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Abstract. Whole slide image (WSI) classification is a crucial problem
for cancer diagnostics in clinics and hospitals. A WSI, acquired at gi-
gapixel size, is commonly tiled into patches and processed by multiple-
instance learning (MIL) models. Previous MIL-based models designed
for this problem have only been evaluated on individual tasks for spe-
cific organs, and the ability to handle multiple tasks within a single
model has not been investigated. In this study, we propose MECFormer,
a generative Transformer-based model designed to handle multiple tasks
within one model. To leverage the power of learning multiple tasks si-
multaneously and to enhance the model’s effectiveness in focusing on
each individual task, we introduce an Expert Consultation Network, a
projection layer placed at the beginning of the Transformer-based model.
Additionally, to enable flexible classification, autoregressive decoding is
incorporated by a language decoder for WSI classification. Through ex-
tensive experiments on five datasets involving four different organs, one
cancer classification task, and four cancer subtyping tasks, MECFormer
demonstrates superior performance compared to individual state-of-the-
art multiple-instance learning models.

Keywords: whole slide image classification · transformer · multiple of
expert

1 Introduction

In computational pathology, whole slide images (WSIs) have been extensively
studied and investigated to provide a comprehensive understanding of tissues
and diseases inside the human body and to help pathologists make accurate and
reliable diagnoses in clinics [11]. Due to the gigapixel resolution of WSIs, recent
studies have mainly focused on the efficient and effective processing of WSIs,
which led to the development of various multiple instance learning (MIL) meth-
ods. These MIL-based methods often include two-stage procedures: 1) tiling
the WSI into a bag of patches and extracting their features using an off-the-
shelf feature extractor; 2) learning a classifier to conduct slide-level classification.
There are two primary research directions in MIL-based methods: instance-based
and bag embedding-based models. Instance-based models [1, 7] provide patch-
level predictions, which are then aggregated to make the final prediction. Bag
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embedding-based models [1,9,12,15,22], utilize aggregators to combine all patch
features into a bag embedding, and then a bag classifier provides the final predic-
tion. There are numerous tasks in pathology, many of which are interrelated to
each other. However, most MIL-based models have been tailored and evaluated
on an individual task basis under the single-task learning paradigm. This over-
looks the potential to learn and leverage knowledge from multiple related tasks
to resolve differing tasks, which is similar to the learning and adaptation process
of human experts. One may develop a single generalizable model that can handle
multiple tasks, but it is challenging for a single model to learn knowledge from
several tasks simultaneously [6].

Fig. 1: Illustration of the multi-task process of MECFormer. All experts observe and
process an input WSI as the corresponding expert to the target task makes the most
significant contribution. A generative transformer-based model receives information
from all experts and produces the predicted diagnostic term.

To address the above mentioned issues, recent efforts have developed Mixture-
of-Experts (MoE) techniques [3,21], which aim to align features with the embed-
ding space of the target task using multiple experts defined as learnable projec-
tion modules. These projections are aggregated by a weighting mechanism. MoE
techniques have been applied to semantic segmentation and depth estimation
tasks [3, 21]; however, its utility and usefulness in WSI analysis have not been
investigated yet. Moreover, most MoE methods adopt a single classification head
per task that needs to be separately trained. Furthermore, a language decoder
has been developed for pathology image analysis, showing its promising ability
for report generation [17, 24] and multi-class cancer classification [13] on patch-
level pathology images. To the best of our knowledge, no prior work has adopted
the language decoder for WSI analysis.

Herein, we propose an approach for Multi-task WSI classification using an
Expert Consultation Network (ECN) and a single TransFormer-based archi-
tecture, designated as MECFormer, that permits the ability to handle WSIs
for various tasks. Figure 1 depicts the multi-task process of MECFormer. In
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brief, we design MECFormer for multi-task WSI classification as a generative
Transformer-based model. Given a WSI, MECFormer builds a bag of patches
(or embeddings) and processes it using a Transformer-based encoder. In the
encoder, we devise the first projection layer, i.e., ECN, to project the input em-
beddings into the model space by combining the knowledge of multiple experts
via routering, task assignment, and knowledge aggregation under the guidance
of the task indicator. Using the task indicator, ECN effectively gathers knowl-
edge across multiple tasks in a controllable manner while highlighting patterns
for the target task, leading to effective embeddings. Then, a Transformer-based
decoder takes the knowledge aggregated embeddings along with a conditional
textual input to produce the output sequence, i.e., a predicted diagnostic term,
in an auto-regressive manner. We note that a single Transformer-based decoder
is shared among multiple tasks. Meanwhile other MoE models adopt task-specific
classification heads. Our implementation is available at 1.

In summary, our contributions can be listed as below:

– We propose MECFormer to handle multiple well-known tasks for WSI anal-
ysis using a single unified Transformer-based model.

– We introduce ECN to efficiently and effectively learn and aggregate knowledge
from multiple experts on the target task in a controllable manner.

– We adopt a generative Transformer-based decoder in MECFormer, based
up cross-attention between textual and visual embeddings, to enable unified
and flexible classification for multiple WSI classification tasks.

