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Abstract. Recent advancements in diffusion models have enabled a
wide range of works exploiting their ability to generate high-volume,
high-quality data for use in various downstream tasks. One subclass of
such models, dubbed Layout-to-Image Synthesis (LIS), learns to gen-
erate images conditioned on a spatial layout (bounding boxes, masks,
poses, etc.) and has shown a promising ability to generate realistic im-
ages, albeit with limited layout-adherence. Moreover, the question of
how to effectively transfer those models for scalable augmentation of
few-shot detection data remains unanswered. Thus, we propose a col-
laborative framework employing a Large Language Model (LLM) and
an LIS model for enhancing few-shot detection beyond state-of-the-art
generative augmentation approaches. We leverage LLM’s reasoning abil-
ity to extrapolate the spatial prior of the annotation space by generating
new bounding boxes given only a few example annotations. Additionally,
we introduce our novel layout-aware CLIP score for sample ranking, en-
abling tight coupling between generated layouts and images. Significant
improvements on COCO few-shot benchmarks are observed. With our
approach, a YOLOX-S baseline is boosted by more than 140%, 50%, 35%
in mAP on the COCO 5-,10-, and 30-shot settings, respectively.

Keywords: few-shot detection - layout-to-image synthesis - large lan-
guage model

1 Introduction

Object detection and image classification models have enjoyed significant im-
provements over the years, thanks to both architectural improvements @,
and extensively annotated datasets . The advantages that
a high volume, appropriately annotated dataset can bring are evident in the rise
of performance, applicability, and robustness of state-of-the-art computer vision
models across many domains and tasks. However, such datasets are difficult to
collect in a transparent fashion , and even more difficult to annotate, often
requiring extensive manual effort to provide accurate labelling and annotating.

This bottleneck in scaling datasets becomes a limitation that simply train-
ing larger models may not be able to overcome. Additionally, the distributions
of established datasets may not adequately reflect the full range of real-world
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Fig. 1: Overview of proposed framework. First, we employ a pretrained LLM to gen-
erate new layouts with the help of a prompt template and the available few-shot an-
notations. Next, we generate new images using a layout-to-image synthesis diffusion
model, conditioned on the newly created layouts. Finally, we employ a layout-aware
CLIP score (LACS) to rate the generated samples, and construct a generated set of
images G with high layout-adherence by picking the highest scoring images from a
given batch. After reformatting the generated layouts into detection annotations, the
resulting image-annotation pairs are used to augment the few-shot detection data.

concepts (e.g. specific species of animals). This lack of coverage can result in
suboptimal downstream performance of models deployed in scenarios where such
concepts are occurring more frequently.

Thus, few-shot learning has seen a noticeable emergence in research
concerned with training models where only a few samples are available, requiring
approaches that can generalise to rarely seen concepts. One common approach
to account for low-frequency, novel objects is by employing data augmentation
pipelines. These range from basic image manipulation operations such as rota-
tion, flipping, scaling, or cropping, to more advanced combinational augmenta-
tion strategies, such as CutMix [50], MixUp [53], AugMix and Mosaic [12].

Recently, generative augmentation has emerged as a result of the advance-
ment of image generation methodologies [19,[201/36}[38]. A plethora of works re-
search the capability of such models to augment existing datasets @
In the context of image classification, augmentation-by-generation is a
straightforward process, provided that the generated sample is free of artifacts.
This is primarily attributable to the fact that the spatial location of the concept
within the synthesized image is not a major concern in this process. However,
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generative augmentation for detection and segmentation requires robust con-
ditional generators that can synthesize instances of objects strictly within the
conditional spatial boundaries, without compromising the visual quality of the
underlying samples.

Hence, Layout-to-Image Synthesis models (LIS) [31}/48,54] have emerged,
giving rise to generative augmentation methods for detection and segmentation
tasks [91/16,/44)/49] that employ diffusion models in their pipelines to provide a
performance boost to the downstream detectors and segmentors. Nevertheless,
many generative augmentation methods are either not applicable when taking
the few-shot detection scenario into account [16,/49|, fail to scale on higher aug-
mentation ratios [9], or utilize pseudo-labelling in the pipeline instead of an LIS
model [101/44]. The latter approach leads to subpar image-annotation alignment
due to the limitations of pseudo-labelling.

