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Abstract. Understanding expressions is vital for deciphering human
behavior, and nowadays, end-to-end trained black box models achieve
high performance. Due to the black-box nature of these models, it is
unclear how they behave when applied out-of-distribution. Specifically,
these models show decreased performance for unilateral facial palsy pa-
tients. We hypothesize that one crucial factor guiding the internal deci-
sion rules is facial symmetry. In this work, we use insights from causal
reasoning to investigate the hypothesis. After deriving a structural causal
model, we develop a synthetic interventional framework. This approach
allows us to analyze how facial symmetry impacts a network’s output
behavior while keeping other factors fixed. All 17 investigated expression
classifiers significantly lower their output activations for reduced symme-
try. This result is congruent with observed behavior on real-world data
from healthy subjects and facial palsy patients. As such, our investiga-
tion serves as a case study for identifying causal factors that influence
the behavior of black-box models.

Keywords: Facial Expressions · Facial Asymmetry · Unilateral Facial
Palsy · Causal Inference · Intervention

1 Introduction

Emotional expressiveness is a crucial topic in our daily life for communicating our
internal state and for understanding other people [75, 93]. The state-of-the-art
for automatically classifying the six base emotions [23] is achieved by end-to-end
trained black box neural networks [17, 24, 64, 81, 100, 106]. However, it remains
unclear how the internal decision-making processes of these models respond to
out-of-distribution inputs due to likely unbalanced training data. Specifically, we
observe a performance degradation when classifying facial expressions in indi-
viduals with unilateral facial palsy, a condition impairing the ability to produce
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symmetrical facial expressions due to underlying nerve damage. Although intu-
ition suggests that facial asymmetry could influence model behavior, we lack a
quantifiable way to test and validate this hypothesis.

We leverage causal reasoning principles to address this limitation and move
beyond empirical analytics to uncover a contributing factor in the underlying
mechanisms driving model decision-making. Specifically, our work answers the
interventional question [4]: “If we only change the facial symmetry for an input,
then how does the output of an expression classifier behave?” First, we provide
evidence that a symmetry bias exists for real-world data inside all models using
associational methods [9, 60, 70, 72]. Second, moving up on the causal hierar-
chy [4], we build an interventional framework derived from a structural causal
model that allows us to generate synthetic faces and connect symmetry with
classifier outputs. To accurately quantify this relationship, we develop an inter-
pretable score and an accompanying hypothesis test. As a case study, we analyze
17 expression classifiers and find significant changes in their predictions for all
of them. Specifically, we find that decreases in facial symmetry result in lower
logit activations. Our study highlights the importance of symmetry influencing
expression classifiers, emphasizing the general need for investigations beyond
predictive performance.

2 Related Work

Synthetic data has become a widely accepted tool for evaluating and training
computer vision models in diverse applications, such as object detection [55,92,
95,101], pose estimation [15,37,92,94], segmentation [13,76,79,80,90], 3D recon-
struction [17,25,36,68,74], and also for facial tasks [6,7,15,42,74]. We develop a
generative interventional framework that fixes possible other confounding factors
to isolate the impact of facial asymmetry on expression classification.

Facial Expression Classification. Since the standardization of facial ex-
pression into six base emotions by Ekman [23], state-of-the-art performance
for automated classification is achieved by end-to-end trained black-box mod-
els [1,2,12,17,49,64,81–83,98,107]. While such models reach high performance,
their inner workings remain opaque. Hence, the relationship between facial sym-
metry and predictions remains unclear, especially in medical contexts like facial
palsy [3,8, 10,18,39,41,56,57]. To address this uncertainty, we study the effects
of facial asymmetry on expression classifiers in a controlled setting: the expres-
sion space of 3D Morphable Models [5,21,29,108], more specifically FLAME [47].
While EMOCA [19], an extension of DECA, also relies on the FLAME expression
space for classification, our approach takes a different route. We maximize the
logit activation output for each model and emotion combination by leveraging
the expression space, ensuring optimal performance. We then rely on methods
from explainability to perform an in-depth investigation into the model behavior.

