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Abstract. Vision Transformers with various attention modules have
demonstrated superior performance on vision tasks. While using sparsity-
adaptive attention, such as in DAT, has yielded strong results in image
classification, the key-value pairs selected by deformable points lack se-
mantic relevance when fine-tuning for semantic segmentation tasks. The
query-aware sparsity attention in BiFormer seeks to focus each query on
top-k routed regions. However, during attention calculation, the selected
key-value pairs are influenced by too many irrelevant queries, reducing
attention on the more important ones. To address these issues, we pro-
pose the Deformable Bi-level Routing Attention (DBRA) module, which
optimizes the selection of key-value pairs using agent queries and en-
hances the interpretability of queries in attention maps. Based on this,
we introduce the Deformable Bi-level Routing Attention Transformer
(DeBiFormer), a novel general-purpose vision transformer built with the
DBRA module. DeBiFormer has been validated on various computer
vision tasks, including image classification, object detection, and seman-
tic segmentation, providing strong evidence of its effectiveness.Code is
available at https://github.com/maclong01/DeBiFormer

Keywords: Vision Transformer,Self-Attention Mechanism,Image Recog-
nition

1 Introduction

The Vision Transformer has recently demonstrated significant promise in the
realm of computer vision [14,27,41]. It can capture long-range dependency in
data [27,38], and is almost leading to a convolution-free model more flexible for
fitting tons of data [41]. In addition, it enjoys high parallelism, which benefits
training and inference for large models [10,38]. The computer vision community
has observed a surge in the adoption and development of Vision Transformers
[1,13,14,27,41,42].
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(a) Vanilla Attention (b) Local Attention (c) Dilated Attention

(d) Deformable Attention (e) Bi-level Attention (f) Deformable Agent Bi-level
Attention

Query Key / Value Local Window

Fig. 1. Vanilla attention and its sparse variants are illustrated in the diagram: (a)
vanilla attention functions globally, leading to increased computational complexity and
substantial memory footprint. (b)-(c) Multiple strategies strive to reduce complexity
by incorporating sparse attention with various handcrafted patterns, such as local
window [47] and dilated window [42,37,23]. (d) Deformable attention [44] facilitates
image-adaptive sparsity by deforming the regular grid. (e) Bi-level routing attention
[53] begins by searching for top-k (k = 3 in this case) relevant regions and subsequently
attends to the union of these regions. (f) In our approach, we realize bi-level routing
attention, where the initial step involves searching for top-k (k = 1 in this case) relevant
regions. Subsequently, attention is directed to the union of these regions by deforming
regular grid attendance via top-k relevant regions.

To improve attention, numerous pieces of research have used thoughtfully
crafted, efficient attention patterns in which each query selectively focused by
a smaller portion of key-value pairs. As shown in Figure1, among the various
representation approaches, some include local windows [47] and dilated windows
[42,37,23]. In addition, some research has taken a different path through sparsity
adaptation to data in their methodology, as demonstrated in the works of [5,44].
However, despite the varying strategies for merging or selecting key and value
tokens. These tokens are not semantic for queries. With this approach, when ap-
plied to other downstream tasks for pretrained ViT [38] and DETR [1]. Queries
do not originate from semantic-region key-value pairs. Consequently, compelling
all queries to focus on insufficient sets of tokens may not yield the most optimal
results. Recently, with the dynamic query-aware sparsity attention mechanism,
queries are focused by the most dynamic semantically key-value pairs, which is
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referred to as bi-level routing attention [53]. However, in this approach, queries
are handled by semantic key-value pairs instead of originating from detailed re-
gions, which may not yield the most optimal results in all cases. In addition,
when calculating the attention, these keys and values selected for all queries
are influenced by too many less relevant queries, resulting in a decrease of at-
tention for important queries, which has a significant impact when performing
segmentations.[12,24].

