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Abstract. Egocentric videos present unique challenges for 3D scene un-
derstanding due to rapid camera motion, frequent object occlusions, and
limited object visibility. This paper introduces a novel approach to in-
stance segmentation and tracking in first-person video that leverages 3D
awareness to overcome these obstacles. Our method integrates scene ge-
ometry, 3D object centroid tracking, and instance segmentation to create
a robust framework for analyzing dynamic egocentric scenes. By incorpo-
rating spatial and temporal cues, we achieve superior performance com-
pared to state-of-the-art 2D approaches. Extensive evaluations on the
challenging EPIC Fields dataset demonstrate significant improvements
across a range of tracking and segmentation consistency metrics. Specif-
ically, our method outperforms the next best performing approach by
7 points in Association Accuracy (AssA) and 4.5 points in IDF1 score,
while reducing the number of ID switches by 73% to 80% across var-
ious object categories. Leveraging our tracked instance segmentations,
we showcase downstream applications in 3D object reconstruction and
amodal video object segmentation in these egocentric settings.

Keywords: Egocentric understanding - Video object segmentation - 3D-
aware tracking

1 Introduction

Egocentric videos, which capture the world from a first-person perspective, are
a focus of increasing attention in computer vision due to their importance in
applications such as augmented reality and robotics. Among various tools for
video analysis, object tracking is of particular importance, but also faces signif-
icant challenges, in the egocentric case. Most video object segmentation (VOS)
methods , in fact, assume that the videos contain slow, steady cam-
era motions that keep the view centered on the object of interest . In
comparison, egocentric videos are taken from a first-person perspective, where
the camera wearer’s movements introduce rapid and unpredictable changes in
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viewpoint. Additionally, objects frequently move in and out of the field of view,
and thus are often partially or wholly occluded and/or truncated.

For example, in the EPIC KITCHENS dataset |[12], the person recording the
video might move a pan on top of a hob and leave it there for several minutes
while moving around in the kitchen. During that time, they might observe more
objects that look similar to the pan, which may cause an algorithm to incorrectly
associate them to the pan itself. In general, video segmenters tend to lose track
of the object partially or entirely due to occlusion or truncation. These issues
are exacerbated when tracking multiple objects simultaneously.

Existing state-of-the-art video object segmenters try to overcome these lim-
itations by aligning segments with dense or sparse correspondences. These are
obtained from optical flow or point tracking |33] and serve as a proxy for spatial
reasoning. However, these methods can establish correspondences only in rela-
tively short video windows due to their computational cost and poor reliability
during severe viewpoint changes. The result are fragmented and incomplete ob-
ject tracks, which limit their usefulness, particularly in egocentric videos.

In order to address these shortcomings, we can look at how humans locate
objects. An important cue that helps correct reassociation is object permanence,
a concept that human infants develop very early [34]. Permanence captures the
idea that objects do not cease to exist when they are not visible. Combined with
spatial awareness, this means that the 3D location of objects at rest should not
change when they are out of view or occluded. It has previously been explored
for egocentric videos in ‘Out of Sight, Not Out of Mind’ (OSNOM) [30].

This brings us to the question of how to incorporate such spatial awareness
in an object tracking algorithm. We achieve this by extracting scene geometry
from the video stream and using it as an additional supervisory signal to refine
tracks produced by a video segmentation model. More specifically, we obtain
depth maps and camera parameters for the frames of the video and use this
information to calculate the 3D location of the object instances. We then propose
a novel approach for refining instance segmentation and tracking in egocentric
videos that leverages 3D awareness to overcome the limitations of 2D trackers.
By integrating a scene-level 3D reconstruction, coarse 3D point tracking, and 2D
segmentation, we obtain a robust framework for analyzing dynamic egocentric
videos. In particular, by incorporating both spatial and temporal cues from the
3D scene, our method handles occlusions and re-identifies objects that have been
out of sight for some time, leading to more consistent and longer object tracks.