We hypothesize that to effectively reach high quality generative dataset aug-
mentation for few-shot detection tasks, the spatial prior in the annotation space
must be expanded in an automated manner, without additional manual effort.
This approach ensures that not only the appearance of objects is augmented, but
also their location within the scene. Inspired by the progress achieved by Large
Language Models (LLM), we employ an LLM-based approach for generating
new layouts, effectively extrapolating the spatial prior of the few-shot annota-
tion space. We combine the previous extrapolation step with an LIS model to
unlock scalable, high quality generative augmentation for few-shot detection.

In addition, we discover that only a few LIS approaches can generate real-
istic images while maintaining layout conformity. To ensure close image-layout
alignment and realistic objects, we propose our novel Layout-Aware CLIP Score
(LACS) for ranking generated images based on both realism and layout-adherence,
effectively eliminating noisy samples. CLIP score has been used in prior works
to rate the realism of generated images and for calculating the alignment be-
tween images and their respective text captions [15,33}[42]. However, we aim to
employ a more advanced scoring scheme to account for hallucinations outside of
the conditional regions.

In summary, we propose our novel collaborative LLM-LIS generative augmen-
tation framework (shown in Figure [1)) for few-shot object detection that scales
well beyond state-of-the-art approaches. We utilize an LLM for spatial prior ex-
trapolation given only a small number of ground truth layouts. Furthermore, we
employ our layout-aware CLIP score to enable close image-layout alignment for
superior downstream performance. We extensively evaluate our approach on the
COCO |26] few-shot detection benchmark and achieve substantial improvements
in mean average precision (mAP) on the 5-, 10-, and 30-shot settings.

2 Related Work

2.1 Few-Shot Object Detection

To tackle the challenge of data scarcity and the need to detect novel categories
in the wild, few-shot detection aims to train a detector model using only a
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small number of instances of those categories in the training data. While many
paradigms have been proposed on how to train a detector for few-shot tasks
[411}43], the most common way to handle few-shot detection regimes is pretrain-
into-finetune [41]. This is accomplished by pretraining the detection model on
high-frequency base categories with ample annotations, and then finetuning on
the low-frequency, novel categories of objects while the backbone of the detector
model remains frozen.

2.2 Layout-to-Image Synthesis

Regarded as the inverse task of object detection, Layout-to-Image Synthesis
(LIS) aims to generate images by providing the model with layout information
typically in the form of bounding boxes, masks, edge information, or scribbles.
Earlier works [21},39,/40] utilize Generative Adversarial Networks (GAN) [13] to
synthesize images conditioned on a specified semantic or bounding box layout.
Inspired by recent advancements in Text-to-Image (T2I) diffusion models |28/36],
many works [42,|45,/48/|54] have emerged to introduce granular location control
of concepts synthesized by the diffusion model. This can be done either in a
training-free, or a training-based manner.

Training-Free LIS To bypass the computational cost of training auxil-
iary modules and maintain a wide concept coverage, training-free LIS meth-
ods [31/30,/45] propose leveraging a frozen latent diffusion model [36] for spatially-
controllable T2I generation. This is accomplished by guiding the diffusion model
features towards the layout condition regions during inference. However, most
training-free LIS approaches result in rough layout-adherence, rendering them
of limited applicability for few-shot detection.

Training-Based LIS Contrary to training-free LIS, training-based methods
122,123,129, |31} |42/ 48] |54] integrate auxiliary modules with the frozen encoder-
decoder blocks of the diffusion model to learn additional control features by
training those modules on detection and segmentation datasets [26}/55]. Gligen
|22] uses bounding boxes to formulate grounding tokens, employing an additional
gated attention layer to achieve LIS. The recently proposed InstanceDiffusion
[42] enables fine-grained instance-level control with flexible layout definitions by
tokenizing the location information per-instance and fusing the resulting features
with the frozen diffusion model backbone, achieving impressive LIS performance.