To make the attention for queries more efficient, we propose the Deformable
Bi-level Routing Attention (DBRA), an attention-in-attention architecture for
visual recognition. During the process in DBRA, the first problem is how to lo-
cate deformable points. We use the observation in [44] that attention has an offset
network that takes as input query features and generates corresponding offsets
for all reference points. Thus, candidate deformable points are shifted towards
important regions with high flexibility and efficiency to capture more informative
features. The second problem is how to aggregate information from semantically
relevant key-value pairs, and then broadcast the information back to queries.
Therefore, we propose an attention-in-attention architecture that shifted toward
deformable points as shown above acts as the agent for the queries. As the key-
value pairs are selected for deformable points, we use the observation in [53] to
select a small portion of the most semantically relevant key-value pairs that a
region only needs by focusing on the top-k routed regions. Then, with the seman-
tically relevant key-value pairs selected, we first apply a token-to-token attention
with deformable points queries. And then, we apply a second token-to-token at-
tention to broadcast the information back to queries, in which deformable points
as key-value pairs are designed to represent the most important points in a por-
tion of semantic regions.

To summarize, our contributions are as follows:
1. We propose Deformable Bi-level Routing Attention (DBRA), an attention-

in-attention architecture for visual recognition, where data-dependent attention
patterns are obtained flexibly and semantically.

2. By utilizing the DBRA module, we propose a novel backbone, called DeB-
iFormer, which has a stronger recognition ability based on the visualization re-
sults of the attention heat map.

3. Extensive experiments on ImageNet [32], ADE20K [52], and COCO [16]
demonstrate that our model consistently outperforms other competitive base-
lines.

2 Related Work

2.1 Vision Transformers

The Transformer-based backbone incorporates channel-wise MLP [35] blocks to
embed per-location features through channel mixing. Additionally, attention [38]
blocks are used for cross-location relation modeling and facilitating spatial mix-
ing. Initially devised for natural language processing [38,10], Transformers were
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subsequently introduced to the domain of computer vision through works like
DETR [1] and ViT [38]. Compared with CNNs, the primary distinction lies in
the fact that transformers use attention as a substitute for convolution, thereby
facilitating global context modeling. Nevertheless, vanilla attention, which cal-
culates pairwise feature affinity across all spatial locations, imposes a significant
computational burden and leads to substantial memory footprints, particularly
when dealing with high-resolution inputs. Thus, a key research focus is to de-
vise more efficient attention mechanisms, crucial for mitigating computational
demands, especially with high-resolution inputs.

2.2 Attention mechanisms

Numerous studies have aimed to alleviate the computational and memory com-
plexities associated with vanilla attention. Approaches include sparse connection
patterns [6], low-rank approximations [39], and recurrent operations [9]. In the
context of Vision Transformers, sparse attention has gained popularity, particu-
larly following the remarkable success of the Swin Transformer [27]. Within the
Swin Transformer framework, attention is constrained to non-overlapping local
windows, and an innovative shift window operation is introduced. This oper-
ation facilitates communication between adjacent windows, contributing to its
unique approach to handling attention mechanisms. To attain larger or approxi-
mate global receptive fields without exceeding computational constraints, recent
studies have incorporated diverse manually designed sparse patterns. These in-
clude the integration of dilated windows [42,37,23] and cross-shaped windows
[13]. Moreover, certain studies endeavor to make sparse patterns adaptable to
data, as demonstrated by works like DAT [44], TCFormer [50], and DPT [5].
Despite their efforts to decrease the number of key-value tokens using diverse
merging or selection strategies, it is crucial to recognize that these tokens lack
semantic specificity. Instead, we reinforce query-aware key-value token selection.

Our work is motivated by an observation: semantically attentive regions for
important queries can exhibit significant differences, as illustrated by visualiza-
tions from pre-trained models like ViT [38] and DETR [1]. In achieving query-
adaptive sparsity through a coarse-to-fine approach, we propose an attention-in-
attention architecture which utilizes the deformable attention [44] with bi-level
routing attention [53]. Diverging from deformable attention [44] and bi-level rout-
ing attention [53], our deformable bi-level routing attention aims to reinforce the
most semantic and flexible key-value pairs. In contrast, bi-level routing attention
only focuses on locating a few highly relevant key-value pairs, while deformable
attention prioritizes identifying a few of the most flexible key-value pairs.