– MECFormer achieves superior performance to other state-of-the-art task-
specific MIL models on five datasets/tasks, including CAMELYON16, TCGA-
BRCA, TCGA-ESCA, TCGA-NSCLC, and TCGA-RCC.

2 Related Work

2.1 Multiple Instance Learning Models for WSI analysis

Recent studies of MIL-based models commonly adopt bag embedding-based ap-
proaches. These are often built upon an attention mechanism. For example,
AB-MIL [9] learns to generate a weight for each patch using the attention mech-
anism and then aggregates all the patch embeddings using a weighted average.
CLAM [12] introduces an auxiliary task that clusters the most-attended patch
embeddings as positive patches and the least-attended patch embeddings as neg-
ative patches to constrain and refine the embedding space. TransMIL [15] builds
a Transformer-based architecture that approximates self-attention for computa-
tional efficiency and adopts positional encoding to retain the spatial information
of the cropped patches by reshaping them into a 2-dimensional space and apply-
ing multiple learnable convolutions. DTFD-MIL [22] is designed in a two-stage
manner, consisting of sub-MIL and global MIL branches, to handle over-fitting
problems due to the limited number of WSIs. It randomly creates and aggregates
multiple sub-bags using a sub-MIL branch, producing sub-bag embeddings. A
global MIL branch makes the final prediction based on the sub-bag embeddings.
1 https://github.com/QuIIL/MECFormer
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2.2 Mixture-of-Experts Techniques for Multi-task Learning

MoE methods have recently been developed to handle multiple tasks in a single
unified model. For instance, [21] proposes decomposing the feature maps into a
set of multiple representative features that are processed by an expert as an MLP.
A gating mechanism is devised to determine the contribution of each feature,
which is used to aggregate all representative features via a weighted sum. A
feature memory is adopted to capture long-range dependencies of task-specific
representation. [3] proposes to use a sparse MoE layer in the Vision Transformer
(ViT) [4], in which a router network is introduced for each task, along with
multiple experts as MLPs. Each router network determines how many experts are
employed and how they contribute to the task-specific representation. Assuming
that only pre-trained models from multiple tasks are accessible, [16] utilizes task
vectors [8] and a learnable router to generate weights for knowledge retrieval.
These weights are combined with a base model, such as CLIP-ViT-B/32 [14], to
produce features better aligned with each task.

2.3 Language Models for Pathology Analysis

Some research efforts have been made to apply and exploit language models
for pathology image analysis. For instance, Zhang et al. [24] builds a network
using ResNet18 to extract visual features and long short-term memory (LSTM)
to generate histopathology captions. Tsuneki et al. [17] proposes to utilize Effi-
cientNet as a visual encoder and a language decoder based on a recurrent neural
network to generate reports for pathology images from gastric adenocarcinoma
specimens. In an attempt to deal with multi-task pathology analysis, Nguyen
et al. [13] proposes GPC for generative pathology classification, which employs
a convolutional neural network as a visual encoder and a pre-trained language
decoder to predict cancer categories. For slide-level classification, Bryan et al. [5]
investigates the possibility of using a language decoder on WSIs. Using a dataset
with image-caption pairs, the decoder is designed to learn the visual-text corre-
spondence and to produce captions. Pairs of images and generated captions are
then manually classified into a diagnostic category for evaluation.

3 Methodology

3.1 Problem Definition

In this study, we aim to develop a Transformer-based model F(·), MECFormer,
which has the ability to handle multiple tasks for WSI classification. Given a
WSI X and a task indicator T , F(·) produces the output that is tailored to a
task of interest Ŷ = F(X , T ) where Ŷ is the text output. There are T distinct
tasks, each with its corresponding training dataset Dtrain

t . These T datasets are
merged to form Dtrain = {Dtrain

t }Tt=1, which is used to train F(·). Then, F(·) is
evaluated on the testing set of each tth task, i.e., Dtest

t .
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Fig. 2: Overview of MECFormer. MECFormer is designed as a Transformer-based
generative model in an encoder-decoder manner. ECN layer is placed at the beginning
of the encoder and aware of the target task along with the input bag of patch features.

3.2 MECFormer

Figure 2 illustrates the overview of MECFormer. MECFormer involves a visual
encoder E(·) and a language decoder D(·). The role of E(·) is to encode the bag of
patch features as exploring intra-relationship between patches in an efficient and
effective manner with Nyström Attention. The bag of patch features are obtained
by WSI pre-processing, which is described below. D(·) learns to align textual and
visual embeddings from the encoder, and then performs auto-regressive decoding
to predict a diagnostic term.

The overall procedure of MECFormer can be summarized as follows: 1) Given
an input WSI X and a task indicator T , X undergoes WSI pre-processing, pro-
ducing a bag of patch features x ∈ RN×df where N denotes the number patches
and df refers to the feature dimension; 2) x is fed into E(·) where x is embed-
ded into the model space by an ECN projection layer PECN(·) and processed by a
series of encoding layers to produce visual token embeddings; 3) D(·) conducts
the decoding process, i.e., generating the next word, over an unknown number of
K steps where each next word is conditioned on the previous word embeddings
and the visual token embeddings from E(·). The procedure can be given by:

ŷ(k+1) = D
(
E
(
PECN(x, T )

)∣∣∣ŷ(k)), (1)

where ŷ(k) is the kth prediction (or word). ŷ(0) = <BOS>, which is begin-of-
sentence token to start the decoding. When ŷ(k+1) = <EOS> is obtained, the
decoding process terminates.