Explaining Model Decisions Behavior. Local explainability methods,
e.g., [73,84–86,88], are used to investigate the behavior of machine learning mod-
els for singular inputs, e.g., highlight important image regions. Further, in [43],
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such local explanations are summarized to form a more conclusive general under-
standing of a classifier (global explanation). The focus is put on shortcut biases
leading to so-called “Clever Hans predictors” [43]. However, such local attribution
methods necessitate a semantic interpretation, for example, by a domain expert.
Especially for medical applications, more abstract but relevant features increase
the complexity [53, 54, 77]. We are interested in analyzing facial symmetry, a
complex feature not directly part of the input. Global approaches, for exam-
ple, [40, 72], can determine the usage of such abstract features. Especially, [72]
is based on causal principles [59,63,69] and tests for conditional dependence be-
tween the feature and the network predictions given the labels. In [9,60,61,71],
this approach is applied to various application domains such as skin lesion anal-
ysis, digital agriculture, or emotion classification. However, here we go one step
beyond and extend their approach by an interventional framework to generate
more in-depth answers according to Pearl’s causal hierarchy [4].

Synthetic Face Generation. Generative models have long been the go-to
approach for modeling human faces. Ranging from parametric 3D Morphable
Models (3DMMs) [5, 21, 29, 58], Active Appearance Models [16, 28, 33, 50], or
learned in an entirely data-driven manner [29, 47, 68, 97, 102, 103, 108]. The dis-
entanglement of identity, expression, pose, and appearance is a powerful tool
for bias identification [15, 42] or image manipulation [19, 51, 65, 91]. In contrast,
Generative Adversarial Networks prioritize photorealism over control, embedding
multiple facial properties into a single latent representation, making it challeng-
ing to have specific control over the generation [6, 7, 14, 38, 62, 66, 67]. Many
approaches utilize neural networks to compute the 3DMM parameters from 2D
images, either by reconstructing faces [25,32,48,68,97,102,103] or training in an
adversarial manner [19,51,65,91]. We aim to quantify the impact of facial asym-
metry on the predictive behavior of expression classifiers. To achieve this, we
prioritize control over photorealism in our generative pipeline using DECA [25].
Hence, we can fix other confounding factors, like appearance, lighting, and pose,
at the same time. Building upon FLAME [47], we alter the geometric face model
to induce subtle variations, thereby creating realistic facial asymmetry.

3 Evaluating Models by Intervening on Facial Symmetry

Studying mimicry is crucial when analyzing facial palsy, which impacts the mo-
bility of the facial muscles. An objective evaluation of the nerve damage is com-
monly done via data-driven methods [10,31,39,41]. In this work, we focus on one
facial feature likely impacting the downstream performance of expression classi-
fiers: facial symmetry. We start by detailing our investigation’s causal model and
framing the question we are trying to answer in Pearl’s causal hierarchy [4]. Af-
terward, we describe the adapted 3D Morphable Model to perform interventions
by changing one face side’s geometry. Lastly, we derive an interpretable score
and corresponding significance test to quantify the impact of facial symmetry
on a model’s prediction.
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Fig. 1: Expression classifier structural causal model: Y is the expression influenced by
the latent distribution of all facial images (hatched box), S∗ samples from this latent
distribution [72]. Dtrain is the training data distribution. The model architecture is
an exogenous variable, and weights θ are learned using an optimizer, i.e., a training
algorithm. The model’s predictions Ŷ result from the trained model Fθ. We investigate
whether Fθ is independent of the model predictions Ŷ (dashed red arrow). Additionally,
we analyze the changes in behavior for varying facial symmetries. Toward this goal, we
perform synthetic interventions (do(Facial Symmetry := s)) on facial symmetry vari-
able using 3d morphable models Iφ(e) . Note that these Iφ(e) are a part (subpopulation)
of the latent distribution of all facial images. Adapted from Figure 2 in [72].

3.1 Preliminaries & Causal Point of View

Causal inference tries to answer causal questions from data [63]. This includes
interventions, i.e., additional experiments and purely observational data. Impor-
tantly, causal questions can be categorized into a hierarchy. This so-called Pearl’s
causal hierarchy (PCH) [4] consists of the three levels ordered by increasing diffi-
culty: associational, interventional, and counterfactual questions. The latter two
are analyzed using the do-operator [59], which changes a variable to a constant
value, e.g., we write do(Facial Symmetry := s) for the variable facial symmetry.

Furthermore, framing data-generating processes and complex interactions of
our physical reality as directed graphs enables us to precisely define and investi-
gate the underlying causal mechanisms [59,63]. The resulting models are called
structural causal models (SCMs), and we include a formal definition in the sup-
plementary material. Nevertheless, to understand this framework, it is important
to interpret the dependencies, i.e., connections in the graph, as assignments and
not as algebraic mappings [63]. Specifically, the connections between variables
in such an SCM function like physical mechanisms and not like instantaneous
equations. This work extends a specific SCM to model supervised learning [72].