2.3 Applications of Generative Augmentation for Object Detection

Fang et al. |9] propose a framework utilizing visual priors (e.g. Holistic Edge
[47], semantic segmentation maps) to augment few-shot detection by generat-
ing images with ControlNet [54] using the acquired visual priors. InstaGen and
DatasetDM [10,{44] incorporate a trainable detector to pseudo-label images gen-
erated with a latent diffusion model [36] by exploiting rich attention maps from
the diffusion model. Lin et al. |[25] implement a copy-paste pipeline to enhance
few-shot object detection.
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Fig. 2: LLM-based spatial prior extrapolation. First, we embed a batch of few-shot
annotations into a prompt template by formatting them as layout descriptions. The
embedded layout descriptions serve as in-context examples (in green) to steer the text
generation process. We then prompt the LLM to complete a caption of randomly
reordered objects (brown) from one of the layout descriptions and obtain a response
containing generated bounding boxes (red). Finally, we parse the response to obtain
new layouts.

While both Fang et al. |9] and InstaGen [10] offer promising results in ob-
ject detection performance, they fall short due to either non-scalability with
higher augmentation ratios [9] or insufficient image-annotation alignment of gen-
erated data due to noisy pseudo-labelling [10]. Our approach seeks to solve those
shortcomings by extrapolating the spatial prior of bounding box distributions
to achieve scalable, high quality generative augmentation. Instead of relying
on post-generation pseudo-labelling, we deploy a pretrained LIS diffusion model
coupled with our novel Layout-Aware CLIP Score (LACS) to ensure close image-
layout alignment.

3 Method

In this section, we describe the key modules of our generative augmentation
framework. As seen in Figure [I} we employ three modules to obtain high quality
generated data. First, an LLM-based module extrapolates the spatial prior of
the few-shot annotation data by generating bounding box layouts. The generated
layouts are then used to guide an LIS model for image synthesis. This is followed
by our novel layout-aware CLIP score, which is used to rate the generated batch
of images for sample picking.
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3.1 LLM-based Spatial Prior Extrapolation

Motivated by the emerging application of language models as layout generators
|11}/24,46], we incorporate a pretrained large language model for spatial prior
extrapolation (SPE) via generation of novel layouts.

To elaborate, the spatial prior encompasses the existing layout annotations
in the few-shot data, and is presented to the generator model (in our case, the
LLM) as in-context examples. The task of the generator model is to extrapolate
from the presented examples, and generate plausible layouts to be used for image
generation via LIS, hence the term Spatial Prior Extrapolation.

We employ LLM auto-completion with a pretrained Mixtral-8x7B-Instruct-
v0.1. [17]. We choose Mixtral as our LLM due to its’ competitive performance
in layout generation when compared to closed-source models such as GPT-3.5
and GPT-4 in spatial and numeracy reasoning tasks, as tested by LMD [24].
Similar to LMD [24], we first compose a prompt template. The template con-
sists of detailed bounding box layout generation instructions for the LLM to
follow, in addition to spatial restrictions with respect to box placement and im-
age dimensions. We then embed a batch of per-image ground truth annotations
A, as context examples into the prompt template by formatting them as layout
descriptions (e.g. caption:’a cat, a car, a person’, objects: [cat’,[bbox1], ’car’,
[bbox2], "person’, [bbox3]|), as seen in Figure

We process the batch A, by concatenating the captions of the ground truth
layout descriptions (one caption per auto-completion) after randomizing the
occurrence-order of the objects within the captions. The LLM is then used to
auto-complete the prompt, generating object bounding boxes corresponding to
the concatenated caption. To induce generation diversity, we also randomize the
order of examples in the prompt template for each auto-completion.

We repeat the auto-completion for « times per batch element, where « is
the augmentation ratio (number of synthetic layouts over real layouts). The
bounding box layouts generated by the LLM are subsequently parsed and utilized
in the LIS process and as annotations for detector training.

3.2 Layout-to-Image Synthesis Diffusion Model

At the core of our framework, we employ a pretrained LIS diffusion model for
image generation. In contrast to typical text-to-image latent diffusion models
[36], an LIS diffusion model accepts spatial layouts as conditional signals to
guide the results of text-to-image generation.

For generating images from a layout and a text condition, a batch of Gaussian
noise latent codes Z € RV*hxwxc ig initialized, where b, h, w, ¢ correspond
to the batch size, height, width, and number of channels of the latent code,
respectively. The latent denoising network LDN of the LIS model produces the
denoised latent codes Z as

Z = LDN(Z,p,1,t), (1)
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Fig. 3: Overview of LACS. First, we create n masked images from a generated image,
where n is the number of object categories in the image. Next, for each category, we
perform zero-shot classification on both the generated image and the masked image
and obtain a per-category layout-adherence score by subtracting the two classification
scores. We average over all categories to arrive at the final sample score.