1606



6 Doanh C. Bui et al.

3.3 WSI Pre-processing

Given a WSI X , a patch sampling procedure is adopted to tile X into a bag
of patches. In this process, we segment tissue regions on X and crop patches
from the segmented regions to form a bag of patches. Each patch in the bag
undergoes an off-the-shelf pre-trained feature extractor G(·), producing a bag
of patch features x = {xi}Ni=1 where xi ∈ Rdf and df is determined by G(·). In
this study, we adopt two off-the-shelf pre-trained feature extractors: CTransPath
[19] and UNI [2], which are pre-trained models that are trained on large-scale
pathology image datasets via self-supervised learning.

3.4 Expert Consultation Network (ECN)

To enhance the learning capability for multiple tasks, we devise an effective
projection layer, PECN(·), whose primary role is to project the input patch em-
beddings into the most suitable model space using the aggregated knowledge
of multiple experts. Suppose that there exist multiple experts τ = {τi}Ti=1 that
are designed to acquire knowledge for the corresponding tasks, and the common
knowledge θp. During training, we learn how to obtain the knowledge of each ex-
pert and aggregate the knowledge in three stages: 1) Preliminary Consultation,
2) Expert Assignment, and 3) Expert Consultation. In Preliminary Consulta-
tion, a router R(·) is designed to initialize T weight vectors that specify how to
combine knowledge from T experts. In Expert Assignment, each expert τi is as-
sociated with its corresponding task by adjusting the T weight vectors. Finally,
in Expert Consultation, the knowledge from T experts is aggregated using the
T weight vectors and is added to the common knowledge, producing the final
projection vectors to embed the bag of patches x in the model space. Given an
input WSI from a target tth task, this process can be understood as a consul-
tation with T experts, where the tth expert has the best knowledge of the task
and thus contributes the most to the final decision.

Preliminary Consultation. The router R(·) is a stack of two linear layers.
A ReLU activation is placed between the two layers. Given an input sequence
of patch embeddings x, the first layer maps the dimension size from df to
dmodel and the second layer produces a set of T weight vectors W = {wi}Ti=1 =
FC2

(
ReLU(FC1(x)

)
, where FC1 and FC2 denote two linear layers and wi ∈ RN

is a weight vector for all N patches in a WSI.

Expert Assignment. We represent the knowledge of each expert τi as a learn-
able matrix Rdf×dmodel . Along with the input WSI, the task indicator T specifies
its task by assigning 1 to the target task and 0 to others. Using T , we increase
the weights of the target task wt and decrease the weights of other tasks by
scaling and shifting procedures. The scaling procedure is given by:

W̃ = {w̃i}Ti=1, where w̃i =
exp

(
1i=t(wi · 1γ) + 1i ̸=t(wi)

)∑T
i ̸=t exp(wi) +wt · 1γ

(2)
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where γ is a scaling hyper-parameter. In the shifting procedure, we first take
the mean value of w̃i to obtain a scalar weight for each task. Then, we shift the
target weight to further distinguish it from other tasks. The procedure can be
formulated as follows:

w̄ = {w̄i}Ti=1, where w̄i =
1

N

N∑
j=1

w̃ij + 1i=t · β, (3)

where β is a shifting hyper-parameter and w̃ij is the scalar weight of the ith task
for the jth patch in a bag of patches. In this manner, the expert τt is assigned the
larger weight and others have smaller weights, which are determined by R(·).

Expert Consultation. We combine the knowledge of all experts τ using w̄,
i.e., computing a weighted sum. Then, the combined knowledge is added to the
common knowledge of all tasks θp ∈ Rdf×dmodel , which is also a learnable matrix,
producing the final projection vectors θ∗p as follows:

θ∗p = θp +
∑T

i=1 τi · w̄i. (4)

θ∗p is used to project x as v(0) = PECN(x, θ
∗
p), aiming to produce the most suit-

able representation by encompassing the specialized knowledge from the target
task and other tasks and the shared knowledge among all tasks. Then, v(0) is
processed by the encoder E(·) and the decoder D(·).

3.5 Visual Encoder

The encoder E(·) consists of Le encoder layers. Each layer includes a normal-
ization layer, denoted as LN(·), followed by the Nyström attention mechanism
NA(·) [20]. NA(·) approximates self-attention operation for computational effi-
ciency since it needs to process thousands of tokens from a WSI. A skip connec-
tion adds the input of LN(·) to the output of NA(·). This process for each lth

encoder layer can be formulated as follows:

v(l) = v(l−1) + NA
(
LN(v(l−1))

)
, 1 ≤ l ≤ Le, (5)

where v(0) = PECN(x, θ
∗
p).