Our experiments on the challenging EPIC Fields dataset [36] demonstrate sig-
nificant improvements in tracking accuracy and segmentation consistency com-
pared to state-of-the-art video object segmentation approaches. Furthermore, we
showcase the potential of our method in downstream applications such as 3D
object reconstruction and amodal video object segmentation, where the consis-
tent and accurate object tracks produced by our method enable more accurate
and complete reconstructions.
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2 Related Work

Video object segmentation. Video object segmentation (VOS) has seen sig-
nificant advancements over the past decade [45], driven by the need to accu-
rately segment and track objects across video frames. Traditional methods often
relied on frame-by-frame processing, which struggled with maintaining consis-
tent object identities over long sequences. Early approaches such as MaskTrack
R-CNN [40] and FEELVOS [37] introduced the concept of using temporal in-
formation to improve segmentation consistency. MaskTrack R-CNN extended
Mask R-CNN to video by adding a tracking head that links instances across
frames, while FEELVOS utilized a pixel-wise matching mechanism to propa-
gate segmentation masks. The introduction of memory networks and attention
mechanisms marked a significant leap in performance. STM [27], AOT [41] and
XMem [9] leveraged memory networks to store and retrieve information across
frames, enabling more robust handling of occlusions and reappearances. Many
recent works |10}11})311/38] have proposed end-to-end approaches for video object
segmentation as well as panoptic segmentation. VisTR, [38] and SeqFormer [39]
employed transformers to model long-range dependencies and global context.
VisTR treated video segmentation as a direct set prediction problem, while Se-
gFormer introduced a sequential transformer architecture that processes video
frames in a temporally coherent manner.

Additionally, methods like DEVA [8] employed decoupled video segmentation
approaches, combining image-level segmentation with bi-directional temporal
propagation to handle diverse and data-scarce environments effectively. This also
helps tackle open-vocabulary settings. MASA [21] uses the Segment Anything
Model (SAM) as a robust segment proposer, and learns to match segments that
correspond to the same object. An adapter can be trained to map those segments
to a closed set of classes, in zero-shot settings.

Point tracking-based methods. Point tracking-based methods have been
pivotal in advancing VOS by providing a means to establish correspondences
across frames. Many powerful point trackers have been recently proposed such
as TAP-Vid [13] benchmark that focused on tracking physical points in a video
and works such as CoTracker [18] and PIP [17]. CenterTrack [47] combined ob-
ject detection with point tracking, leveraging the strengths of both approaches.
TAPIR [14] trains an initial matching network (analogous to SeqFormer) and an
iterative refinement network (which focuses on continuous adjustments to pre-
dicted points’ positions), using synthetic data, to predict accurate point tracks.
SAM-PT |33] is a point-centric interactive video segmentation method, which
propagates a sparse set of points, chosen by a user, to other frames.

3D-informed instance segmentation and tracking. A recent line of work
closely related to the problem we address here involves lifting and fusing incon-
sistent 2D labels or segments into 3D models. In particular, Panoptic Lifting [35],
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ContrastiveLift 3], PVLFF [7], and Gaussian Grouping [42] employ mechanisms
for 3D instance segmentation in static scenes.

Operating under the assumption that objects remain stationary, they show
that a 3D reconstruction of the scene enables the fusion of unassociated 2D
instances (i.e., inconsistent instance identities across views) using Hungarian
matching [35], contrastive learning [3}/7] or video object tracking [8}/42]. Instead
of instance segmentation and tracking, GARField [19], OmniSeg3D [43|, and
N2F2 |4] focus on 3D hierarchical grouping, a problem which also requires re-
solving ambiguities that arise when fusing conflicting multi-view masks (such as
those obtained by the Segment Anything Model [20]).

Exploiting 3D information in egocentric videos has been less explored due to
the challenges of reconstructing dynamic objects. Following [3], EgoLifter [16]
uses contrastive learning to lift 2D segmentations to 3D, while also using a
transient prediction network to handle dynamic objects. Plizzari et al. [30] fo-
cus specifically on 3D tracking of dynamic objects, rather than segmenting or
reconstructing them. They form 3D centroid tracks by lifting 2D centroids to
3D and matching observations based on 3D distance and visual similarity. We
follow [30], in that we lift objects to 3D using estimated depth, and initialise,
match and update tracks based on 3D location and DINOv2 [28| feature simi-
larity. However, we also incorporate instance and category information from a
base VOS model into our cost formulation, creating a more robust 3D-aware
object tracking system that excels in refining imperfect or noisy input 2D object
tracks, achieving superior long-term object consistency as compared to existing
2D tracking methods.

