilised. Keyframe gaps of 5, 15,
and 30 were tested to compare the performance of the transformer over higher
frame gaps.

4.5 Visualizer and Motion Generator

To qualitatively evaluate the model, a visualizer was built using Node and
ThreeJs that juxtaposes the ground truth, interpolated sequence, output se-
quence, and a smoothed output sequence of the transformer model. The model’s
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Table 1: The Tween Transformer model is compared with baseline Motion In-
Betweening methods using L2P, L2Q, and NPSS metrics for various sequence
lengths. The Interpolation based methods are included as part of the study. TT
(Ours) refers to the Tween Transformer model.

L2Q L2P NPSS
Length 5 15 30 5 15 30 5 15 30

Zero Velocity 0.56 1.10 1.51 1.52 3.69 6.60 0.0053 0.0522 0.2318
SLERP 0.22 0.62 0.98 0.37 1.25 2.32 0.0023 0.0391 0.2013
TGrec 0.21 0.48 0.83 0.32 0.85 1.82 0.0025 0.0304 0.1608
TGcomplete 0.17 0.42 0.69 0.23 0.65 1.28 0.0020 0.0258 0.1328
SSMCTlocal 0.17 0.44 0.71 0.23 0.74 1.37 0.0019 0.0291 0.143
SSMCTGlobal 0.14 0.36 0.61 0.22 0.56 1.1 0.0016 0.0234 0.1222
∆-Interpolator 0.11 0.32 0.57 0.13 0.47 1.00 0.0014 0.0217 0.1217
TT (Ours) 0.16 0.39 0.65 0.21 0.59 1.21 0.0019 0.0261 0.1358

output is stored in JSON format and rendered using a custom web-based visu-
alizer. The visualizer was built from scratch using Typescript, NodeJs, Express,
and ThreeJs. Figure 2 shows a sample output of the model generated using the
visualizer. Further, motion generator was built using Python, Flask, Node, and
ThreeJs using the visualizer module as a base. The motion generator allows a
user to modify keyframes in a given motion sequence and generate inbetween
frames for the same. The plugin consists of a backend Flask server that uses
an instance of our model to generate the inbetween frames. Figure 3 shows a
still from the motion generator where the stick modelis animating a generated
custom motion sequence.

4.6 Inferences

As expected, SLERP performs better than LERP. However, it is observed that
the performance at 30fps is almost comparable, as seen in 4a. This is because
the spherical motion becomes almost linear for very short timescales. As seen
in Table 1, it is inferred that the Tween Transformer model outperforms the
interpolation model and performs closely with the baseline models. From figures
4b, 4d, and 4c, it is seen that Tween Transformers follow a similar trend to that
of other models. Experiments show that training is crucial; Moving Average
Smoothing is observed to have minimal effect on the output sequence as the
model trains.

5 Conclusion

This work presents the Tween Transformer, a novel, robust, transformer-based
motion in-betweening technique that serves as a tool for 3D animators and
overcomes the challenges faced by existing RNN-based models [8, 17], includ-
ing sequential training, capturing long-term dependencies, and transfer learn-
ing. The generic model treats the application of in-betweening as a sequence to
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sequence problem and solves it using a transformer-based encoder-decoder archi-
tecture. It unboxes the potential of robust Transformer-based models for motion
in-betweening applications. To conclude, the results encourage the application
of low-resource cost-efficient models and enable further developments with the
scope of transfer learning on the generalized implementation.
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