Sample Score

where p corresponds to the text prompt, [ the spatial layout condition, and
t the number of denoising time steps.
The denoised latents Z are then decoded by the latent decoder D to generate a
batch of images X as

X =D(Z). (2)

In Section[f.3] we ablate over different pretrained State-of-the-Art LIS models

with both masks and bounding boxes as conditional layouts. We discover that

InstanceDiffusion with bounding box conditions offers the best synthesis in
terms of layout-adherence and overall image quality.

3.3 Layout-Aware CLIP Score

To ensure a close image-layout alignment, we integrate a novel layout-aware
CLIP score into our framework (shown in Figure|3). For each image # in a batch
of LIS generated images X, we first obtain the CLIP softmax score C'S for
each category present in the layout

CS(texty, ) = So(Clogits(T, {text,, background'})), (3)

where text, corresponds to the text of the n’th category in the layout, Ciogsts
the CLIP cosine similarity logits, and Sy denotes the softmax output of the first
logit from the CLIP inference.

Next, we produce a masked image Tpasked, from the generated image by
masking the bounding boxes of the respective category with white pixels. We
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Fig. 4: Samples generated with InstanceDiffusion and their LACS score. Green
boxes highlight the conditional layout, while red regions highlight out-of-layout hallu-
cinations.

obtain the masked CLIP softmax score C'S;,4sk by inferring on the masked image
and switching the second text prompt from 'background’ to 'whitespace’ as

CSmask (textnv -’Z'maskedn) = SO(Clogits (fimaskedn’ {textnal whitespace'})). (4)

The text prompt 'background’ is introduced as a placeholder to quantify the
presence of the object category in the image for the first score C'S. In the masked
score C'Spask, the text prompt ‘whitespace’ is used for inducing a lower value
in the logit corresponding to the object category text text,, when a generated
image ¥ contains little to no out-of-layout hallucinations. The opposite occurs
when said hallucinations are present in the generated image, leading to a higher
logit value for text,. Finally, we obtain the final Layout-Aware CLIP Score
(LACS) for image & by subtracting CSy,qsr from CS for all n categories and
calculating the mean score as

n

LACS(i) = 1 > CS(tewtn, &) — CSmask(tewtn, Fmasked,,)- (5)

n
1

The score above is used to sort the individual images & in the generated
batch X, where the best ranking images contain the least out-of-layout hallu-
cinations, and vice-versa. We utilize the score for sample picking in our experi-
ments (LACS-SP), and for calculating the mean layout-adherence of generated
images (mLACS) for quality comparisons. Figureshows the LACS score for im-
ages generated with InstanceDiffusion and its’ correlation with out-of-layout
hallucinations.
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Boosting Few-Shot Detection 9

Table 1: Main results over novel COCO |26| 5-,10-, and 30-shot settings. We compare
our approach against state-of-the-art generative augmentation methods [9}/10] in few-
shot detection settings and showcase the effect of spatial prior extrapolation (SPE) and
top-1 sample picking w.r.t. our layout-aware CLIP Score (LACS-SP). We utilize In-
stanceDiffusion [42] in our framework and compare downstream performance with and
without our contributions (SPE and LACS-SP). Results for Fang et al. |9 correspond
to their best augmentation ratio « of 1 as reported in their findings. For comparison
with InstaGen [10], we synthesize with an augmentation ratio « of 4 with both their
method and ours.