We visualize our SCM for expression classification in Fig. 1, enabling us to
study different questions about the decision process. For example, Reimers et al.
[72] answer associational questions of whether a feature, such as facial symmetry,
is used during the prediction, i.e., does the red dashed arrow exist in Fig. 1.
Intuitively, they measure if there is a statistically significant shift in classifier
outputs for inputs of the same class but with different feature manifestations.

Other works visualize such significant changes for feature variations [9, 60].
However, they lack actionable descriptions of how the model would behave if a
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particular feature, e.g., facial symmetry, changes for a specific individual. In this
work, we go one step up on the PCH. We employ a synthetic rendering pipeline
to alter the facial symmetry while controlling other factors. Hence, we answer
the interventional question: “If we change the facial symmetry for an input, then
how does the output of the expression classifier behave?” Please note that the
levels of the PCH are disjunct and increasing in difficulty. In [4], the authors
prove the Causal Hierarchy Theorem (CHT), which states that one needs data
of at least the corresponding level to answer causal questions of that level.

In the following, we describe how we generate synthetic data (Iφ(e) in Fig. 1),
where we have fine-grained control over facial symmetry and realized emotional
expressions. Using this framework, we generate new interventional data. Hence,
we do not violate the CHT [4]. Further, while our approach of synthetic genera-
tion necessarily introduces a domain shift (see Fig. 1), we argue that it enables
us to go beyond simple interventions. Specifically, our framework allows us to
vary the facial symmetry for a specific individual and measure changes in the
classifier outputs while fixing other confounding factors. Finally, we discuss how
we quantify systematic output changes and determine significance.

3.2 Facial Symmetry Intervention Framework

We require a controllable face generation method to answer interventional ques-
tions of the form: “If we change the facial symmetry for an input, then how
does the output of the emotion classifier behave?” Additionally, the generation
process has to ensure that only facial expressions contribute to the changes mea-
sured by the expression classifier. Therefore, we select a 3D Morphable Model
(3DMM) [5, 21, 29, 47, 58], to be precise FLAME [47], used in the DECA ar-
chitecture to create synthetic facial images [25]. Although the generated faces
introduce a domain shift, the underlying representation of identity, expression,
and appearance gives us complete control over individual changes. Therefore,
this disentanglement ensures we can causally link facial changes to the model’s
predictive behavior. In the following, we detail our face generation framework
to (a) find the expression parameters for optimal classifier activation and (b)
introduce a controllable symmetry value s for interventional reasoning.

For all synthetic face images I in this work, we utilize the DECA pipeline [25]:
I = R(M,B, c), composed of the face model M, camera position c ∈ R3 (fixed
to [0, 0, 0]T in this work) and illumination process B used in the differential ren-
derer R(·) [25]. To study facial asymmetry, we alter the face model geometryM
formally defined as M(β, ϑ, φ, α) = {G(β, ϑ, φ),A(α)}. DECA employs the geo-
metric components of FLAME G using the identity β ∈ R100, expression φ ∈ R50,
and pose ϑ ∈ R6 blendshape parameters [47]. The texture is computed from the
appearance model A from the Basel Face Model using the parameter α [25,29,58].
In FLAME, the face geometry is modeled as

G(β, ϑ, φ) = W (T +BI(β, I) +BP (ϑ,P) +BE(φ, E), J(ϑ), ϑ,W), (1)

with W being a standard skinning function to rotate the modified N face vertices
of the template model T ∈ RN×3 around predefined FLAME joints J ∈ R3K . B
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(a) neutral (b) angry (c) disgust (d) fear (e) happy (f) sad (g) surprise

(h) t = 0/6 (i) t = 1/6 (j) t = 2/6 (k) t = 3/6 (l) t = 4/6 (m) t = 5/6 (n) t = 6/6

Fig. 2: We display the optimized synthetic face images Iφ(e) for the neutral expression
(a) and for the six base emotions (b) - (g) based on the ResidualMaskingNet clas-
sifier [64]. Furthermore, we simulate with our geometric face model Gs,t(·) different
interpolations t for a symmetry of s = 0.0. At t = 0.0 (h) we have a neutral expression
morphing into an asymmetric happy expression at t = 1.0 (n).

denotes a linear blend skinning (LBS) [44] function of the according blend shapes
with identity I ∈ R100×N×3, expression E ∈ R50×N×3, and pose P ∈ R6×N×3.
We use the blending weights W ∈ RK×N of the original FLAME model [47].

Our changes must ensure that (a) under full facial symmetry, the original ge-
ometry holds, and (b) a symmetry scalar s specifies facial symmetry and enables
interventional queries. Furthermore, we formalize a time parameter t to control
the interpolation between neutral and a target facial expressions [21,48].

