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Abstract. Visual correspondence is a crucial step in key computer vi-
sion tasks, including camera localization, image registration, and struc-
ture from motion. The most effective techniques for matching keypoints
currently involve using learned sparse or dense matchers, which need
pairs of images. These neural networks have a good general understand-
ing of features from both images, but they often struggle to match
points from different semantic areas. This paper presents a new method
that uses semantic cues from foundation vision model features (like DI-
NOv2) to enhance local feature matching by incorporating semantic
reasoning into existing descriptors. Therefore, the learned descriptors
do not require image pairs at inference time, allowing feature caching
and fast matching using similarity search, unlike learned matchers. We
present adapted versions of six existing descriptors, with an average
increase in performance of 29% in camera localization, with compa-
rable accuracy to existing matchers as LightGlue and LoFTR in two
existing benchmarks. Both code and trained models are available at
https://www.verlab.dcc.ufmg.br/descriptors/reasoning_accv24/

Keywords: Image Correspondence · Local Features · Keypoint Detec-
tion and Description · Semantic Cues · Foundation Vision Models

1 Introduction

Visual correspondence is fundamental for important higher-level vision tasks
like camera pose estimation, simultaneous localization and mapping (SLAM),
and structure from motion (SfM). Recently, the pipeline for finding visual cor-
respondences between pairs of images has been changing in favor of methods
that provide different types of context aggregation, like learned sparse match-
ers [17,10] or dense correspondence networks [19]. These methods depend on
gathering information from both perspectives to condition features for better

This ACCV 2024 paper, provided here by the Computer Vision Foundation, is the author-created version.
The content of this paper is identical to the content of the officially published ACCV 2024

LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/accv
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Fig. 1. Leveraging semantic information for improving visual correspon-
dence. The figure illustrates the matching process using Mutual Nearest Neighbor
(MNN) for the base descriptor XFeat [12] and for our approach, which employs se-
mantic conditioning (shown in the top right). Correct matches are shown in green and
wrong matches in red. We can also assess the interpretability and consistency of the
descriptors by finding the closest 128 matches to a given query point in the image
(red point in the bottom left) using either semantic or texture features. Hotter colors
indicate higher similarities. Please notice the similarity ranking improvement with the
conditioned features around the sink region.

correspondence prediction. Although they have been shown to provide better
results in downstream tasks, they must be run for every pair of images, making
it expensive to use in large tasks like SfM pipelines, where a single image will be
matched multiple times to other images with a similar viewpoint. While the tra-
ditional single-view pipeline can pre-extract features for individual images and
use an efficient similarity search such as mutual nearest neighbor (MNN), it does
not perform as well as the context aggregation methods. This paper proposes an
approach to semantically condition keypoint descriptors to find better and more
consistent correspondences while maintaining the advantages of single-view ex-
traction and caching. Foundations Models, such as DINOv2 [11] and SAM [7],
can extract features that contain an understanding of semantic concepts in a
scene to complement local texture patterns. These features can be adapted for
various tasks, e.g., image classification, instance retrieval, video understanding,
depth estimation, semantic segmentation, and semantic matching, by freezing
the backbone and training new layers for a specific task [11]. In order to cap-
ture the meaning of scenes and objects, models such as DINOv2 have developed
a strong invariance to local texture changes. However, the high level of invari-
ance in these features can make them less sensitive when it comes to identifying
pixel-level matches between images. Instead, they can offer a basis for agreement
between regions, which can be used to filter connections between visually similar
but semantically different regions, as shown in Fig. 1. In this paper, instead of
relying on two-view context aggregation, we propose an effective technique to
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Leveraging Semantic Cues for Local Feature Correspondence 3

leverage high-level features understanding coming from an LVM to semantically
condition textured-based correspondences.

A key technical contribution of this paper is a novel learning-based method
for integrating semantic context into local features, enabling efficient similarity
search during matching and substantially improving matching accuracy. The
experimental results demonstrate that our approach significantly enhances the
performance of various detect-and-describe techniques in camera pose estimation
and visual localization tasks within indoor environments.