Features 5-Shot 10-Shot 30-Shot
Detector
SPE LACS-SP mAP AP®? mAP AP%° mAP AP®°
Baseline 5.0 10.1 9.6 181 14.2 26.7
w/ Fang et al. [9] 59 11.4 11.1 20.6 15.9 27.8
w/ InstaGen [10] 11.5 19.7 15.1 25.3 18.7 30.9
YOLOX-S [12]  w/ InstDiff [42] 11.0 19.2 14.9 25.6 19.5 32.6
w/ Ours v 124 214 156 26.8 20.1 335
v 11.4 19.7 15.7 26.5 19.7 33.0
v 12.8 21.9 16.1 27.1 20.4 34.1
Baseline 18.6 26.0 24.3 33.7 35.8 495
) w/ Fang et al. [9 20.3 28.1 26.0 36.8 35.0 48.8
DINO-Swin-L [52] wf InstaCen |1|0|| 264 36.0 304 413 364 50.0
w/ Ours v v 27.4 38.9 30.9 43.8 37.1 53.2

4 Experiments

4.1 Experiment Setup

For the evaluation of our method, we conduct our experiments using the COCO
|26] detection dataset. We evaluate under two settings: the established few-shot
novel category finetuning [9[18}41], and all-category training using a small syn-
thetic dataset. Unless otherwise stated, we use Mixtral-8x7B-Instruct-v0.1 [17]
for bounding box layout generation and embed its prompt template (outlined
in Section with batches A of five example layouts from the ground truth
annotations. Here, we set the augmentation ratio a to 4. When not utilizing
spatial prior extrapolation with Mixtral, we simply oversample the ground truth
annotations with x-axis flipping to reach the desired augmentation ratio. For
layout-to-image synthesis, we utilize a pretrained InstanceDiffusion [42] with
bounding boxes as layouts and set the number of denoising steps ¢ to 50, the
guidance scale to 7.5, grounding-alpha (percentage of timesteps using ground-
ing inputs) to 0.8, and MIS (percentage of timesteps using the multi-instance
sampler) to 0.36. We generate a batch X of five images, rank them with our
novel LACS score, and pick the top-1 image from the batch. Unless otherwise
stated, we augment the few-shot real data with the resulting generated data. All
detectors are set to a fixed seed for reproducibility when finetuning.

4.2 Evaluation on COCO Detection

Few-Shot Novel Category Finetuning In the standard few-shot settings on
COCO [26], the 80 dataset categories are split into two sets: 60 base-categories
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Table 2: Comparison with InstaGen |10] on finetuning Faster RCNN |[35| using all
COCO 26| categories. We generate 1284 synthetic image-annotation pairs with both
our approach and InstaGen |10| and finetune using synthetic data only.

mAP AP AP mAP®> mAP™ mAP' mLACS
InstaGen [10] 3.0 7.8 1.8 0.1 2.3 6.9 0.59
Ours 4.3 10.0 3.3 0.7 5.2 7.7  0.65

and 20 novel-categories. The base-category images are used to pretrain a de-
tector, while the novel-category images are used to finetune the detector after
the initial pretraining. We test our proposed framework on 5-; 10-, and 30-shot
settings with YOLOX-S [12] and DINO-Swin-L [52] and report the standard
COCO mAP and AP®® metrics 8] on the novel categories. For fair comparison,
we use identical hyperparameters for both detector networks as Fang et al. [9].
We observe improvements over both Fang et al. [9] and state-of-the-art detec-
tion dataset generator InstaGen [10] in Table [1|in all scenarios. When utilizing
spatial prior extrapolation (SPE) via Mixtral [17], we notice a considerable im-
provement in mAP due to more diverse box locations, as opposed to simply
oversampling the ground truth annotations. When combining SPE with top-1
sample picking via our layout-aware CLIP score, we are able to improve the
YOLOX-S [12] baseline by 156%, 67%, and 43% on the 5-, 10-, and 30-shot
settings, respectively. Interestingly, running only InstanceDiffusion [42]| in the
framework brings a noticeable performance boost over the baseline, owing to
the benefit of instance-awareness of the LIS model.

All-Categories Training on Synthetic Data Only To test the generaliza-
tion of our approach compared to InstaGen [10]|, we train a standard Faster
RCNN [35] detector for 12 epochs using synthetic data only from both our pro-
posed framework and InstaGen. Here, we utilize all 80 COCO categories and
generate 1284 images using 5-shot layouts as the only available data. In Table
we report additional metrics AP7®, mAP for small, medium and large objects
(mAP®, mAP™, mAP!), as well as the mean layout-aware CLIP score (mLACS)
for both generated datasets.

The performance improvements of our method stem from the use of con-
trollable, instance-aware layout-to-image synthesis, in addition to appropriate
layout adherence via sample picking.