We extend a recent approach by freezing geometry parts to simulate facial
asymmetry [103]. Using a scaling parameter s, we can simulate different freeze
states ranging from 0.0 defining complete asymmetry to 1.0 defining complete
symmetry. We artificially induce facial asymmetry by changing only the left
side of the face (person’s point of view). Therefore, we recompose the FLAME
expression space such that BE(φ, E) = BE(φ, EL) +BE(φ, ER). Thus, we define

EL
i =

{
Ei, if the vertex i is on the left side of the face
0, otherwise

(2)

such that the linear blend skinning function BE(φ, EL) changes only vertices on
the left side of the face [44, 103]. The same applies to ER. Scaling the blend-
shape vectors in EL with s induces a symmetry difference between the faces’
sides. Lastly, we multiply the expression parameters φ with t to create dynamic
expressions. Our geometric face model Gs,t with symmetry parameter is

Gs,t(β, ϑ, φ, s, t) =W (T +BS(β,S) +BP (ϑ,P)+

BE(t · φ, ER) +BE(t · φ, s · EL), J(ϑ), ϑ,W).
(3)

Thus, the synthetic face image Iφ(e) updates for a single individual, i.e., β and
α are fixed (omitted for clarity), and target expression (e) vector φ(e) with sym-
metry s and temporal dynamic t to Iφ(e)(s, t) = R(Gs,t(β, ϑ, φ

(e), s, t),A(α),B, c).
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Within this framework, for an individual, we can (a) modify expressions,
(b) simulate facial asymmetry, and (c) simulate movements, ensuring that only
changes in facial expression result in changes in the classifier’s behavior. While
our synthetic faces are a domain shift for most classifiers, the comparisons are
all relative and contained within this new domain. Hence, representing out-of-
domain scenarios in which they are applied [6, 7, 64, 81–83]. Furthermore, we
optimize the facial expression parameters such that a classifier output F(e)

θ cor-
rectly identifies the given image Iφ(e) as the target emotion via

φ(e) = argmin
φ̂(e)∈[−3,3]|φ

(e)|

1− F(e)
θ (Iφ̂(e)). (4)

For this estimation problem, all parameters apart from φ are fixed during the
optimization, minimizing other confounding factors [9,15,22,99], enforcing that
only changes in facial expression influence the classifier output. Given that we
cannot use a gradient-based optimizer as changes in φ result in no changes in the
parameters of Fθ, we use the differential evolution algorithm [87] for optimiza-
tion using a search range of [−3, 3] [21,47]. In Fig. 2, we visualize renderings for
the six base emotions given the ResidualMaskingNet as classifier [64]. The sup-
plementary material provides more examples and expressions parameters φ(e).

3.3 Measuring Systematic Change

Given our rendering pipeline Iφ(e) , specified in the previous section, we need a
score function to measure systematic changes in expression classifier behavior
concerning facial symmetry. Hence, we define a facial symmetry impact score
for a specific trained model Fθ. To be precise, we measure one score for each
possible expression e predicted by the selected classifier, henceforth, F(e)

θ .
Using Iφ(e) with a sampled identity, i.e., fixed α and β, we generate synthetic

images for timesteps t and facial symmetries s. Now, F(e)
θ (Iφ(e)(s, t)) defines a

surface, where for each s and t, we have an output activation of Fθ for emotion e.
Fig. 3a visualizes two of these surfaces for the neutral and happy emotion. Ideally,
we would want to see no changes along the s axis in these surfaces, i.e., the model
is unbiased concerning symmetry. We can measure these changes by investigating
the partial derivatives ∇sF(e)

θ (Iφ(e)(s, t)). A positive ∇s indicates higher model
outputs for increased symmetry, which is reversed for negative ∇s. An unbiased
model activation surface (blue) is visualized in Fig. 3b. This optimal surface is
characterized by ∇sF(e)

θ being zero for any valid s and t.
Of course, in reality, we do not expect the outputs of any model to stay

constant for changing symmetry values. Many factors can impact the model
outputs, even for small visual changes. Nevertheless, we expect an unbiased
model to show no systematic behavioral changes, e.g., categorically lower outputs
for smaller symmetry values s. Hence, a more realistic ideal surface would be
a noisy version of the visualization in Fig. 3b. In other words, for an unbiased
model that does not change behavior for different facial symmetry, we expect
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(a) Logit activations from neu-
tral towards happy