2 Related Works

Semantics and object-level in description. Leveraging semantic features
for their high invariance is not unprecedented. In nonrigid image matching, meth-
ods like GeoPatch [14], DEAL [15], and DALF [13] merge geometric and texture
features to achieve invariance to deformations. Sim2Real [25] is a detector and
describe approach that learns to find correspondences using two types of losses:
the inter-objects, and the intra-objects, segmenting its features into two parts.
The first part is responsible for finding the right object, and the second part
matches a precise location within that object. Although it captures the con-
cept of separating invariance and distinctiveness, its features are trained specif-
ically for single object-matching. Our approach introduces a much more general
formulation, significantly improving camera pose estimation in indoor scenes.
SFD2 [21] also introduced a more general approach by explicitly distilling se-
mantic segmentation features. To improve long-term outdoor visual localization,
it uses the semantic cues from an off-the-shelf semantic segmentation model to
classify keypoints in four levels of stability, including Volatile, Dynamic, Short-
term, and Long-term. The descriptor learning uses the same semantic backbone
as the detector, and similar to Sim2Real, it optimizes both intra and inter-class
distances. Although SFD2 proposes a more general matching descriptor, it still
fixes the classes of keypoints that are reliable and depends on fixed semantic
segmentation labels for learning descriptors. Our proposed network is different
since we do not explicitly define any semantic behavior based on classes, making
it more general and easier to train while also leveraging foundation vision mod-
els, which provides a fine-grained and more general semantic understanding of
the scene. DeDoDe descriptor [4] is the closest competitor to our methodology
and optimizes a dual-softmax matching loss while incorporating DINOv2 [11]
features in the extraction pipeline. Although it uses the same semantic cues as
our methodology, DeDoDe descriptors do not perform any aggregation between
features. In our proposed model, we design an attention mechanism to refine the
description based on the semantic cues of the scenes, in addition to learning a
semantic-only feature vector for improving the matching.

Context aggregation. A recent trend in image correspondence for finding
more robust matchings between views is to use information from both views to
predict an assignment. The learned sparse matchers SuperGlue [17] and more
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recently LightGlue [10] receive keypoints and descriptors from two images from
a base extractor method, like SuperPoint [3] and predict an assignment of the
keypoints. Using self and cross-attention, these networks iteratively refine the de-
scriptors into “matching descriptors”. In this process, every descriptor is aware of
the other descriptors from its own image and from the corresponding pair view.
The motivation is that the attention aggregation process can gather enough con-
text information to estimate a more consistent and robust matching while dis-
carding keypoints that are not visible in both images. Recently, Omniglue sparse
matcher [6] extended LightGlue by adding semantic features from DINOv2 into
the pipeline, still maintaining the two-view aggregation.

Methods like LoFTR [19] and EfficientLoFTR [20] adopt linear approxima-
tions of the attention aggregation and a coarse-to-fine strategy to predict an
assignment, respectively. In the same direction, MESA [22] also uses a detection-
free matching pipeline, but including higher-level features from the Segment
Anything Model [7]. Overall, methods that aggregate context from both views,
either dense or sparse, cannot fully cache features between images.

This aggregation strategy in large-scale reconstruction can be expensive since
the number of image pairs to be matched can grow quadratically. Our proposed
method, on its turn, only uses a single view for the feature extraction and ag-
gregation, allowing frameworks to cache features for later use in an efficient
similarity search operation.

3 Methodology

In this section, we present the main concept of our methodology, detailing how
to add semantic awareness to a local descriptor and the supervision designed to
train it. A scheme of the overall training and inference stages is shown in Fig. 2.
The proposed strategy first extracts two sets of descriptors: a set of texture
features using an off-the-shelf local feature method, and the semantic features
coming from a LVM model for context (as the selected DINOv2 in this work). To
that end, we adopt a base method for extracting traditional, textured-focused
features and a base method for extracting semantic-focused features. Follow-
ing the base extraction, we refine the features using a self-attention Reasoning
module. For finding matching image pairs, we use the two sets of texture and
semantic features, extracted independently for each image, to calculate a sim-
ilarity matrix for finding mutual matches using the Semantic Conditioning.