3.6 Language Decoder

There are Ld decoder layers in the decoder D(·). Each decoder layer receives two
inputs: one is the visual token embeddings from E(·) and the other is the word
embeddings from the previous word generated by D(·). To produce the word
embeddings, we adopt a word embedding layer WE(·, θw) that is used to embed
a set of natural words s = {si}Si=1 (represented as token IDs) into the model
space. θw ∈ RNvoc×dmodel and Nvoc is the number words in the vocabulary. Then,
a positional encoding PE [18] is added given by h(0) = WE(s) + PE.
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Each lth decoder layer contains a series of masked multi-head self-attention
(MHSA) and multi-head cross-attention (MHCA), of which each is preceded by
LN(·). Masked MHSA learns the intra-relevance of the hidden tokens h(l) without
utilizing the future ground truth words during training. MHCA aligns the hidden
tokens and visual token embeddings produced by E(·). MHCA is followed by a
point-wise feed-forward network (PWFF). We note that the number of tokens
in h(l) is much smaller than the number of tokens (patches) in E(·). Hence,
vanilla MHSA [18] is used for both. The process of the lth decoder layer can be
formulated as follows:

h(l) = h(l−1) + Masked_MHSA
(
LN(h(l−1))

)
,

h(l) = h(l) + MHCA
(
LN(h(l)),v

)
,

h(l) = PWFF(h(l))

, 1 ≤ l ≤ Ld. (6)

Following the decoder D(·), a linear classifier FC(·, θc) where θc ∈ Rdmodel×Nvoc

is designed to produce logits p̂ = FC(h) where p̂ ∈ RNvoc .

4 Experimental Results

4.1 Dataset

Fig. 3: Distribution of five datasets:
CAMELYON16, TCGA-BRCA, TCGA-
ESCA, TCGA-RCC and TCGA-NSCLC.

In this study, we consider five
datasets/tasks: a breast tumor clas-
sification task (CAMELYON16) and
four cancer subtyping tasks from
four organs, including breast (TCGA-
BRCA), esophagus (TCGA-ESCA),
lung (TCGA-NSCLC), and kidney
(TCGA-RCC). Figure 3 shows the
distribution of the WSIs in the five
datasets. To ensure the validity of our
experiments, we conduct each task
three times with three different train-
validation-test splits under the same
random seed. For each run, the best
checkpoint on the validation set is
used to evaluate the test dataset.

4.2 Implemental Details

The embedding size dmodel is set to 512. The number of both encoder and decoder
layers (Le and Ld) is set to 2. For the generative decoding process, we build
a vocabulary including 18 words, including <BOS> and <EOS> tokens; hence,
Nvoc = 18. For Nyström Attention and Multi-head Self-attention, we set the
number of heads h = 8. Both scaling and shifting hyperparameters (γ and β)
are set to 5. We train MECFormer for 200 epochs, using early stopping when
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the validation loss does not decrease for five consecutive epochs. Lookahead
RAdam [23] is used as the optimizer, with the learning rate set to 1e−5 and cross-
entropy loss function. All the experiments are conducted on an NVIDIA A6000
GPU.

4.3 Comparative Study

Competitors. We compare MECFormer to four other MIL-based models for
WSI analysis: CLAM-MB [12], TransMIL [15], DSMIL [10], and DGCN [25].
CLAM-MB utilizes an attention mechanism and an auxiliary task on cropped
patches to enhance feature representation. TransMIL proposes a learnable con-
volution network for positional encoding between transformer layers. DSMIL
uses an instance classifier to identify the critical instance, a non-local attention
mechanism to aggregate all instances along with the critical instance, and a bag
classifier for the prediction. DGCN constructs a graph for a WSI based on dis-
tances between pairs of patches and adopts a graph convolution network for the
classification.

Comparison setting. We compare MECFormer with four models under two
settings: 1) individual training, where each model is trained separately for each
task, and 2) joint training, where all five tasks are combined into a single multi-
class classification. For MECFormer, we use joint training +T , meaning the
model is aware of the target task indicated by T . Both MECFormer and the other
models use two pre-trained feature extractors: CTransPath [19] and UNI [2].

Evaluation metrics. For evaluation, we use four metrics: Accuracy (Acc),
F1 score (F1), Recall, and Precision. In the joint training setting, models may
predict invalid terms, i.e., terms not in the ground-truth categories for a task.
The overall metric is computed as

∑Nc
i=1 mi

Nc+No
, where mi is F1, Precision, or Recall

for each category, Nc is the number of ground-truth categories, and No is the
number of out-of-distribution categories, further penalizing misclassifications.

4.4 Main Results

We report the classification results of MECFormer and the comparison to the
state-of-the-art MIL models in Table 1 and 2.