3 Method

Given an egocentric video, our objective is to obtain long-term consistent object
tracks by leveraging 3D information as well as an initial set of object segments
and tracks obtained from a 2D-only video object segmentation (VOS) model. Our
proposed method overcomes the limitations of 2D VOS models in maintaining
long-term consistent object identities in egocentric scenarios and produces object
tracks that persist despite severe occlusion and objects intermittently moving out
of sight.

Figure [I] provides a high-level overview of the method. We take as input an
initial set of image-level segments and object tracks obtained from a pretrained
VOS model. Then, we lift these 2D segments into 3D using per-frame depth from
a pretrained depth estimator along with scene geometry information, and link
them across time using our proposed tracking cost formulation. We first define
the above problem statement more concretely in Section 3.1} and the 3D-aware
tracking algorithm in Section Then, we describe our design that includes
different attributes we extract for the 2D segments in Section followed by
our cost formulation in Section [3.4
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Fig. 1: Overview of the proposed method for 3D-aware object tracking in egocentric
videos. The method begins by taking image-level segments and object tracks from a
pre-trained video object segmentation model, which are then lifted to 3D using per-
frame depth estimates and scene geometry. These segments are fused across time with
a 3D-aware tracking cost formulation to refine and maintain consistent object identities
throughout the video sequence, even when the objects go out of sight (indicated by ).

Output Seg

3.1 Problem statement

We begin with an egocentric video sequence consisting of N frames I, t €
{1,..., N}, along with the output of an off-the-shelf 2D VOS model. The objec-
tive of the method is to compute a set of tracks for the entire video {T} with
associated segment IDs {5} that have the desired temporal consistency. The
initial output contains a set of object tracks that, while partially correct, often
contain errors — particularly when objects temporarily leave the field of view
or are occluded. Our goal is to refine and reassemble these tracks, leveraging 3D
information to correct errors and achieve more consistent long-term tracking.
Crucially, we don’t discard the initial track IDs obtained from the 2D-only VOS
model. Instead, we incorporate this information into our refinement process, us-
ing it as a valuable prior for maintaining object identities. In this manner, we go
beyond the previous 3D aware matching, initialisation and matching method
that we build upon.

3.2 3D aware tracking

First, we decompose the initial tracks into per-frame segments M! = {m! | 1 <
i < |M|}. Specifically, each M contains a set of 2D segments m!, representing
the objects detected in frame ¢. For each segment m!, we compute an attribute
vector bf = (b} ,b},,...,b;,) that encodes various characteristics of the seg-
ment including its initial ID s! from the 2D VOS model, 3D location, visual
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features, and category information. These attribute vectors play a crucial role
in our method, as they allow us to establish correspondences between segments
across frames.

We employ a frame-by-frame track refinement approach using the Hungarian
algorithm. At each frame ¢, we consider the existing tracks T¢~! formed in the
previous ¢ — 1 frames and new segments M’ from the current frame ¢. The i-th
track within T*~! is associated with an attribute vector bf_l, computed as an
aggregate of the attributes of segments assigned to it (c.f. Sec. , and refined
segment 1D 5271. We match the new segments at time t to the tracks T¢~! by
solving the following optimization problem to obtain the new refined segment
IDs {st}:

argmanJ §,~§ L b, bt D) (1)
{8 5

subject to st € {1,...,S} and st # s if ¢ # j, where S is the total number of
unique obJect 1dent1ﬁers The second condltlon enforces that no two segments in
the same frame can have the same identifier. The cost function J is defined as:

st—1 t—1 5t-1) Bt
J(st, 571 bl bt = 1(st = & Za b, bih) (2)
Here, 1(s! = S; ') is an indicator function. 6, (b » b; pl) is the consistency cost

for the p-th attribute between segment m! in frame ¢ and track le?*1, Impor-
tantly, one of these ¢, functions specifically accounts for the initial track IDs
(c.f Eq. (8)), encouraging our optimization to maintain these associations when
appropriate.