4.3 Ablation Studies

In this section, we ablate over several design choices for our framework. We anal-
yse different LIS models, masks or bounding boxes as conditional layouts, quality
vs. quantity in LIS generation, an alternative approach for spatial prior extrap-
olation, and scalability of our framework with respect to higher augmentation
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Table 3: Ablation over different LIS models [29}}42} 48] and conditioning signals
(Cond.), with and without top-1 sample picking w.r.t. our layout-aware CLIP score
(LACS-SP) over COCO [26] 10-shot with YOLOX-S [12]. We record mAP and AP®°
bounding box metrics as well as dataset quality (Qual.) metrics mean LACS (mLACS)
and average CLIP classification score of cropped bounding boxes (CS-Crop). For com-
parison, we include finetuning results without the use of generated images as baseline.

Cond. Box-Metric Qual.-Metric
Box Mask mAP AP®® mLACS CS-Crop

Method LACS-SP

Baseline [12] N/A N/A 96 181 - -
Freestyle [48] N/A vV 10.1 18.8 0.483 0.705
v N/A v 10.7 19.6  0.767 0.713
PLACE [29] N/A v 103 193 0447 0774
v N/A v 11.2 204  0.687 0.776
Instance- v v 13.3 229  0.587 0.787
Diffusion [42] v v v 13.2 228 0.804 0.784
v 9.1 16.9 0.317 0.823
v v 9.6 17.8  0.563 0.824
v 14.8 25.6 0.522 0.817
v v 15.6 26.7 0.735 0.819

ratios. In all of the ablation studies, we finetune a YOLOX-S |12 in standard
COCO [26] few-shot testing with generated data and evaluate on COCO-vall7.

Comparing LIS Methods and Necessity of Layout-Adherence To gener-
ate useful synthetic data for downstream detection tasks, an LIS model boasting
both realistic generation capability and layout adherence is of utmost impor-
tance. We benchmark three state-of-the-art pretrained LIS models with and
without our sample picking: Freestyle [48], PLACE [29|, and InstanceDiffu-
sion [42]. In this experiment, we oversample layouts from the 10-shot annotations
to reach an augmentation ratio of 4. For generating with mask layouts, we fill
bounding boxes with random instance segmentation masks from the 10-shot an-
notations. We assess downstream detection performance along with the layout
adherence and quality of the generated instances. To quantify layout adherence
and instance quality, we take the mean layout-aware CLIP score (mLACS) over
all generated images to measure the former, and calculate the average CLIP [33|
classification scores on cropped bounding boxes (CS-Crop) for the latter.

As evident from the results from Table [3] top-1 sample picking with our pro-
posed LACS metric yields a favorable boost in detection performance in almost
all cases. This improvement results from discarding noisy images, effectively im-
proving the image-layout alignment in generated images. All three LIS models
benchmarked offer an improvement in downstream detection, with InstanceD-
iffusion 42| showing the most notable gains. We notice that conditioning In-
stanceDiffusion with only bounding boxes results in the best improvement, while
introducing masks leads to either out-of-layout hallucination (in case of using
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Fig. 5: Quality vs. quantity analysis. We analyse the effect of picking the top n samples
from a generated batch of eight images sorted by the layout-aware clip-score (LACS).

masks only) or increased instance artifacts (in case of using boxes and masks).
One may speculate that the cause could be inaccurate mask pseudo-labelling
used in the creation of its training data.

Quality vs. Quantity of Generated Images One may question whether or
not including more samples from the generated batch is beneficial to detection
due to scene variance, regardless if the batch contains images not adhering well
to the layout. To test this, we generate annotations for 5-, 10-, and 30-shot
settings with an augmentation ratio of 4 and compare different top-n sample
picking strategies: given a conditional layout, we sort a generated batch of eight
images according to our LACS metric and pick the top-n scoring samples from
the sorted batch. To counter-act the effect of longer finetuning, we scale back
the number of epochs with respect to the number of samples picked, such that
each strategy is trained for the same duration. Figure 5| shows a degradation
occurring in detector performance when more than 50% of samples are picked
from the generated batch. This results in overall lower layout-adherence, which
is critical for training a detector on LIS synthetic data.