3 Our Approach: DeBiFormer

3.1 Preliminaries

Initially, we revisit the attention mechanism used in recent Vision Transform-
ers. Taking a flattened feature map x ∈ RN×C as the input, a multi-head self-
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Fig. 2. Detailed architecture of Deformable Bi-level Routing Attention. In the top-
left part, the set of reference points is uniformly distributed across the feature map.
Offsets for these points are learned from queries through the offset network. Then, in
the top-middle part, deformed features are projected from sampled features based on
the locations of deformed points. In the bottom-left-middle part, we attend to projected
deformed features by utilizing gathered key-value pairs in top-k-related windows.

attention (MHSA) block with M heads is formulated as

q = xWq, k = xWk, v = xWv, (1)

z(m) = σ(q(m)k(m)⊤/
√
d)v(m),m = 1, ...,M, (2)

z = Concat(z(1), ..., z(M))Wo (3)

where σ(·) denotes the softmax function, and d = C/M is the dimension of each
head. z(m) denotes the embedding output from the m-th attention head, and
q(m), k(m), v(m) ∈ RN×d denote the query, key, and value embeddings, respec-
tively. Wq,Wk,Wv,Wo ∈ RC×C are the projection matrices. With normalization
layers and identity shortcuts, the l-th Transformer block, for which LN means
layer normalization, is formulated as

z′l = MHSA(LN(zl−1)) + zl−1, (4)
zl = MLP (LN(z′l)) + z′l (5)

3.2 Deformable bi-level routing attention (DBRA)

The architecture of the proposed Deformable Bi-level Routing Attention (DBRA)
is illustrated in Figure 2. We first employ a deformable attention module, which
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includes an offset network that generates offsets for reference points based on
the query features, creating deformable points. However, these points tend to
cluster in important regions, leading to an over-concentration in certain areas.

To address this, we introduce deformable points-aware region partitioning,
ensuring that each deformable point interacts with only a small subset of key-
value pairs. Yet, solely relying on region partitioning can result in an imbalance
between important and less important regions. To tackle this, the DBRA module
is designed to distribute attention more effectively. In DBRA, each deformable
point acts as an agent query, computing attention with semantic region key-value
pairs. This approach ensures that only a few deformable points are assigned to
each important region, allowing attention to be spread across all critical areas
of the image rather than clustered in one spot.

By employing the DBRA module, attention is reduced in less important
regions and increased in more important ones, ensuring a balanced distribution
of attention throughout the image.
Deformable attention module and input projection. As illustrated in
Fig.2, given the input feature map x ∈ RH×W×C , a uniform grid of points
p ∈ RHG×WG×2 is generated by downsampling the input feature map by factor
r, HG = H/r,WG = W/r as a reference. To obtain the offset for each reference
point, the features are linearly projected to generate query tokens q = xWq,
which are then input into the θoffset(·) subnetwork to produce the offsets ∆p =
θoffset(q). Subsequently, the features are sampled at the locations of deformed
points as keys and values and further processed by projection matrices:

q = xWq, ∆p = θoffset(q), x̄ = φ(x; p+∆p), (6)

where x̄ represent the deformed key k̄ and value v̄ embeddings, respectively.
Specifically, we set the sampling function φ(·; ·) to a bilinear interpolation to
make it differentiable:

φ(z; (px, py)) =
∑
rx,ry

g(px, rx)g(py, ry)z[ry, rx, :], (7)

where the function g(a, b) = max(0, 1 − |a − b|) and (rx, ry) represent indices
for all locations on z ∈ RH×W×C . In a similar setup as deformable attention,
where g is nonzero on the four integral points closest to (px, py), Equation 7 is
simplified to a weighted average across these four locations.
Region partition and region-to-region routing. With the deformable at-
tention feature map input x̄ ∈ RHG×WG×C and feature map x ∈ RH×W×C ,
the process begins by dividing it into regions of size S × S non-overlapped re-
gions such that each region contains HGWG

S2 feature vectors with reshaped x̄ as

x̄r ∈ RS2×HGWG
S2 × C and x as xr ∈ RS2×HW

S2 × C. Then, we derive the query,
key, and value with linear projections:

q̂ = x̄rWq, k̂ = xrWk, v̂ = xrWv. (8)

Next, we use the region-to-region method, as introduced in BiFormer [53], which
is applied to establish the attending relationship by constructing a directed
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graph. To initiate the process, region queries and keys q̂r, k̂r ∈ SS
2×C are derived

through the application of per-region averaging. Subsequently, the adjacency ma-
trix Ar ∈ S2 × S2 for the region-to-region affinity graph is derived through Qr

and Kr⊤ matrix multiplication:

Ar = q̂r(k̂r)⊤, (9)

where adjacency matrix Ar quantifies the semantic relationship between two
regions. The crucial step in this method involves pruning the affinity graph by
retaining only the topk connections for each region with a routing index matrix
Ir ∈ NS2×k through the use of the topk operator:

Ir = topk(Ar). (10)

Bi-level token to deformable-level token attention. Utilizing the region
routing matrix Ir, we can then apply token attention. For each deformable query
token within region i, its attention spans all key-value pairs located in the topk
routed regions, that is, those indexed by Iri,1, I

r
i,2, ..., I

r
i,k. Hence, we continue the

process of gathering the key and value:

k̂g = gather(k̂, Ir), v̂g = gather(v̂, Ir), (11)

where k̂g, v̂g ∈ RS2× kHW
S2 ×C are the gathered key and value. Then, we apply

attention on k̂g, v̂g as:

Ô = x̂+Wo′(Attention(q̂, k̂g, v̂g) + LCE(v̂)), (12)

O = MLP (LN(Ô)) + Ô, (13)

where Wo′ is a projection weight for output features, and LCE(·) uses a kernel
size 5 depth-wise convolution.
Deformable-level token to token attention. Following that, the deformable
features that are semantically attended to via [53] are reshaped O as Or ∈
RHG×WG×C and parameterized at the locations of keys and values:

k = OrWk, v = OrWv, (14)

k and v represent the embeddings of semantically deformed keys and values,
respectively. Using existing approaches, we perform self-attention on q, k, v, and
relative position offsets R. The output of attention is formulated as follows:

zm = Wō(σ(q
mk(m)⊤/

√
d+ ϕ(B̂;R))vm). (15)

Here, ϕ(B̂;R) ∈ RHW×HGWG corresponds to the position embedding, following
the approach of previous work [27]. Then zm is projected though Wo to get the
final output z as Equation 3.
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Fig. 3. Overall model architecture of our DeBiFormer. Left: Network architecture of
DeBiFormer. N1 to N4 represent numbers of stacked successive local and Deformable
Bi-level Routing Attention blocks. Please consult Table 1 for specific configurations.
Right: Details on DeBiFormer Block.

Variant Architectures of DeBiFormer
DeBi-T DeBi-S DeBi-B

Stage 1
56×56

N1=2, C=64
r=8, M=2, Dr=3
G=1, K=9, Br=3

N1=4, C=64
r=8, M=2, Dr=3
G=1, K=9, Br=3

N1=4, C=96
r=8, M=3, Dr=3
G=1, K=9, Br=3

Stage 2
28×28

N2=2, C=128
r=4, M=4, Dr=3
G=2, K=7, Br=3

N2=4, C=128
r=4, M=4, Dr=3
G=2, K=7, Br=3

N2=4, C=192
r=4, M=6, Dr=3
G=2, K=7, Br=3

Stage 3
14×14

N3=8, C=256
r=2, M=8, Dr=3
G=4, K=5, Br=3

N3=18, C=256
r=2, M=8, Dr=3
G=4, K=5, Br=3

N3=18, C=384
r=2, M=12, Dr=3
G=4, K=5, Br=3

Stage 4
7×7

N4=2, C=512
r=1, M=16, Dr=3
G=8, K=3, Br=3

N4=6, C=512
r=1, M=16, Dr=1
G=8, K=3, Br=2

N4=4, C=768
r=1, M=24, Dr=3
G=8, K=3, Br=3

Table 1. DeBiFormer model architecture specifications. Ni: Number of blocks at stage
i. C: Base channels in each block. r: Downsample ratio of deformed points. M : Num-
ber of attention heads in DBRMHA. G: Number of offset groups in DBRMHA. Dr:
Deformable level MLP expansion ratio. Br: Bi level MLP expansion ratio. K: Kernel
size of offset module.

3.3 Model architectures

Leveraging DBRA as a fundamental building block, we introduce a novel vision
transformer called DeBiFormer. As depicted in Figure3, we adhere to the recent
state-of-the-art Vision Transformers [13,27,53,44], using a four-stage pyramid
structure. In stage i, we utilize an overlapped patch embedding in the first stage
and a patch merging module [25,31] in the second to fourth stages. This is done
to decrease the input spatial resolution while increasing the number of chan-
nels. Subsequently, Ni consecutive DeBiFormer blocks are used to transform
the features. Within each DeBiFormer block, we adhere to recent methodologies
[25,37,53] by using a 3 × 3 depthwise convolution at the outset. This is done
to implicitly encode relative position information. Following that, we sequen-
tially use a DBRA module with a 2-ConvFFN module with an expansion ratio
e for cross-location relation modeling and per-location embedding, respectively.
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Model FLOPs
(G)