(b) Optimal compared to the
measured activation

(c) Computed ∇sF of the opti-
mal and measured surfaces

Fig. 3: Visualization of our impact score for a classifier’s happy logit activation: In
a synthetic setting, a model was shown a face transition from neutral to a happy ex-
pression (a). A model would be invariant toward changes along the symmetry axis if
∇sF = 0. However, the actual activation logits (happy) show a lower activation (b).
This is more evident in the visualization of the estimated ∇s in (c).

that Es,t[∇sF(e)
θ (Iφ(e)(s, t))] is approximately zero for some joint distribution of

symmetry values s and timesteps t. Without loss of generality, let [0, 1] be a
valid domain for s and t respectively, then we define our facial symmetry impact
score S for a specific model F(e)

θ and for a fixed individual Iφ(e) as

S(F(e)
θ |Iφ(e)) = Es,t[∇sF(e)

θ (Iφ(e)(s, t))]

=

1x

0

∇sF(e)
θ (Iφ(e)(s, t)) · p(s, t) dt ds,

(5)

where p is the density function describing the joint distribution of s and t.
Calculating S(F(e)

θ |Iφ(e)) directly is intractable. Hence, we assume that s and t
are independent and uniformly distributed. Although this is a strong assumption,
we can utilize our rendering pipeline (see Sec. 3.2) to ensure these conditions in
our synthetic data. By doing so, we can approximate S(F(e)

θ |Iφ(e)) by evaluating
F(e)
θ at a grid of finitely many equidistant samples of Iφ(e)(s, t).

Let T and S be a set of equidistant time and symmetry steps in [0, 1], then

Ŝ(F(e)
θ |Iφ(e)) =

1

|S| · |T|
∑
s∈S

∑
t∈T

∇sF(e)
θ (Iφ(e)(s, t)), (6)

approximates S(F(e)
θ |Iφ(e)). To estimate the gradient on our finite grid of T and

S, we use the implementation of [26] by the library NumPy [34]. This algorithm
minimizes the error between the actual gradient and the estimate at a grid
position by solving a system of linear equations of the neighboring grid points.

While Ŝ(F(e)
θ |Iφ(e)) enables us to investigate changes for a single individual

Iφ(e) with fixed α and β, we are additionally interested in explaining models Fθ

more globally concerning specific emotions. Hence, we define a global score for
an emotion e as S(F(e)

θ ) = Eα,β [S(F(e)
θ |Iφ(e))]. For a set of N individuals I, by
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using the same assumptions as in Eq. (6), we approximate S(F(e)
θ ) with

Ŝ(F(e)
θ ) =

1

N

∑
I
φ(e)∈I

Ŝ(F(e)
θ |Iφ(e)). (7)

Testing for Statistical Significance: Values for Ŝ(F(e)
θ ) and Ŝ(F(e)

θ |Iφ(e))
close to zero indicate less change for varying facial symmetry values s. Further,
the sign of our scores can be interpreted as over- (positive) or under-predicting
(negative) an emotion for increasing symmetry. However, we also need to specify
at which point values of Ŝ(F(e)

θ ) or Ŝ(F(e)
θ |Iφ(e)) are statistically significant.

We utilize permutation hypothesis tests [30] for this goal in which the values
of F(e)

θ in our grid of synthetic inputs are shuffled. To control for the influence of
t, i.e., the onset expression’s strength, we only shuffle values of F(e)

θ while fixing
t. In other words, we permute along the symmetry axis in Fig. 3a. Afterward,
the corresponding Ŝ(F(e)

θ |I(perm.)

φ(e) ) is recalculated (Eq. (6)). The process repeats
K-times to generate our distribution under the null hypothesis H0, which is
that the observed value Ŝ(F(e)

θ |Iφ(e)) is zero. By counting how often we observe
permutations where |Ŝ(F(e)

θ |I(perm.)

φ(e) )| > |Ŝ(F(e)
θ |Iφ(e))|, we can determine a p-

value. Note that the absolutes are needed because negative scores are valid.
If the p-value is smaller than a significance level δ, we discard H0, i.e., the
observed score Ŝ(F(e)

θ |Iφ(e)) is statistically significant. We provide the hypothesis
test pseudo-code in the supplementary material (Alg. 1).

While our approach tests for significance concerning a certain Iφ(e) with fixed
α and β, regarding Ŝ(F(e)

θ ), we additionally apply the Holm-Bonferroni correction
on our results [35]. This is a sequential correction method to control the family-
wise error rate for repeated hypothesis tests. In other words, ensuring we do not
overestimate significance, i.e., increase type-I errors, for a pre-specified δ. Finally,
we report the ratio of significant results of the corrected tests, which intuitively
captures how often we observe significant changes in behavior. Note that, in
contrast, Ŝ(F(e)

θ ) measures how strong (and in which direction) these changes
are on average. This means statistical significance is possible even if the effect
size, i.e., the actual systematic change, is low. With the scores derived above
combined with the corresponding statistical hypothesis tests, we can investigate
the interventional question posed in Sec. 3.1: “If the facial symmetry for an input
changes, then how does the output of the expression classifier behave?”