Base Feature Extraction. We extract two sets of base features: the texture-
based (D∗

t ) and the semantic-based (D∗
s) descriptors. For extracting texture-

based descriptors and keypoints, we use an off-the-shelf detection and description
method, like XFeat [12] or Superpoint [3]. Following, we extract a dense feature
map from DINOv2 and sample the semantic-based descriptors at the positions
of the detected keypoints via bicubic interpolation. Finally, we project both sets
of descriptors to a shared dimension size, as shown in the top left side of Fig. 2
(Base Extraction).
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Fig. 2. Semantic Conditioning Pipeline. Our method first extracts both low-level
scene texture via a base local feature descriptor (XFeat) and semantically meaning-
ful, high-level features via a foundation vision model (DINOv2) with the associated
salient texture keypoints. Then, the Reasoning module is applied in both representa-
tions, where cross attention layers are used iteratively to enhance the representations
of both texture and semantic features. Finally, the descriptor similarity is computed by
combining both the texture and semantic similarity using element-wise product (⊙).

Descriptor Reasoning. At this point, using the two sets of features (i.e.,
texture-based and semantic-based) we refine them for the Semantic Conditioning
stage. We initialize the refined texture descriptor (Dt) and the refined semantic
descriptor (Ds) using their raw versions D∗

s and D∗
t . We iteratively refine Dt

using attention aggregation while alternating the attention keys between the raw
descriptors D∗

s and D∗
t . For each attention layer aggri(K,Q, V ), we compute:

Dti+1 = aggri(D
∗
s , Dti , Dti) if i is even,

Dti+1 = aggri(D
∗
t , Dti , Dti) if i is odd,

(1)

where i is the number of the iteration, K the key, Q the query, V the value, and
Dti and Dti+1

are the refined texture descriptors at the iterations i and i+1. The
attention aggregation mechanism is the same as the Lightglue’s cross-attention
layer [10]. Similarly, we iteratively refine Ds, using only the original semantic
features as keys:

Dsi+1
= aggri(D

∗
s , Dsi , Dsi). (2)

The strategy of using alternating texture and semantic keys aims to incorporate
both types of information, providing the texture descriptor with scene context
from the semantic descriptors. This approach enables the texture component to
identify precise matches and to understand the type of structure it is describing,
resulting in more semantically relevant aggregated information. Similarly, we do
not want the refined semantic features to have a local understanding of the scene.
The objective of this reasoning pipeline is to guide the matches for semantically
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coherent areas. Finally, both sets of descriptors are normalized to the unit hyper-
sphere with the L2 normalization.

Semantic Conditioning. After obtaining Dt, Ds, and the base extractor’s
keypoints K, we cache them all for later use since there are no more steps
before the visual matching. The extraction from a pair of images I1 and I2

will result in D1
t , D1

s , K1 (descriptors and keypoints for the first image), and
D2

t , D2
s , K2 (descriptors and keypoints for the second image). With each pair of

descriptor types, we can calculate a correlation matrix Ct and Cs, for texture and
semantics, respectively. Individually, Dt and Ds are either too local or too global,
resulting in discriminative descriptors that can wrongly match repetitive textures
or highly invariant descriptors that can only find coarse matches. We define the
Semantic Conditioning as the operation of combining both correlation matrices
for adjusting the match probability between coherent regions while keeping the
local discriminatory power. The final correlation matrix considering the product
of features is then

Cf = Ct ⊙ Cs, (3)

where ⊙ is the element-wise product operation. Cf is then used for finding
matches with Mutual Nearest Neighbor (MNN) search. We conditioned the
matching using the product operation so that even low semantic similarities
can completely erase wrong matches, regardless of high texture similarity.