We use the Hungarian algorithm to solve for the new segment IDs and update
the initial segment IDs only if the optimisation cost from Eq. is below a cost
threshold . This ensures that our algorithm does not change associations when
the cost is too high. Notably, for new observations that don’t match any existing
track (i.e., their matching cost exceeds ), we initialize new tracks. Importantly,
we do not terminate tracks that fail to match with a new observation in the
current frame. Instead, we maintain these tracks in our database, propagating
their attributes from time ¢t — 1 to time t¢. This approach allows our method
to handle temporary occlusions or brief disappearances of objects, maintaining
object identity over longer periods.

By iteratively applying this process across the entire video sequence, we refine
the initial tracks, correcting errors while still leveraging the valuable information
provided by the 2D VOS model. Our method’s ability to incorporate both the
initial 2D tracking information and additional 3D cues, combined with its frame-
by-frame processing and track maintenance strategy, enables it to effectively
handle the challenges of egocentric videos, including frequent occlusions, objects
moving in and out of view, and rapid camera motion. Next, we describe how
we define and compute the segment attributes b! as well as the associated cost
functions J,.
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3.3 Attributes for 3D-aware cost formulation

Our method leverages 3D information to improve the initial object tracks ob-
tained from an off-the-shelf 2D-only VOS model. In addition to 3D location
information, we leverage appearance information (visual features), as well as
categorical information (i.e., the initial category and instance labels from the
2D model) to refine the segment associations. We denote the attributes for each
segment as bl = (I, v}, ct, st), where I! is the 3D location of the segment, v! is

27 71 Y T

the visual feature, ¢! is the category label and s! is the instance label.

3D locations as segment attributes. We are given for each image I¢,t €
{1,...,N}, a camera pose C!, camera intrinsics K and a depth map D?. In
order to optimise the associations with 3D information, we lift the 2D centroid
of each segment into 3D. We define the 3D centroid of segment m! in frame ¢ as
It, representing one out of several attributes of bl. We calculate the location of
this segment by projecting its 2D centroid into 3D with

it = ¢t |[GET [l 1" (3)

1

where d! is the depth value obtained from D? that corresponds to the centroid
of segment m! of frame ¢, and z!,y! are the 2D coordinates of the centroid.

Visual features as segment attributes. While the 3D location of a seg-
ment plays a crucial role in overcoming the mentioned problems of associating
segments throughout occlusions, viewpoint changes and similar issues, we also
make use of 2D-level visual features v! as one of the attributes b! that corre-
spond to each segment. Specifically, for an image I* and each segment m! of the
image, we use a pretrained vision encoder, e.g. DINOv2 [28], to obtain the visual
feature v! as:

v = V(crop(I' ©mj)), (4)

where V' is the vision encoder and ® denotes Hadamard product. The ‘crop’
operation extracts the smallest patch with a 1:1 aspect ratio enclosing mask m.

Initial instance and category labels as segment attributes. Our pro-
posed method refines the initial tracks obtained from a purely 2D video object
segmentation model. Let ¢t and s! denote the initial category and instance labels
for segment m} obtained from the 2D model. We use ¢ as an attribute to dis-
courage the optimisation from matching instances which did not initially belong
to the same category. And similarly, we use §! to encourage the optimization
to preserve the initial tracks of instances across frames obtained from the 2D

model. We mathematically define the associated costs below.

Attributes for a track. A track T*~! that exists at time ¢t — 1 is a sequence of
segments assigned to it so far. We associate each track with an attribute vector
bt = (It 9, &, 5t), where I, & and 5! are defined to be the corresponding
attributes of the most recent segment assigned to this track. The visual feature
attribute 9! is defined to be the mean visual feature of the 100 most recent

segments assigned to the track.
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3.4 Cost functions

The attributes used for refining the tracks are thus bl = (I¢, v}, &, st), consisting

R R SR

of the 3D location, the visual features, initial category label and initial instance
label for the segment m! of frame ¢. Now, we define the cost functions 4, used
in Eq. for these individual attributes. We follow [30,/32] for the first two:

1. We model the 3D location cost §; with the exponential distribution as follows:

1 /
1) =~ (- exp (~11E =1 1) 5

2. We model the cost for the visual features, d,,, using a Cauchy distribution:

’ 1
Sp(vf vt) = —1 6
(U“v]) Og(l—i—avHU —v ||2> )

3. For the category and instance label, we use a 0 — 1 cost function and refer
to it with 6. and d:

._t__tll , _t/
6o(et, ) = {0 Ta=a  (m s = {0 5 =5 (g

o, ifc #¢ o, if 5] # 5

Here, o4, oy, a. and ay are used to modulate the importance of each cost func-
tion. The cost parameters for the category and instance labels discourage the
matching of segments that are inconsistent with the category and instance la-
bels from the input segments. As described in Section 3.2 we consider the tracks
formed in previous ¢ — 1 frames and match them to the new observations from
the current frame ¢ using the Hungarian algorithm.