4 Experiments and Results

Our investigation focuses on the impact of facial symmetry on data-driven ex-
pression classifiers. Before we detail our experiments, we want to state our hy-
pothesis clearly: We expect that most classifiers show systematic differences in
their behavior when intervening on facial symmetry. Given that one face half
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(a) Synth.
neutral

(b) Synth.
happy

(c) Proband
neutral

(d) Proband
happy

(e) Patient
neutral

(f) Patient
happy

Fig. 4: We display two example faces per analyzed group (synthetic, probands, and pa-
tients). Both healthy probands and patients with unilateral facial palsy were instructed
to mimic the shown emotions, similar to the FER2013 benchmark [20].

exhibits less movement for unilateral facial palsy and our synthetic symmetry
data, we assume a reduction in logit-activations for reduced symmetry based on
observations in related studies [9, 104]. Because most facial expression datasets,
e.g., [20,45,46,52], contain mostly healthy symmetric faces. Our study is limited
to the six base emotions [23], omitting neutral and contempt for comparability.

We can assess existing expression classifiers, whereas other research requires
training [15, 42]. Please note that our selection of models is not intended to be
comprehensive or representative of all possible classifiers but as a first case study.
We focus on a subset of models that provide code and model weights, which are
likely to be applied in out-of-domain scenarios like medicine and psychology. To
test our hypothesis, we perform two groups of experiments. First, we investigate
if a symmetry bias exists for real-world data inside classifiers using associational
methods [7, 60, 70, 72]. Second, moving up on the causal hierarchy [4], we link
facial symmetry and model output using our synthetic intervention framework.

4.1 Experiment 1: Observations on Real-World Data

Although intuition suggests that facial asymmetry influences model behavior,
we must first check if this bias is present in expression classifiers. We utilize
associational methods [7, 60, 70, 72] to show that classifiers significantly change
their behavior, i.e., the red arrow exists in Fig. 1. Specifically, we attempt to
validate our hypothesis on the first level of Pearl’s hierarchy [4], using real-world
data recorded on 36 healthy probands (18-67 years, 17 ♂, 19 ♀) and 36 patients
(25-72 years, 8 ♂, 28 ♀) with unilateral chronic synkinetic facial palsy. Probands
were recorded using a RealSense camera (Intel Corporation, Santa Clara, USA)
and patients with the 3dMD face system (3dMD LLC, Georgia, USA), see Fig. 4.
We model two symmetry properties: the presence of facial palsy (binary) and
LPIPS [105] similarity (continuous) among face sides.

The participants’ expressions are captured while mimicking the six basic
emotions four times in a random order [6, 7, 9, 31] following FER2013 [20]. We
focus on the happy expression as it most impacts emotional expressiveness [8,
75,93]. Examples of each face group are shown in Fig. 4. We measure an average
classification accuracy of 97.40% for probands and 58.25% for patients among
the FER2013 models, indicating the decreased performance under facial palsy.
A more detailed analysis can be found in the supplementary material.
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AffectNet7 AffectNet8 FER2013 RAFDB

Facial Palsy ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

LPIPS symmetry [105] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Significance results (p < 0.01 → ✓) of [72] on our data for three symmetry fea-
tures. We analyze happy logits regarding the binary facial palsy state and LPIPS [105]
similarity between the face sides for facial palsy patients and healthy probands images.

Following related work [9,60,72], we denote all significant behavior changes in
Table 1 using the majority decision of three conditional independence tests [11,
27,78] (for detailed hyperparameters see supplementary material). We find all 17
models show a statistically significant shift in their happy activations for varying
facial symmetries in the real-world data. Please note that DAN [100], trained
on RAFDB [45,46], is the only classifier where we find no significance regarding
binary facial palsy, which is a highly discretized form of symmetry. However, the
continuous symmetry measure LPIPS [105] indicates the same behavior changes.
These results provide evidence for our hypothesis that expression classifiers are
biased toward facial symmetry, especially concerning downstream applications.