Results on CTransPath. As shown in Table 1, using CTransPath as G(·),
MECFormer was shown to be the best performer over the four competing mod-
els under individual training. For CAMELYON16, TCGA-ESCA, and TCGA-
NSCLC, MECFormer achieves the best performance regardless of the evaluation
metrics with the improvement of ≥1.291% Acc, ≥0.013 F1, ≥0.007 Recall, and
≥0.023 Precision for CAMELYON16, ≥0.412% Acc, ≥ 0.043 F1, ≥0.037 Re-
call, and ≥0.036 Precision for TCGA-ESCA, and ≥0.412% Acc and ≥0.004 F1,
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≥0.003 Recall, and ≥0.003 Precision for TCGA-NSCLC. As for the remain-
ing tasks, MECFormer was superior to other competitors except for Recall in
TCGA-BRCA and Recall and Precision in TCGA-RCC. For Recall and Precision
in TCGA-RCC, MECFormer was the second-best model, while it was inferior
to DSMIL in Recall in TCGA-BRCA, which obtained the second-best Recall
of 0.904. It is noteworthy that none of the competitors were able to outper-
form MECFormer in both Recall and Precision, which explains MECFormer’s
superior F1. In joint training, the four competitors obtained lower performance
than their own performance in individual training. This is due to the invalid
(or out-of-distribution) predictions made by the four competitors. These results
suggest that naive multi-task learning is not specific enough to handle multiple
tasks simultaneously. MECFormer, however, was not sensitive to the presence
of out-of-distribution categories, resulting in a substantial performance gap; for
instance, MECFormer improved F1 by 0.121∼0.413, 0.121∼0.329, 0.179∼0.408,
and 0.311∼0.696 in comparison to CLAM, TransMIL, DSMIL, and DGCN, re-
spectively, across the five tasks.

Results on UNI. Employing UNI as G(·), we made similar observations with
the above experiments with CTransPath. MECFormer demonstrated superior
performance compared to the four competing models under individual training
with the exception of TCGA-ESCA. In TCGA-ESCA, MECFormer achieved the
second-best results for Acc, F1, and Recall, while CLAM obtained the best per-
formance across all metrics. For CAMELYON16, TCGA-NSCLC, and TCGA-
RCC, MECFormer was superior to other competitors regardless of the evaluation
metrics; for instance, ≥0.517% Acc, ≥0.006 F1, ≥0.001 Recall, and ≥0.010 Pre-
cision for CAMELYON16, ≥0.823% Acc, ≥0.008 F1, ≥0.008 Recall, and ≥0.008
Precision for TCGA-NSCLC, and ≥0.383% Acc, ≥0.001 F1, ≥0.004 Recall, and
≥0.003 in Precision for TCGA-RCC. As for TCGA-BRCA, MECFormer im-
proved upon other four models on Acc, F1, and Precision by ≥0.390%, ≥0.002,
and ≥0.018, respectively. With respect to Recall, it was inferior to CLAM, which
obtained a Recall of 0.912. Under joint training, numerous invalid predictions
were made by the four other models similar to the results with CTransPath.
For this reason, the four competitors were substantially inferior to MECFormer;
for example, F1 was dropped by 0.266∼0.596, 0.218∼0.345, 0.245∼0.649, and
0.280∼0.661 for CLAM, TransMIL, DSMIL, and DGCN, respectively, in com-
parison to MECFormer.

4.5 Ablation Results

To deepen our understanding of MECFormer, we carried out ablation studies on
two aspects: the effectiveness of 1) PECN and 2) the language decoder D. Here, we
report the overall Acc, F1, Recall, and Precision over the five tasks. The detailed
results for each task are available in the Supplementary Material.

Effectiveness of ECN. To assess the effectiveness of ECN, we analyzed three
types of projection layers: 1) P1: a single projection layer, i.e., a MLP, for all
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Table 1: Classification results on five tasks using CTransPath as a feature extractor.
The best and second-best values are highlighted in red and blue, respectively.

Setting Method Acc (%) F1 Recall Precision

CAMELYON16

Individual training

CLAM-MB [12] 91.731 (±3.133) 0.911 (±0.034) 0.906 (±0.033) 0.918 (±0.034)
TransMIL [15] 93.024 (±1.343) 0.925 (±0.014) 0.919 (±0.013) 0.933 (±0.016)
DSMIL [10] 90.439 (±0.448) 0.897 (±0.005) 0.893 (±0.005) 0.903 (±0.005)
DGCN [25] 90.698 (±3.379) 0.897 (±0.039) 0.884 (±0.040) 0.921 (±0.032)

Joint training

CLAM-MB [12] 92.765 (±1.184) 0.817 (±0.168) 0.805 (±0.165) 0.839 (±0.176)
TransMIL [15] 89.922 (±0.775) 0.793 (±0.170) 0.782 (±0.160) 0.819 (±0.189)
DSMIL [10] 84.496 (±10.769) 0.759 (±0.241) 0.755 (±0.225) 0.777 (±0.247)
DGCN [25] 62.016 (±0.000) 0.242 (±0.026) 0.307 (±0.046) 0.234 (±0.044)

Joint Training + T MECFormer (ours) 94.315 (±1.614) 0.938 (±0.018) 0.926 (±0.020) 0.956 (±0.014)

TCGA–BRCA

Individual training

CLAM-MB [12] 94.103 (±1.642) 0.896 (±0.030) 0.896 (±0.067) 0.911 (±0.053)
TransMIL [15] 93.663 (±2.674) 0.887 (±0.043) 0.914 (±0.070) 0.871 (±0.039)
DSMIL [10] 92.813 (±2.834) 0.884 (±0.031) 0.904 (±0.035) 0.878 (±0.058)
DGCN [25] 92.027 (±1.820) 0.865 (±0.026) 0.873 (±0.054) 0.861 (±0.007)