We refer the reader to the arXiv version for the implementation details and
hyperparameter settings.

4 Experiments

4.1 Benchmark and baselines

We evaluate our proposed method on 20 challenging scenes from the EPIC
Fields [36] dataset. EPIC Fields comprises of complex real-world videos with
a high diversity of activities and object interactions, making it an ideal testbed
for our evaluation. The selected videos include varied lighting conditions, oc-
clusions, objects that disappear from sight, and have an average length of 10
minutes. To further demonstrate our method’s capability, we also evaluate it on
the Ego4D [15] dataset and report the results in the arXiv version.
We compare against the following baselines:

1. DEVA [8] employs a decoupled video segmentation approach that combines
task-specific image-level segmentation with a class-agnostic bi-directional
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temporal propagation model. This method is particularly effective in diverse
and data-scarce environments, as it separates image and video segmentation
tasks to improve overall tracking accuracy by reducing the impact of image
segmentation errors.

2. MASA |21] is a more recent state-of-the-art method that focuses on robust
instance association learning. MASA includes a universal adapter that allows
it to integrate with various foundational segmentation or detection models,
enhancing its ability to track any detected objects robustly. By utilizing
features from these underlying 2D models, MASA can improve the instance
and category assignments, providing robust zero-shot tracking capabilities
in complex domains.

Note that, both DEVA and MASA can be used with various 2D object detection
models. We tested both methods with three 2D models: OWLv2 |25|, Detic [46]
and GroundingDINO [22], and found that DEVA works best with OWLv2 while
MASA works best with Detic on the EPIC Fields dataset. Hence, we incorporate
DEVA 4+ OWLv2 and MASA + Detic as baselines in our experiments.

Since both baselines use an open-vocabulary 2D detection model, we use text
prompts corresponding to the object categories from EPIC Fields [36] to obtain
image-level object bounding boxes (with associated class labels).

In addition to these, we also simulate the OSNOM [30] approach within our
framework and provide a detailed comparison in the arXiv version.

4.2 Metrics

We evaluate our method using the HOTA (Higher Order Tracking Accuracy)
metric [23]. HOTA assesses multi-object tracking (MOT) performance by com-
bining detection accuracy (DetA), association accuracy (AssA), and localization
IoU (Loc-IoU). It is calculated as the geometric mean of DetA and AssA over
various Loc-IoU thresholds «:

HOTA = ﬁ > HOTA(a) = ﬁ > V/DetA(a) x AssA(a)
a€eS

a€esS

where S is the set of IoU thresholds. We use S = {0.05,0.1,...,0.9,0.95} fol-
lowing standard protocol |23]. DetA measures the overlap between the set of all
predicted segments and all ground-truth (GT) segments. It is defined as:

TP

DetA(a) =
etA(a) ITPo| + [FP.| + |FN.|

True Positives (TP, ) are identified by matching predicted segments to GT seg-
ments with an IoU > a using Hungarian matching. Unmatched predictions are
False Positives (FP,), and unmatched GT segments are False Negatives (FN,,).

AssA measures the tracker’s ability to maintain consistent object identities
over time:

o
~ |TP,|

TPA(c)|

E;D | TPA(c)| + | FPA(c)| + | FNA(c)]

AssA(w)
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where we iterate over all TP pairs, measuring the alignment between the pre-
dicted and ground-truth segment’s whole track. True Positive Associations (TPA)
represents the number of TP matches between the two chosen tracks for a pair.

Additionally, we use the IDF1 (Identity F1) score to measure how well the
tracker maintains consistent object identities throughout the sequence:

2|IDTP|

IDF1 =
2|IDTP| + [IDFP| + [IDFN|

where IDTP (Identity True Positives) represents matches on overlapping parts
of tracks that are matched, while IDFP (Identity False Positives) and IDFN
(Identity False Negatives) represent the remaining GT and predicted segments.