3.1 Supervision

For training, the parameters of the base extractors remain frozen and we opti-
mize only the weights of the initial projections and the descriptor reasoning as
depicted in Fig. 2. We freeze the weights because each base extractor can have
a specific training strategy that works better. By using freezed, off-the-shelf
extractors, we can accommodate more methods. The DINOv2 was also frozen
following [11], which used it as a backbone for several tasks.

We trained the networks using the ScanNet [2] dataset, which contains exclu-
sively indoor scenes. We focused on indoor environments because they are more
semantically rich than outdoor scenes. We sample image pairs with a minimum
estimated overlap of 40%, along with the depth maps and camera poses. For every
pair, we use the base extractor to estimate keypoints from both images, project
the keypoints from the first one to the second image, and find matches that are
under three pixels distance from a correspondent keypoint. These ground-truth
assignments are obtained for calculating the dual-softmax loss, following a sim-
ilar strategy to XFeat [12]. Since our descriptors are refined iteratively, we can
follow the supervision process of LightGlue [10] and calculate the dual-softmax
loss for each iteration of the descriptors to seep up convergence. Assuming the
ground-truth assignment Mgt of size M × 2 containing the matching indices, we

1273



Leveraging Semantic Cues for Local Feature Correspondence 7

calculate the loss Ll for the layer l as:

Ll = −
∑

(i,j)∈Mgt

log(softmaxr(Cfl)(i,j))

−
∑

(i,j)∈Mgt

log(softmaxr(C
⊤
fl
)(j,i)),

(4)

where softmaxr is a row-wise softmax function and the correlation matrix Cfl

for the layer l is computed as:

Ctl = D1
tl
D2⊤

tl
, Csl = D1

sl
D2⊤

sl
, Cfl = Ctl ⊙ Csl . (5)

Following the deep supervision of LightGlue, the final loss is the mean of the
intermediary layers’ losses. For N layers, the final loss Ltotal is then:

Ltotal =
1

N

∑
l∈[1,N ]

Ll. (6)

4 Experiments

Experimental setup and training. We trained the method in approximately
1,000,000 pairs from the ScanNet dataset [2], with a fixed image size of 512×512,
extracting 2,048 keypoints and descriptors on each image. The training takes 10
hours on 4×V100 32GB GPUs with a batch size of 16 on each GPU. We used 5
layers of attention aggregation. The experiment with 9 layers used a batch size
of 8 but kept the same total training paris. We used Adam with learning rate
1e−4 as the optimizer and the descriptor size is fixed to 256. We have adopted
DINOv2 as the semantics provider as it has been shown to provide rich semantic
features that generalize well in different benchmarks [4,6,11].

For the DINOv2 version, we tested all four types and settled on the smallest
one (S), as discussed in Sec. 4.3. For the evaluation, we have adopted the Scan-
net1500 relative pose estimation benchmark, which inclides 1,500 image pairs
from the test split of ScanNet, and the 7Scenes [5] visual localization bench-
mark, which contains 7 indoor scenes. Both benchmarks pose challenges for the
visual correspondence task, as they contain motion blur, repetitive structures,
and low-textured surfaces.

Inference and computational analysis. In inference time, we resize input
images to 896 pixels on the longest edge for extracting DINOv2 features, but
we keep the original shape for the base extractor. For all models, we normalize
the output descriptors. All experiments were run without resizing the images.
For a pair of images in the original ScanNet resolution of 968× 1296, and with
a max keypoint detection count of 2,048, our network takes, on average, 23ms
for texture features extraction, 83ms for semantic features extraction, 4ms for
reasoning, and 11ms for matching, using XFeat as the base local extractor, for a
total of 121ms, in which 110ms are processed in single images and can be cached.
All experiments were executed in a NVIDIA GeForce RTX 3080 with 10GB.
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Table 1. Pose estimation results compared to global visual matchers and
existing single view competitors. The semantic conditioning yields results that
are even competitive with learned matchers and the detector-free matcher LoFTR (half
upper part of the table), as well as to existing single view descriptors with semantics
(our direct competitors shown in the bottom part).