Joint training

CLAM-MB [12] 92.006 (±1.527) 0.543 (±0.085) 0.551 (±0.104) 0.539 (±0.073)
TransMIL [15] 91.957 (±5.269) 0.635 (±0.277) 0.630 (±0.308) 0.660 (±0.239)
DSMIL [10] 91.963 (±3.162) 0.538 (±0.076) 0.527 (±0.072) 0.563 (±0.088)
DGCN [25] 88.152 (±6.000) 0.512 (±0.048) 0.510 (±0.056) 0.524 (±0.056)

Joint Training + T MECFormer (ours) 94.512 (±2.712) 0.903 (±0.047) 0.898 (±0.077) 0.916 (±0.026)

TCGA–ESCA

Individual training

CLAM-MB [12] 89.794 (±5.836) 0.895 (±0.061) 0.903 (±0.061) 0.894 (±0.059)
TransMIL [15] 89.805 (±2.193) 0.895 (±0.022) 0.892 (±0.020) 0.905 (±0.030)
DSMIL [10] 89.805 (±5.789) 0.895 (±0.061) 0.894 (±0.066) 0.904 (±0.050)
DGCN [25] 89.805 (±5.789) 0.896 (±0.060) 0.896 (±0.064) 0.899 (±0.054)

Joint training

CLAM-MB [12] 86.180 (±9.329) 0.530 (±0.113) 0.523 (±0.117) 0.545 (±0.105)
TransMIL [15] 91.602 (±5.782) 0.818 (±0.198) 0.816 (±0.202) 0.819 (±0.195)
DSMIL [10] 85.628 (±3.575) 0.531 (±0.102) 0.521 (±0.102) 0.546 (±0.094)
DGCN [25] 78.994 (±9.385) 0.487 (±0.113) 0.472 (±0.110) 0.532 (±0.099)

Joint Training + T MECFormer (ours) 94.004 (±3.739) 0.939 (±0.038) 0.940 (±0.041) 0.941 (±0.034)

TCGA–NSCLC

Individual training

CLAM-MB [12] 90.606 (±1.843) 0.906 (±0.018) 0.907 (±0.015) 0.911 (±0.019)
TransMIL [15] 92.550 (±2.874) 0.925 (±0.029) 0.927 (±0.027) 0.929 (±0.027)
DSMIL [10] 89.017 (±2.876) 0.890 (±0.029) 0.893 (±0.026) 0.895 (±0.024)
DGCN [25] 85.128 (±2.055) 0.851 (±0.020) 0.852 (±0.019) 0.855 (±0.021)

Joint training

CLAM-MB [12] 87.569 (±4.920) 0.516 (±0.155) 0.511 (±0.155) 0.525 (±0.149)
TransMIL [15] 89.073 (±2.060) 0.600 (±0.014) 0.595 (±0.013) 0.606 (±0.014)
DSMIL [10] 90.194 (±0.578) 0.559 (±0.090) 0.551 (±0.088) 0.569 (±0.093)
DGCN [25] 84.745 (±1.850) 0.526 (±0.075) 0.518 (±0.083) 0.540 (±0.070)

Joint Training + T MECFormer (ours) 92.962 (±1.880) 0.929 (±0.019) 0.930 (±0.017) 0.932 (±0.020)

TCGA–RCC

Individual training

CLAM-MB [12] 95.788 (±1.330) 0.945 (±0.021) 0.935 (±0.011) 0.958 (±0.039)
TransMIL [15] 95.393 (±3.031) 0.942 (±0.033) 0.936 (±0.042) 0.955 (±0.028)
DSMIL [10] 96.160 (±1.312) 0.950 (±0.012) 0.966 (±0.006) 0.937 (±0.022)
DGCN [25] 93.861 (±3.303) 0.931 (±0.043) 0.949 (±0.023) 0.921 (±0.058)

Joint training

CLAM-MB [12] 93.478 (±4.023) 0.772 (±0.134) 0.785 (±0.155) 0.765 (±0.120)
TransMIL [15] 91.936 (±3.010) 0.602 (±0.065) 0.603 (±0.085) 0.605 (±0.049)
DSMIL [10] 91.932 (±1.952) 0.645 (±0.082) 0.621 (±0.083) 0.621 (±0.059)
DGCN [25] 92.315 (±2.366) 0.646 (±0.078) 0.646 (±0.080) 0.647 (±0.080)

Joint Training + T MECFormer (ours) 96.160 (±1.744) 0.957 (±0.032) 0.960 (±0.030) 0.957 (±0.035)
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Table 2: Classification results on five tasks using UNI as a feature extractor. The best
and second-best values are highlighted in red and blue, respectively.