4.3 Results

We evaluate our method against DEVA [8] and MASA |21] using the HOTA,
DetA, AssA, and IDF1 metrics. Table [I] presents the overall results as well as
scene-specific performance. Figure 2 provides a qualitative comparison of results.

Our approach consistently outperforms both baselines across various met-
rics. Compared to DEVA, our method achieves an overall HOTA score of 27.72,
a notable improvement over DEVA’s 25.14. This enhancement is even more pro-
nounced in the AssA metric, which measures the tracker’s ability to maintain
consistent object identities over time. Our method attains an AssA score of 43.90,
substantially higher than DEVA’s 36.72.

This further underscores our method’s superior performance in maintaining
consistent object identities throughout the video sequences. Our method also
shows significant improvements in IDF1 scores, achieving 26.63 compared to
DEVA’s 22.17. Similar improvements are observed when comparing to MASA,
which demonstrates our approach’s adaptability to different base models.

Notably, DetA scores remain relatively consistent across all methods (e.g.
18.40 for MASA vs. 18.38 for our method when using MASA as the base model).
This is because our method improves the instance and category assignments for
the segments using 3D information but does not alter the segments themselves.
Since the DetA metric only evaluates the segments regardless of IDs, it results
in similar scores for both the base 2D method and our method.

Scene-specific analysis. Our method shows remarkable improvements in com-
plex scenes, such as P01 01, where we achieve a HOTA score of 41.91 compared
to DEVA’s 33.60, a 24% improvement. This scene likely contains frequent object
occlusions or out-of-view instances where our 3D-aware approach excels. Signifi-
cant improvements are also observed in scenes like P07 101 and P22 117, with
improvements of 25% and 22% respectively in HOTA scores.

The AssA metric shows the most significant improvements. For example, in
P02 121, our method achieves an AssA of 20.96 compared to DEVA’s 10.32, a
103% improvement. However, the degree of improvement varies across scenes. In
some, like P04 11, the improvement is marginal, suggesting that not all scenes
benefit equally from 3D awareness.
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Table 1: Results on the EPIC Fields |36] dataset.

DEVA (3] Ours (w/ DEVA) MASA |21 Ours (w/ MASA)
HOTA DetA AssA IDF1 HOTA DetA AssA IDF1 HOTA DetA AssA IDF1 HOTA DetA AssA IDF1