Params
(M)

Top-1
(%)

ResNet-18 [19] 1.8 11.7 69.8
PVTv2-b1 [39] 2.1 13.1 78.7
Shunted-T [31] 2.1 11.5 79.8
QuadTree-B-b1 [34] 2.3 13.6 80.0
BiFormer-T [53] 2.2 13.1 81.4
Conv2Former-N [21] 2.2 15.0 81.5
DeBiFormer-T 2.6 21.4 81.9
PVTv2-B3 [41] 6.9 45 81.2
Swin-T [27] 4.5 29 81.3
CSWin-T [13] 4.5 23 82.7
DAT-T [44] 4.6 29 82.0
CrossFormer-S [42] 5.3 31 82.5
RegionViT-S+ [2] 5.7 31 83.3
QuadTree-B-b3 [34] 7.8 46 83.7
MaxViT-T [37] 5.6 31 83.6
InternImage-T [40] 5.0 30 83.5
MixFormer-B4 [4] 3.6 35 83.0
BiFormer-S [53] 4.5 26 83.8
UniRepLKNet-T [11] 4.9 31 83.2
DeBiFormer-S 5.4 44 83.9

Model FLOPs
(G)

Params
(M)

Top-1
(%)

ConvNeXt-B [28] 15.4 89 83.8
SLaK-S [26] 9.8 55 83.8
Twins-SVT-L [7] 14.8 99 83.7
PVTv2-B5 [41] 11.8 82 83.8
Swin-B [27] 15.4 88 83.5
Focal-B [46] 16.4 90 84.0
CSWin-B [13] 15.0 78 84.2
Shunted-B [31] 8.1 39 84.0
UniFormer-B [25] 8.3 50.0 83.9
ScalableViT-B [48] 8.6 81 84.1
Slide-Swin-B [30] 15.5 89.0 84.2
DAT-S [44] 9.0 50 83.7
QuadTree-B-b4[34] 11.5 64 84.1
CrossFormer-L [42] 16.1 92 84.0
RegionViT-B+ [2] 13.6 74 83.8
InternImage-S [40] 8.0 50 84.2
MixFormer-B6 [4] 12.7 119 83.8
BiFormer-B [53] 9.8 57 84.3
UniRepLKNet-S [11] 9.1 56 83.9
DeBiFormer-B 11.8 77 84.4

Table 2. Evaluating and comparing different backbones on ImageNet-1K on images
with resolution of 224× 224.

DeBiFormer is instantiated in three distinct model sizes, achieved by scaling the
network width and depth as outlined in Table 1. Each attention head comprises
32 channels, and we use a bi-level ConvFFN and deformable-level ConvFFN
with an MLP expansion ratio of e = 3. For the BRA, we use topk = 1, 4, 16, S2,
and for the DBRA, we use topk = 4, 8, 16, S2 for the four stages. Moreover, we
set the region partition factor S to specific values: S = 7 for classification, S = 8
for semantic segmentation, and S = 20 for object detection tasks.

4 Experiments

We experimentally evaluated the effectiveness of our proposed DeBiFormer on
various mainstream computer vision tasks, including image classification (Sec-
tion 4.1), semantic segmentation (Section 4.2) and object detection and instance
segmentation (Section 4.3). In our approach, we commence training from scratch
on ImageNet-1K [32] for image classification. Subsequently, we fine-tune the pre-
trained backbones on ADE20K [52] for semantic segmentation and on COCO
[16] for object detection and instance segmentation. Furthermore, we perform an
ablation study to confirm the efficacy of the proposed Deformable Bi-level Rout-
ing Attention and top-k choices of DeBiFormer (Section 4.4). Finally, in order
to validate that the recognition ability and interpretability of our DeBiFormer,
we visualize the attention map (Section 5).
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Backbone Semantic-FPN UperNet
mIoU(%) mIoU(%)

Swin-T [27] 41.5 44.5
DAT-T [44] 42.6 45.5

CSWin-T [13] 48.2 49.3
RegionViT-S+ [2] 45.3 -
InternImage-T [40] - 47.9
CrossFormer-S [42] 46.0 47.6
Uniformer-S [25] 46.6 47.6
Shunted-S [31] 48.2 48.9
BiFormer-S [53] 48.9 49.8
DeBiFormer-S 49.2 50.0
Swin-S [27] - 47.6
DAT-S [44] 46.1 48.3