Setting Method Acc (%) F1 Recall Precision

CAMELYON16

Individual training

CLAM-MB [12] 97.674 (±1.550) 0.975 (±0.017) 0.975 (±0.018) 0.976 (±0.015)
TransMIL [15] 92.506 (±1.614) 0.917 (±0.019) 0.901 (±0.021) 0.946 (±0.010)
DSMIL [10] 93.540 (±3.663) 0.929 (±0.041) 0.918 (±0.045) 0.948 (±0.032)
DGCN [25] 78.295 (±10.137) 0.739 (±0.130) 0.734 (±0.119) 0.823 (±0.115)

Joint training

CLAM-MB [12] 92.506 (±4.408) 0.385 (±0.089) 0.374 (±0.092) 0.400 (±0.081)
TransMIL [15] 95.349 (±0.775) 0.636 (±0.005) 0.627 (±0.007) 0.647 (±0.004)
DSMIL [10] 73.902 (±2.087) 0.332 (±0.192) 0.327 (±0.257) 0.353 (±0.246)
DGCN [25] 62.016 (±0.000) 0.320 (±0.109) 0.417 (±0.144) 0.259 (±0.088)

Joint Training + T MECFormer (ours) 98.191 (±1.630) 0.981 (±0.024) 0.976 (±0.037) 0.986 (±0.055)

TCGA–BRCA

Individual training

CLAM-MB [12] 93.700 (±1.215) 0.895 (±0.018) 0.912 (±0.056) 0.886 (±0.012)
TransMIL [15] 93.262 (±0.913) 0.884 (±0.019) 0.891 (±0.064) 0.890 (±0.040)
DSMIL [10] 92.439 (±1.213) 0.872 (±0.018) 0.885 (±0.051) 0.868 (±0.016)
DGCN [25] 91.589 (±0.820) 0.860 (±0.016) 0.883 (±0.076) 0.860 (±0.044)

Joint training

CLAM-MB [12] 89.441 (±3.227) 0.480 (±0.081) 0.475 (±0.061) 0.499 (±0.120)
TransMIL [15] 91.584 (±0.890) 0.677 (±0.159) 0.699 (±0.216) 0.677 (±0.125)
DSMIL [10] 82.387 (±5.500) 0.541 (±0.077) 0.585 (±0.074) 0.583 (±0.064)
DGCN [25] 88.623 (±3.495) 0.450 (±0.075) 0.428 (±0.054) 0.520 (±0.136)

Joint Training + T MECFormer (ours) 94.090 (±0.448) 0.897 (±0.005) 0.893 (±0.006) 0.908 (±0.003)

TCGA–ESCA

Individual training

CLAM-MB [12] 95.801 (±1.087) 0.958 (±0.011) 0.960 (±0.007) 0.957 (±0.011)
TransMIL [15] 91.017 (±3.573) 0.908 (±0.038) 0.906 (±0.040) 0.915 (±0.029)
DSMIL [10] 92.792 (±3.669) 0.927 (±0.036) 0.929 (±0.031) 0.935 (±0.032)
DGCN [25] 87.446 (±3.491) 0.871 (±0.037) 0.870 (±0.042) 0.878 (±0.032)

Joint training

CLAM-MB [12] 90.985 (±4.872) 0.510 (±0.053) 0.501 (±0.056) 0.520 (±0.051)
TransMIL [15] 86.829 (±4.481) 0.669 (±0.122) 0.666 (±0.121) 0.688 (±0.145)
DSMIL [10] 86.212 (±5.803) 0.466 (±0.146) 0.453 (±0.156) 0.486 (±0.131)
DGCN [25] 80.271 (±9.205) 0.438 (±0.004) 0.427 (±0.006) 0.493 (±0.070)

Joint Training + T MECFormer (ours) 93.398 (±2.799) 0.934 (±0.028) 0.939 (±0.026) 0.934 (±0.025)

TCGA–NSCLC

Individual training

CLAM-MB [12] 91.457 (±3.877) 0.914 (±0.039) 0.916 (±0.037) 0.919 (±0.035)
TransMIL [15] 92.962 (±2.970) 0.930 (±0.030) 0.931 (±0.027) 0.932 (±0.026)
DSMIL [10] 91.457 (±5.557) 0.914 (±0.055) 0.915 (±0.054) 0.918 (±0.056)
DGCN [25] 91.315 (±2.179) 0.913 (±0.022) 0.913 (±0.022) 0.915 (±0.023)

Joint training

CLAM-MB [12] 91.401 (±4.712) 0.672 (±0.262) 0.668 (±0.264) 0.677 (±0.259)
TransMIL [15] 90.634 (±2.049) 0.706 (±0.155) 0.702 (±0.157) 0.710 (±0.152)
DSMIL [10] 84.249 (±2.952) 0.531 (±0.304) 0.521 (±0.313) 0.550 (±0.304)
DGCN [25] 83.624 (±3.490) 0.427 (±0.015) 0.420 (±0.017) 0.441 (±0.009)

Joint Training + T MECFormer (ours) 93.785 (±2.776) 0.938 (±0.028) 0.939 (±0.026) 0.940 (±0.025)

TCGA–RCC

Individual training

CLAM-MB [12] 95.015 (±3.310) 0.938 (±0.045) 0.955 (±0.034) 0.927 (±0.058)
TransMIL [15] 96.547 (±2.292) 0.958 (±0.035) 0.966 (±0.030) 0.948 (±0.045)
DSMIL [10] 95.384 (±1.150) 0.941 (±0.020) 0.942 (±0.015) 0.941 (±0.026)
DGCN [25] 93.086 (±2.272) 0.912 (±0.024) 0.920 (±0.014) 0.913 (±0.049)