Alternative Approach for Spatial Prior Extrapolation In this ablation
study, we explore an alternative approach to spatial prior extrapolation with
Gaussian Mixture Models (GMM). Specifically, we model bounding boxes of
shape bboxr € R**XYXwXh a5 a random distribution and fit an ensemble of N
GMMs on the bounding boxes of novel categories (one category per GMM). Af-
ter fitting, we sample valid bounding boxes from the fitted ensemble of GMMs
according to object co-occurrences from a ground truth layout (e.g. how many
objects of category ’person’, ’car’, ’cat’, etc). We also explore fitting an addi-
tional GMM to model object co-occurrences as a random distribution as well.
We benchmark both GMM approaches (with and without object co-occurrence
modelling) by fitting them on COCO [26] 10-shot annotations and generating
bounding box layouts with the default augmentation ratio o of 4. We com-
pare this approach against using Mixtral [17] for layout generation as outlined
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Table 4: Ablation over different spatial prior extrapolation methods. We compare an
LLM approach discussed in Sectionwith Mixtral , ground truth 2x oversampling
with x-axis flipping, and N-Ensemble of Gaussian mixture models (GMM). For the
GMM approach, we consider drafting object co-occurrences directly from ground truth
data (1), or from an auxiliary GMM fitted on the ground-truth object co-occurrence
data (2). We also monitor the resulting layout-adherence via mean layout-aware CLIP
score (mLACS) discussed in Section

Method mAP AP’ AP™ mAP® mAP™ mAP' mLACS
GT Oversampling + X-flip 15.6 26.7 159 5.5 144 23.2 0.735
N-Ensemble of GMM (1) 144 253 147 43 137 21.6  0.742
N-Ensemble of GMM (2) 14.6 25.4 151 4.5 128 224  0.732
LLM (Mixtral [17]) 15.9 27.0 16.7 55 14.9 231 0.780

Airplane Cow Car

Ground Truth with X-Flip

Gaussian Mixture Model

=
al:

Fig. 6: Bounding box heatmaps for ground truth boxes, Gaussian mixture model gen-
erated boxes, and Mixtral \\ generated boxes on 5 novel COCO categories.

LLM (Mixtral)

[-1C3(:]

in Section [3.1] and a simple strategy of oversampling the ground truth anno-
tations with x-axis flipping. Results shown in Table [ indicate that modelling
layouts as random distributions via GMMs does not yield improvements over
ground truth oversampling, which can be attributed to layout data scarcity in
few-shot settings. Interestingly, Mixtral is able to extrapolate reasonably
from the provided examples and produces plausible and diverse bounding box
layouts. Figure [6] shows the bounding box heatmaps for ground truth boxes,
GMM-sampled boxes, and Mixtral-sampled boxes.

Effect of Higher Augmentation Ratios To showcase the full extent of our
generative augmentation framework, we incrementally increase the layout aug-
mentation ratio o and monitor the downstream YOLOX-S performance.
We compare ground truth layout oversampling (GTOS) against our LLM-based
spatial prior extrapolation (SPE). Figure [7|shows superior scalability when gen-
erating with SPE than with GTOS. This effect is more pronounced on augmenta-
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Fig. 7: Scalability of our method with respect to higher augmentation ratios . We
generate bounding box annotations with our LLM-based spatial prior extrapolation
(SPE) method and compare with simple ground truth oversampling with x-axis flip-
ping (GTOS). We synthesize images conditioned on the generated box layouts with
InstanceDiffusion and subsequently evaluate on YOLOX-S finetuning.

tion ratios of 8 and higher. In 10-shot settings, SPE lags slightly behind GTOS,
but begins to outperform GTOS on higher augmentation ratios. In 5-shot and
10-shot settings, SPE remains superior across all augmentation ratios.

5 Conclusion

We propose a generative augmentation framework for few-shot object detection,
combining a large language model with a layout-to-image synthesis model to
generate high-quality image-annotation pairs. We introduce the Layout-Aware
CLIP Score (LACS), a CLIP-based metric for evaluating layout adherence in
generated images. Our framework outperforms state-of-the-art generative meth-
ods @L on few-shot COCO benchmarks, and ablation studies demonstrate
the benefits of LLM-based spatial prior extrapolation and improving layout ad-
herence through sample selection using LACS.
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