CSWin-S [13] 49.2 50.4
RegionViT-B+ [2] 47.5 -
InternImage-S [40] - 50.1
CrossFormer-B [42] 47.7 49.7
Uniformer-B [25] 48.0 50.0
BiFormer-B [53] 49.9 51.0
DeBiFormer-B 50.6 51.4

Table 3. Evaluating DeBiFormer on semantic segmentation with two segmentation
heads (Semantic FPN and UpperNet) on ADE20K dataset.

4.1 Image classification on ImageNet-1K

Settings. We conducted image classification experiments on the ImageNet-1K
[32] dataset, following the experimental settings of DeiT [36] for a fair compari-
son. Specifically, each model was trained for 300 epochs on 8 V100 GPUs with
an input size of 224 × 224. We used AdamW as the optimizer with a weight
decay of 0.05 and used a cosine decay learning rate schedule with an initial
learning rate of 0.001, while the first five epochs were used for linear warm-up.
The batch size was set to 1024. To avoid overfitting, we used regularization tech-
niques including RandAugment [8] (rand-m9-mstd0.5-inc1), MixUp [51] (prob =
0.8), CutMix [49] (prob = 1.0), Random Erasing (prob = 0.25), and increasing
stochastic depth [22] (prob = 0.1/0.2/0.4 for DeBiFormer-T/S/B, respectively).
Results. We report our results in Table 2 showing the top-1 accuracy with simi-
lar computational complexities. Our DeBiFormer outperformed the Swin Trans-
former [27], PVT [41], DeiT [36], DAT[44], and Biformer [53] in all three scales.
Without inserting convolutions in Transformer blocks or using overlapped con-
volutions in patch embeddings, DeBiFormer achieved gains of 0.5pt, 0.1pt and
0.1pt over BiFormer [53] counterparts.

4.2 Semantic segmentation on ADE20K

Settings. The same as existing works, we used our DeBiFormer on Seman-
ticFPN [43] and UperNet [45]. In both cases, the backbone was initialized with
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Backbone RetinaNet 1× schedule Mask R-CNN 1× schedule
mAP AP50 AP75 APS APM APL mAP b AP b

50 AP b
75 mAPm APm

50 APm
75

Swin-T [27] 41.5 62.1 44.2 25.1 44.9 55.5 42.2 64.6 46.2 39.1 61.6 42.0
DAT-T [44] 42.8 64.4 45.2 28.0 45.8 57.8 44.4 67.6 48.5 40.4 64.2 43.1
CSWin-T [13] - - - - - 46.7 68.6 51.3 42.2 65.6 45.4
RegionViT-S+ [2] 43.9 65.5 47.3 28.5 47.3 58.0 44.2 67.3 48.2 40.9 64.1 44.0
MixFormer-B4 [4] - - - - - 45.1 67.1 49.2 41.2 64.3 44.4
CrossFormer-S [42] 44.4 55.3 38.6 19.3 40.0 48.8 45.4 68.0 49.7 41.4 64.8 44.6
QuadTree-B2 [34] 46.2 67.2 49.5 29.0 50.1 61.8 - - - - - -
InternImage-T [40] - - - - - 47.2 69.0 52.1 42.5 66.1 45.8
Agent-Swin-T [17] - - - - - 44.6 67.5 48.7 40.7 64.4 43.4
BiFormer-S [53] 45.9 66.9 49.4 30.2 49.6 61.7 47.8 69.8 52.3 43.2 66.8 46.5
DeBiFormer-S 45.6 66.6 48.9 28.7 49.3 61.6 47.5 69.7 52.1 42.5 66.2 45.7
Swin-S [27] 44.5 65.7 47.5 27.4 48.0 59.9 44.8 66.6 48.9 40.9 63.4 44.2
DAT-S [44] 45.7 67.7 48.5 30.5 49.3 61.3 47.1 69.9 51.5 42.5 66.7 45.4
CSWin-S [13] - - - - - - 47.9 70.1 52.6 43.2 67.1 46.2
RegionViT-B+ [2] 44.6 66.4 47.6 29.6 47.6 59.0 45.4 68.4 49.6 41.6 65.2 44.8
CrossFormer-B [42] 46.2 67.8 49.5 30.1 49.9 61.8 47.2 69.9 51.8 42.7 66.6 46.2
QuadTree-B3 [34] 47.3 68.2 50.6 30.4 51.3 62.9 - - - - - -
InternImage-S [40] - - - - - 47.8 69.8 52.8 43.3 67.1 46.7
Agent-Swin-S [17] - - - - - 47.2 69.6 52.3 42.7 66.6 45.8
BiFormer-B [53] 47.1 68.5 50.4 31.3 50.8 62.6 48.6 70.5 53.8 43.7 67.6 47.1
DeBiFormer-B 47.1 68.2 50.2 30.3 51.1 63.0 48.5 70.2 53.3 43.2 67.2 46.4