Joint training

CLAM-MB [12] 95.015 (±4.030) 0.621 (±0.109) 0.619 (±0.107) 0.624 (±0.110)
TransMIL [15] 94.609 (±1.791) 0.741 (±0.199) 0.744 (±0.218) 0.739 (±0.182)
DSMIL [10] 91.553 (±6.621) 0.714 (±0.137) 0.719 (±0.145) 0.717 (±0.139)
DGCN [25] 91.165 (±2.857) 0.679 (±0.022) 0.681 (±0.026) 0.681 (±0.020)

Joint Training + T MECFormer (ours) 96.930 (±1.748) 0.959 (±0.027) 0.970 (±0.029) 0.951 (±0.032)
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Fig. 4: t-SNE visualizations for four scenarios: 1) Raw features extracted by off-the-
shelf feature extractor G(·), 2) P1, 3) PT , and 4) PECN. S denotes a Silhouette score.

tasks, 2) PT : a single projection layer per task, i.e., T MLPs, and 3) PECN.
Using each of the three projection layers, we projected the patch embeddings
v(0) ∈ RN×dmodel , computed the mean value per channel, and obtained one
representative embedding vector v(0) ∈ Rdmodel for each WSI. Then, t-SNE is
applied to visualize the distribution of WSIs. We also computed the Silhouette
score for each task. Figure 4 illustrates the visualization results and Silhouette
scores. It is obvious that the embedding vectors produced by PECN well separate
differing tasks without any overlap between them, which is confirmed by the
highest Silhouette scores of 0.762 and 0.772 for UNI and CTransPath, respec-
tively. As for other models, there were overlaps between tasks, which can explain
the generation of out-of-distribution categories.

Table 3 shows the classification results by using each of the three projection
layers. Using P1 and PT , the performance was considerably dropped compared
to PECN; for example, using CTransPath as G, Acc, F1, Recall, and Precision
decreased by ≥3.149% Acc, ≥0.031 F1, ≥0.029 Recall, and ≥0.028 Precision,
respectively; employing UNI as G, a performance drop of ≥2.749%, ≥0.032,
≥0.028, and ≥0.033 was observed for Acc, F1, Recall, and Precision, respectively.
These results validate the importance of ECN in the design of MECFormer.

Effectiveness of D. To investigate the usefulness of the language decoder D
in a unified model for multi-task learning, we repeated the joint learning exper-
iments on the five tasks without D, i.e., the classifier conducts the classification
for all categories across five tasks. The results are reported in Table 4. With-
out D, the classification performance was consistently dropped regardless of the
evaluation metrics and the type of G. Specifically, with CTransPath as G, the per-
formance drops were 2.215 Acc, 0.025 F1, 0.022 Recall, and 0.021 Precision; with
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Table 3: Ablation results on the three projection layer: P1, PT , and PECN.

G Type Acc (%) F1 Recall Precision

CTransPath
P1 90.438 (±0.038) 0.904 (±0.007) 0.904 (±0.014) 0.914 (±0.017)
PT 91.259 (±2.131) 0.905 (±0.028) 0.901 (±0.035) (0.908±0.024)
PECN 94.408 (±1.879) 0.936 (±0.027) 0.933 (±0.031) 0.942 (±0.022)

UNI
P1 93.118 (±2.513) 0.918 (±0.031) 0.926 (±0.031) 0.916 (±0.031)
PT 92.410 (±3.092) 0.915 (±0.032) 0.922 (±0.040) 0.913 (±0.023)
PECN 95.867 (±0.829) 0.950 (±0.011) 0.954 (±0.013) 0.949 (±0.008)

UNI as G, an Acc of 1.518, an F1 of 0.022, a Recall of 0.024, and a Precision of
0.019 decreased. These ablation results confirm the effectiveness of the language
decoder D in our design, which facilitates flexible and adaptable classification
and improves the overall performance.

Table 4: Ablation results on the language decoder D.

G Method Acc (%) F1 Recall Precision

CTransPath MECFormer w/o D 92.193 (±2.478) 0.911 (±0.032) 0.911 (±0.024) 0.921 (±0.034)
MECFormer 94.408 (±1.879) 0.936 (±0.027) 0.933 (±0.031) 0.942 (±0.022)

UNI MECFormer w/o D 94.169 (±2.163) 0.928 (±0.030) 0.930 (±0.036) 0.930 (±0.025)
MECFormer 95.687 (±0.829) 0.950 (±0.011) 0.954 (±0.013) 0.949 (±0.008)

5 Conclusion

We propose MECFormer for a unified and multi-task WSI classification. MEC-
Former permits the predictions for multiple tasks across different organs using
a single unified generative model, assuming that the target task is specified.
To handle multiple tasks simultaneously, we introduce ECN, a projection layer
that simulates expert consultation by gathering knowledge through effective gate
weighting. For flexible classification, the prediction step is devised as an auto-
regressive decoding process using a language decoder. Through extensive ex-
periments, we have demonstrated the superior performance of MECFormer and
validated its design for multi-task WSI classification. MECFormer undoubtedly
has the potential to be extended to address multi-task learning challenges in
other domains.
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