P01_01 33.60 25.25 45.68 28.61 41.91 24.94 71.85 38.76 9.11 4.64 17.99 815 8.36 4.64 15.12 7.50
P01_104 25.79 22.98 29.09 21.93 30.92 22.95 41.88 31.40 11.66 8.81 15.59 9.61 12.77 8.81 18.64 10.54
P02_09 30.07 21.8542.29 23.46 33.76 21.77 53.11 27.73 20.51 15.46 27.46 17.67 19.04 15.47 23.68 16.45
P02_121 875 7.47 10.32 6.07 11.79 6.64 20.96 12.09 6.71 5.68 8.03 4.06 9.29 5.69 15.34 6.90
P02_132 26.71 25.05 28.80 29.04 29.96 24.74 36.56 35.18 15.44 11.40 21.28 13.31 15.39 11.35 20.98 13.65
P03_101 27.56 21.07 36.13 24.17 29.63 19.72 44.61 26.67 7.71 6.22 9.65 4.55 9.53 6.22 14.76 6.97
P04_03 15.60 11.72 23.41 11.24 16.85 11.64 26.63 12.23 10.21 5.12 22.80 6.22 10.17 5.12 21.92 6.67
P04_11 43.03 35.83 52.05 48.88 43.13 35.87 52.21 49.74 10.82 7.26 16.30 11.26 10.54 7.27 15.37 9.76
P04_25 18.71 6.02 58.2510.39 18.71 6.18 56.79 10.64 12.64 5.96 27.30 6.69 13.46 5.96 30.45 8.54
P06_01 26.22 23.80 29.60 28.12 29.73 25.65 34.95 35.05 18.95 21.33 19.02 17.96 26.01 21.33 32.87 30.84
P06_102 27.71 17.37 44.81 23.75 30.42 18.09 51.88 28.71 10.42 6.17 18.87 4.87 8.71 6.18 13.91 4.17
P06_12 42.47 27.00 68.89 41.40 44.13 26.95 73.86 48.41 41.94 28.57 62.01 47.70 44.35 28.54 69.14 52.38
P0O7_101 18.45 15.66 23.28 14.28 23.12 15.95 34.81 21.44 12.25 7.83 19.98 8.58 12.98 7.82 22.38 9.44
P11_103 27.73 15.55 49.78 24.77 24.68 15.16 40.42 21.98 11.69 8.11 17.37 7.75 13.25 8.02 21.98 9.57
P12_02 23.51 15.26 37.40 16.16 26.21 15.45 45.35 20.63 11.46 7.33 17.96 7.46 12.77 7.34 22.34 9.59
P22 117 18.15 12.62 27.06 13.50 22.06 12.34 39.90 18.92 7.46 3.32 17.88 4.63 6.29 3.33 12.37 3.97
P24 05 19.07 12.27 30.48 16.10 21.02 12.27 36.50 19.85 11.39 9.12 14.26 7.27 13.15 9.09 19.06 10.00
P28 109 24.77 17.39 35.36 21.68 25.99 18.08 37.37 26.32 12.82 11.49 14.38 9.97 13.29 11.49 15.41 10.97
P28 14 27.11 18.85 39.90 25.30 28.04 18.18 44.28 27.54 13.22 9.21 20.28 10.17 13.35 9.17 20.16 10.61
P37_101 17.85 14.97 21.79 14.56 22.23 14.93 33.96 19.24 11.09 9.26 13.86 8.54 11.20 9.14 14.07 8.76

Overall  25.14 18.40 36.72 22.17 27.72 18.38 43.90 26.63 13.73 10.06 20.32 10.82 14.67 10.04 22.43 12.36

Video

Table 2: Number of ID switches averaged over all videos, shown for challenging and
frequently appearing objects. Last column: number of videos featuring each object.

Object Class DEVA [8] Ours (w/ DEVA)  # videos

tap 14.53 2.88 17
knife 27.21 5.29 14
chopping board 20.25 5.42 12
spoon 21.00 5.00 10
bowl 23.11 5.67 9
pan 19.44 4.11 9
sponge 22.38 5.38 8

Analysis of ID switches by object class. To further understand our method’s
performance in maintaining consistent object identities, we analyze the number
of ID switches occurring throughout the videos for different object categories.
Table [2] shows the average number of ID switches over all videos for a subset of
challenging and commonly occurring object classes in the EPIC Fields dataset,
comparing our method to the DEVA baseline. Our approach consistently and sig-
nificantly reduces ID switches across all shown object classes, with improvements
ranging from 73% to 80% reduction. For instance, small objects, prone to occlu-
sions, such as knives, see a reduction from 27.21 to 5.29 switches, taps from 14.53
to 2.88, and pans from 19.44 to 4.11. This substantial improvement across various
object types, regardless of their size or frequency of appearance, demonstrates
the robustness of our 3D-aware approach. It highlights our method’s effective-
ness in maintaining consistent object identities through complex interactions and
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Reference object Segmentations
A —

Ours

DEVA

Ours

DEVA

Ours

DEVA

Ours

DEVA

Ours

DEVA

Fig. 2: Qualitative comparison between our method and DEVA . We show instance
segmentations for selected reference objects. Our method maintains consistent tracks
despite viewpoint changes and objects going out of view, while DEVA’s tracks break.
Our approach successfully segments the pot even when in motion.

occlusions typical in egocentric videos, particularly for frequently manipulated
kitchen objects and objects that may remain stationary across time, while not
necessarily staying in view.

4.4 Ablations

Comparison with other plug-and-play tracking methods The above re-
sults demonstrated our method’s generalization capability by combining with

2573



3D-Aware Instance Segmentation and Tracking in Egocentric Videos 13

Table 3: Comparison with other plug-and-play tracking methods.