Table 4. Results on object detection (left group) and instance segmentation (right
group) tasks, performed on COCO 2017 dataset.

ImageNet-1K pretrained weights. The optimizer was AdamW [29], and the batch
size was 32. For a fair comparison, we followed the same setting as PVT [41] to
train the model with 80k steps and Swin Transformer [27] to train the model
with 160k steps.
Results. Table 3 shows the results of the two different frameworks. It shows that
with the Semantic FPN framework, our DeBiFormer-S/B achieved 49.2/50.6
mIoU, respectively, improving BiFormer by 0.3pt./0.7pt. A similar performance
gain for the UperNet framework was also observed. By utilizing the DBRA mod-
ule, our DeBiFormer could caputure the most semantic key-value pairs, which
makes the attention selection more reasonable and achieve higher performance
on downstream semantic tasks.

4.3 Object detection and instance segmentation

Settings. We used our DeBiFormer as the backbone in the Mask RCNN [18]
and RetinaNet [15] frameworks to evaluate the effectiveness of models for object
detection and instance segmentation on COCO 2017 [16]. The experiments were
conducted with the MMDetection [3] toolbox. Before training on COCO, we ini-
tialized the backbone with weights pre-trained on ImageNet-1K and followed the
same training strategies as BiFormer [53] to compare our methods fairly. Note
that due to device limitations, we set mini batch size as 4 for these experiments,
while in BiFormer this value is 16. For details on the specific settings of the
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Sparse Attention IN1K
Top1(%)

ADE20K
mIoU(%)

Shifted window [27] 81.3 41.5
Spatially sep [7] 81.5 42.9

Sequential axial [20] 81.5 39.8
Criss-cross [42] 81.7 43.0

Cross-shaped window [13] 82.2 43.4
Deformable [44] 82.0 42.6
Block-grid [37] 81.8 42.8

Bi-level routing [53] 82.7 44.8
Deformable bi-level routing 82.9 48.0

Table 5. Ablation study on different attention mechanisms. All models follow the
architecture design of the Swin-T model.

experiment, please refer to the supplementary paper.
Results. We list the results in Table 4. For object detection with RetinaNet, we
report the mean average precision (mAP) and the average precision (AP) at dif-
ferent IoU thresholds (50%, 75%) for three object sizes (i.e., small, medium, and
large (S/M/L)). From the results, we can see that while the overall performance
of DeBiFormer was only comparable to some of the most competitive existing
methods, the performance on large objects (APL) outperformed these methods
although we use a limited resources. This may be because the DBRA allocates
deformable points more reasonably. These points are not to focus only on small
things, but to focus on important things in the image. Therefore the attention
is not limited to a small area, which improves the detection accuracy of large
objects. For instance segmentation with Mask R-CNN, we report the bounding
box and mask the average precision (APb and APm) at different IoU thresholds
(50%, 75%). Note that our DeBiFormer still achieved great performance under
the device limitation of mini batch size. We believe that we could achieve better
results if the mini batch size could be the same to other methods since it has
been proved on semantic segmentation tasks.