We provide more qualitative investigations of the output changes in the sup-
plementary material. For most classifiers, we observe, on average, a decrease
in activations. Given this decrease, this observation is expected and indicates
uncertainty in predicting the happy class. However, these are associational in-
vestigations [4], i.e., we cannot isolate changes due to only facial symmetry.
Hence, while we observe changes in classifier behavior on real-world data, our
interventional investigation in Sec. 4.2 provides more reliable, actionable insights.

4.2 Experiment 2: Synthetic Facial Symmetry Interventions

To confirm our hypothesis on how facial symmetry affects expression classifica-
tion beyond the associational level, we perform synthetic interventions using the
framework described in Sec. 3. These enable us to measure the impact of facial
asymmetry and model output. Therefore, we create a population I of 200 identi-
ties sampled from a standard normal distribution (different α and β). Following
Eq. (4), we optimize the facial expression φ(e) for each model and identity at
t = 1.0 and s = 1.0. To apply interventions, our finite grid spans ten equidistant
symmetry steps (s ∈ [0, 1]) and 90-time steps (t ∈ [0, 1]), simulating three-second
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(a) FER2013 [20]
ResidualMaskingNet [64]

(b) AffectNet [52]
HSEmotion-7 [81,82]

(c) RAFDB [45,46]
DAN [100]

Fig. 5: We display a model’s activation (mean and std.) curve at t = 1.0 for each
expression recognition dataset. Note that the x-axis is inverted, so we start with high
symmetry. Lower symmetry generally results in lower logit activations across all ex-
pressions, with hatched lines indicating misclassification. We show the surface variants,
such as Fig. 3a, in the supplementary material.

expression onset. We then derive the mean logit surfaces (compare Fig. 3) of all
classifiers over I and display selected classifiers at t = 1.0 in Fig. 5.

We observe that facial symmetry impacts each expression’s logit activation
for the models irrespective of the dataset. The ResidualMaskinNet [64] trained
on FER2013 [20] does not reach high activations for fear and sad . Further, they
decrease even more for lower symmetry values. Expressions such as angry , dis-
gust , or surprise have higher activations and seem to be affected only by more
pronounced asymmetry. Especially fear also seems problematic for the other
classifiers highlighted in Fig. 5. Notably, the same behavior holds for HSEmo-
tion [81] and DAN [100]: Lower symmetry leads to lower output activations for
all expressions, providing further evidence to confirm our hypothesis.

We go one step further and quantitatively measure the impact of facial sym-
metry using our proposed score (Sec. 3.3). Table 2 summarizes these results aver-
aged over all individuals I. A positive score corresponds to increased activations
for increased symmetry. Further, we report the ratio of significant systematic
changes over the set of individuals I in Table 1 of the supplementary material.
In most cases, we observe a significant impact of facial symmetry for all classifiers
and expressions. This enables us to interpret the patterns we observe in Table 2
concerning the expressions and training datasets. We note the highest impact
of 0.0373 for surprise of PosterV2 [49]. This score indicates that, on average,
over the complete surprise onset, increasing the symmetry by one step in our
simulation increased the softmax output of PosterV2 by 3.7 percentage points.
However, while all 17 classifiers are significantly impacted by changes in facial
symmetry, the effect size can still be small (see, for example, fear in Fig. 5c).

We start with broad insights about the results in Table 2, before focusing on
specific models: First, all Ŝ(F(e)

θ ) contained in Table 2 are positive. Hence, expres-
sion classifiers show, on average, lower logit activations for decreased symmetry.
This result provides interventional evidence for our previously stated hypothesis.
Second, similar to Fig. 5, we see low scores for fear expressions irrespective of
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Table 2: We compute Ŝ(F(e)
θ ), defined in Eq. (7), among our population I. The models

are grouped by the training dataset, and the † annotates models trained by us (see
the supplementary material for details); otherwise, the provided models’ weights were
used respectively. All Ŝ(F(e)

θ ) are significant for the majority of individuals.

Dataset Fθ Model Angry Disgust Fear Happy Sad Surprise

AffectNet7

DAN [100] 0.0249 0.0234 0.0098 0.0242 0.0192 0.0279
DDAMFN++ [106] 0.0050 0.0035 0.0019 0.0040 0.0027 0.0037
HSEmotion [81] 0.0229 0.0308 0.0107 0.0239 0.0211 0.0268
PosterV2 [49] 0.0214 0.0192 0.0133 0.0234 0.0168 0.0290

AffectNet8

DAN [100] 0.0209 0.0222 0.0091 0.0112 0.0207 0.0281
DDAMFN++ [106] 0.0030 0.0032 0.0026 0.0028 0.0034 0.0036
HSEmotion [81] 0.0136 0.0156 0.0076 0.0111 0.0150 0.0250
PosterV2 [49] 0.0205 0.0228 0.0129 0.0214 0.0171 0.0269