Method HOTA DetA AssA IDF1
BoTSORT |1| 12.83 7.81 24.23 10.30
ByteTrack [44] 20.08 16.31 27.56 16.94
OCSORT |6] 21.90 17.94 29.28 18.95
DeepOCSORT [24] 22.63 17.98 31.31 19.88
DEVA [§] 25.14 18.40 36.72 22.17

Ours (w/ DEVA) 27.72 18.38 43.90 26.63

with two state-of-the-art methods, DEVA [§] and MASA [21]. To further high-
light our method’s versatility, we compare it with other existing plug-and-play
tracking algorithms, namely BoTSORT [1], ByteTrack [44], OCSORT [6] and
DeepOCSORT [24]. We use the same ReID model with all 4 tracking methods
and use OWLv2 |25] as the 2D segmentation model for fair comparisons. Table
shows that all four methods perform less favourably than DEVA [§] even while
using the same base 2D model, and thus are outperformed by our method which
further refines the tracks from DEVA.

Influence of different components on tracking. Our tracking formulation
consists of four components (Egs. to ): instance cost, category cost, 3D lo-
cation cost, and visual feature cost. We evaluate the influence of each component
by turning off the corresponding cost one at a time in the cost-matching formu-
lation. Table [4] shows that all components contribute positively to the tracking
performance, but to varying degrees. Removing the visual features has the least
impact, reducing the HOTA score from 27.72 to 27.17. The 3D location informa-
tion proves more important, with its removal causing the HOTA score to drop
to 26.32. Removing the category term has the most significant impact on the
tracking performance, followed by the instance cost. Note that, if the instance
cost is removed, the cost optimization completely ignores the initial tracks pro-
vided by the 2D base tracker (e.g. DEVA or MASA), effectively finding instance
tracks from scratch. Notably, even without this initial guidance, our method
outperforms the 2D tracking method (DEVA [§]) in terms of HOTA (+0.82),
AssA (4+2.79) and IDF1 (+2.33).

Metrics across IoU thresholds. As described in Section [£.2] HOTA, DetA,
and AssA can be calculated at different IoU thresholds. Figure [3]illustrates how
these metrics change as the IoU threshold increases. As expected, all metrics
decrease with higher thresholds, as stricter overlap requirements lead to fewer
True Positive matches between predicted and ground-truth segments. Notably,
our method consistently outperforms DEVA across all thresholds for both HOTA
and AssA metrics, while he AssA curve shows a more pronounced improvement.
This suggests that our 3D-aware approach is particularly effective at maintaining
consistent object identities throughout the video sequence, even under strict
evaluation criteria.
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Table 4: Influence of different components in the tracking formulation.

Instance Category 3D Location Visual HOTA DetA AssA IDF1

v v v v 27.72 18.38 43.90 26.63
v v v X 27.17 18.38 42.45 26.12
v v X v 26.32 18.37 41.23 26.04
v X v v 25.49 18.11 38.74 24.18
X v v v 25.96 18.38 39.51 24.50
X v X X 21.11 18.41 26.42 16.80
v v X X 25.14 18.40 36.72 22.19
DEVA |8| 25.14 18.40 36.72 22.17
HOTA AssA
035 —e— DEVA 0.50 —e— DEVA
ety Ours ’ Ours
é 0.20 \.\.\‘\ g % \.-.—.\.\.\.\
o1 .\. 0.25 .\
0.05 0.15 0.25 035|08 t?’]re(;IZSOIdO 65 0.75 0.85 0.95 0.05 0.15 0.25 0.35|0l3 /:j]reOSESOIdD 65 0.75 0.85 0.95

Fig. 3: HOTA and Association accuracy (AssA) metrics across different IoU thresholds.

5 Conclusion

In this paper, we presented a novel 3D-aware approach to instance segmentation
and tracking in egocentric videos, addressing the unique challenges of first-person
perspectives. By integrating 3D information, our method significantly improves
tracking accuracy and segmentation consistency compared to state-of-the-art
2D approaches, especially over long periods. Our ablation studies highlight the
importance of 3D information and the category as well as instance cost terms
in matching, while also showing robustness to hyperparameter changes. Beyond
improved tracking, our approach enables valuable downstream applications such
as high-quality 3D object reconstructions and amodal segmentation. This work
demonstrates the power of incorporating 3D awareness into egocentric video
analysis, opening up new possibilities for robust object tracking in challenging
first-person scenarios.
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