4.4 Ablation study

Effectiveness of DBRA. We compared DBRA with several existing sparse
attention mechanisms. Following CSWIN [13], we aligned macro architecture de-
signs with Swin-T [27] for fair comparison. Specifically, we used 2, 2, 6, 2 blocks
for the four stages and non-overlapped patch embedding, and we set the initial
patch embedding dimension to C = 96 and MLP expansion ratio to e = 4. The
results are reported in Table 5. Our Deformable Bi-level Routing Attention had
significantly better performance than the existing sparse attention mechanisms,
in terms of both image classification and semantic segmentation.
Partition factor S. Similar to BiFormer, we opted to use S as a divisor of the
training size to prevent padding. We used an image classification with a resolu-
tion of 224 = 7 × 32, and we set S = 7 to ensure that the size of the feature
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#partition factor k Bi-level Routing tokens to attend CoreML
Latency(ms)

Top-1 Acc
(%)

7 1,4,16,49 64, 64, 64, 49 291 81.81
7 2,8,32,49 128, 128, 128, 49 459 81.74
7 4,8,16,32 256, 128, 64, 32 276 81.47
7 8,16,32,49 512, 256, 128, 49 498 81.60
7 4,8,16,49 256, 128, 64, 49 382 81.90

Table 6. Ablation study on top-k selection.The four numbers in the k column represent
the top-k values of the four stages and the same to the tokens to attend column. The
CoreML Latency is conducted by MacBook Pro M1 using CPU and Nerual Engine.

Stage Configurations Backbone IN-1K
1 2 3 4 FLOPs #Param Acc.

BB BB BB BB 2.2 13.1 81.37
BB BB BB B* 2.4 15.8 81.58
BB BB BB ** 2.6 18.5 81.63
BB BB B* ** 2.7 21.2 81.84
BB B* B* ** 2.7 21.4 81.87
B* B* B* ** 2.6 21.4 81.90

Table 7. Configuration B*: this stage is constructed with successive bi-level routing
attention and DBRMHA blocks, while BB and ** denotes that stage uses the same
blocks as bi-level routing attention and DBRMHA, respectively.

maps was divided at each stage. This choice aligns with the strategy used for
the Swin Transformer [27], where a window size of 7 was used.
Top-k Choices. We systematically adjusted k to ensure a reasonable number
of tokens attended to deformable queries as the region size diminished in later
stages. Exploring various combinations of k is a viable option. In Table 6, we
present ablation results on IN-1K, following DeBiFormer-STL (“STL” denotes
Swin-T Layout). A crucial observation from these experiments is that augment-
ing the number of tokens paid attention to the deformable queries had a detri-
mental effect on accuracy and latency, and increasing the number of tokens paid
attention in stages 1 and 2 had an effect on accuracy.
Deformable Bi-level Routing Multi-Head Attention (DBRMHA) at
different stages. To evaluate the impact of design choices, we systematically
replaced bi-level routing attention blocks with DBRMHA blocks across different
stages, as shown in Table7. Initially, all stages used bi-level routing attention,
similar to BiFormer-T [53], achieving 81.3% accuracy in image classification.
Replacing just one block in the 4th stage with DBRMHA immediately boosted
accuracy by +0.21. Replacing all blocks in the 4th stage added another +0.05.
Further DBRMHA replacements in the 3rd stage continued to improve perfor-
mance across tasks. While gains tapered off with earlier stage replacements, we
settled on a final version—DeBiFormer—where all stages use Deformable Bi-level
Routing Attention for simplicity.
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Fig. 4. Grad-CAM Visualization of BiFormer-Base and DeBiFormer-Base. These im-
ages are sampled from the validation set of ImageNet-1K.

5 Grad-CAM Visualization

To further illustrate the ability of the proposed DeBiFormer to recognize the
attention in important regions, we used Grad-CAM [33] to visualize the areas of
greatest concern of BiFormer-Base and DeBiFormer-Base. As shown in Figure4,
by utilizing DBRA module, our DeBiFormer-Base model performed better in
target objects locating in which more regions have been focused on. In addition,
our model scales down the attention in the unnecessary regions and pays more
attention to the necessary regions. Depending on the attention of more necessary
regions, our DeBiFormer model focused on semantic areas more continuously and
completely, suggesting the stronger recognition ability of our model. Such ability
yields better classification, and semantic segmentation performance compared
with BiFormer-Base.

6 Conclusion

The paper introduces the Deformable Bi-level Routing Attention Transformer, a
novel hierarchical vision transformer designed for both image classification and
dense prediction tasks. Through Deformable Bi-level Routing Attention, our
model optimizes query-key-value interactions while adaptively selecting seman-
tically relevant regions. This leads to more efficient and meaningful attention.
Extensive experiments show our model’s effectiveness compared to strong base-
lines. We hope this work offers insights into designing flexible and semantically
aware attention mechanisms.
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