FER2013

EmoNeXt-Small† [24] 0.0157 0.0017 0.0078 0.0195 0.0074 0.0238
EmoNeXt-Tiny† [24] 0.0092 0.0017 0.0050 0.0124 0.0051 0.0219
EmoNeXt-Base† [24] 0.0089 0.0009 0.0096 0.0184 0.0096 0.0227
EmoNeXt-Large† [24] 0.0149 0.0065 0.0163 0.0207 0.0236 0.0228
ResidualMaskingNet [64] 0.0298 0.0307 0.0099 0.0251 0.0137 0.0280
Segm-VGG19† [96] 0.0186 0.0010 0.0174 0.0238 0.0221 0.0206

RAFDB
DAN [100] 0.0319 0.0262 0.0017 0.0205 0.0246 0.0314
DDAMFN++ [106] 0.0013 0.0013 0.0002 0.0134 0.0117 0.0181
PosterV2 [49] 0.0326 0.0228 0.0054 0.0313 0.0166 0.0373

the classifier and dataset. However, this is likely due to the often lower activa-
tions for fear (Fig. 5 and supplementary material). The FLAME expression space
may limit accurately modeling fear . The shift in model outputs is, nevertheless,
significant. In contrast to fear , the overall high scores for happy , surprise, and
angry suggest stronger changes in model behavior for these expressions.

Seen in Table 2, models trained on the same dataset often show similar
Ŝ(F(e)

θ ), likely due to the latent training data distribution [89]. For FER2013 [20]
classifiers, facial symmetry has a lower impact on the disgust expression, exclud-
ing ResidualMaskingNet [64]. Similarly, models trained on this dataset display
lower scores for sad and angry . We analyze different EmoNeXt [24] model sizes.
Large being impacted the most, indicating higher capacity could consolidate bi-
ases in the training data. In contrast, DDAMFN++ [12] shows a small effect size
irrespective of the dataset. Visualizing the graphs at t = 1.0 for different s and
the classification accuracies on the real-world data (both in the supplementary
material), we assume that the model is likely overfitting the training data. Thus,
low output activations result in smaller ∇s.

Nevertheless, we conclude that all analyzed classifiers show significant in-
creases in output activations for higher facial symmetry, confirming our hypoth-
esis. Given that we use interventions beyond the associational level, we verify a
causal link between facial symmetry and expression classifiers’ behavior.
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5 Limitations and Social Impact

Our work relies on the statistical shape model, inducing a domain shift and
limiting possible expressions. Some classifiers advertise the out-of-domain us-
age, e.g., [64, 81–83], and we optimize the synthetic faces regarding model and
expression (see Sec. 3.2). Factors like camera angle could jointly influence the
behavior. Secondly, other facial features, e.g., age or skin color, could impact
classifier performance and should be considered. In our current framework, we
cannot account for all possible forms of facial asymmetry, e.g., synkinetic effects.

Regarding societal impact, we investigate existing expression classifiers only.
We move from the associational level to causal interventions to better under-
stand how these black-box models operate. This could benefit other disciplines,
primarily psychological and medical applications. We provide our experiments’
framework and evaluation code so that researchers can evaluate their models.

6 Conclusion

Emotional expressiveness is crucial for communicating our internal state and for
understanding other people [75, 93]. In this work, we investigate the impact of
facial symmetry on 17 different expression classifiers trained on four different
datasets [20,45,46,52]. Extending empirical analysis, we try to answer an inter-
ventional question [4] by following insights from causal inference and explain-
ability [72] and using an SCM (Fig. 1) together with a generative framework.
We control expression and facial symmetry using a modified statistical shape
model [47] to measure systematic changes with a proposed interpretable score.

We tested our hypothesis on real-world data using associational methods [9,
60,72]. Here, we saw that facial palsy and the similarity between the face halves
led to 33 out of 34 tests being significant. To verify these results in a controlled
manner, moving up the causal hierarchy, we employed our interventional frame-
work to test the impact of symmetry on the models’ behavior. We observed that
many classifiers, on average, decrease logit activations for lower facial symmetry.

While, in retrospect, our results align with the pre-specified intuition, we
stress that our framework provides a structured way to test such hypotheses.
Further, it could be extended to other features, e.g., age or skin color, given the
controllable nature of statistical shape models. These insights could also be used
to grade facial palsy or to correct the classier output for patients posthoc. Hence,
we hope that our work can help researchers understand the prediction behavior
of their trained expression classifiers beyond simple performance metrics.
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