AUC ↑
Method @5° @10° @20°

LoFTR 20.20 37.60 52.60
LightGlue 22.30 40.80 57.00
DeDoDe-G 9.50 19.40 30.20
SFD2 13.00 25.60 38.30
Ours 20.30 36.81 52.37

Table 2. Semantic conditioning capability of our method for different base
descriptors. “Ours” accompanying a method’s name means that we trained our net-
work with the features of this base method. Pose estimation results on Scannet1500.

AUC ↑ Average
Method @5° @10° @20° Gain

DeDoDe-B 5.70 11.30 17.80
Ours+DeDoDe-B 8.91 17.28 26.25 +50.67%

DeDoDe-G 9.50 19.40 30.20
Ours+DeDoDe-G 11.13 21.29 32.04 +9.07%

ALIKE 7.60 15.40 23.90
ALIKE Ours 10.56 20.96 31.92 +35.27%

ALIKED 12.00 23.40 35.80
Ours+ALIKED 15.31 29.39 43.85 +24.37%

RELF 11.60 24.20 33.30
Ours+RELF 15.20 30.46 46.31 +24.12%

XFeat 15.80 30.80 45.80
Ours+XFeat 19.72 36.77 53.19 +18.70%

SuperPoint 13.70 26.30 39.90
Ours+SuperPoint 20.30 36.81 52.37 +37.02%

Baselines. In the selected baselines, we have traditional detect and describe
methods as ALIKE [24], ALIKED [23], SuperPoint [3], RELF [8] and XFeat [12].
We selected DeDoDe [4], as the only other descriptor that uses semantic infor-
mation from DINO, and SFD2 [21] that explicitly uses semantic information for
supervision in training. Although our proposed method is not a matcher, we
also included results for the learned matcher LightGlue [10] and the detector-
free matcher LoFTR [19] for comparing methods that can aggregate information
from both views.
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4.1 Relative Pose Estimation

Setup. Following [19], we evaluated pose estimation in 1500 pairs of images
from the validation split of the ScanNet [2] dataset. The indoor images contain
strong viewpoint changes, poorly textured surfaces, and motion blur artifacts,
making it challenging for the pose estimation task. As in previous works [12], we
use LO-RANSAC [1] to estimate the essential matrix and search for the optimal
threshold for each method.

Metrics. We follow the protocol of previous works [12,10,19], which report the
area under the curve (AUC) of the maximum angular error in rotation and
translation at the thresholds 5°, 10°, and 20°.

Results. The quantitative registration results are shown in Tab. 1 and Tab. 2.
In Table 1, we included methods of dual-view context aggregation, like Light-
Glue [10] and LoFTR [19], and other descriptors that also leverage semantic
information like DeDoDe-G [4] and SFD2 [21]. It is worth noting that even do-
ing only single view extraction, Superpoint combined with semantic conditioning
can yield competitive results compared to Lightglue (without any awareness of
the pairing view). Our designed strategy to leverage semantics to improve the
matching capability of existing descriptors is described in Tab. 2. We can no-
tice a significant improvement in all baselines when combined with our proposed
semantic conditioning. Although many of them were only trained on outdoor
images from MegaDepth dataset [9], like DeDoDe [4], SFD2 [21], ALIKE [24],
and ALIKED [23], we could still improve their indoor pose estimation results by
at least 24% without retraining neither the feature extraction nor the DINOv2
backbone. This result suggests that the extracted visual cues are not better
than the original versions of these descriptors, only better conditioned by the
semantics.

4.2 Visual Localization

Setup. We evaluated the visual localization task on the popular benchmark
7Scenes [5]. The 7Scenes dataset comprises seven different indoor scenes with
annotated 6-DoF camera poses and dense 3D reconstructions. It is divided into
training and test sequences, each with a distinct camera path. The images are
acquired using a Kinect 1 and are often blurry, with several regions featuring
repetitive indoor structures and textureless areas. We use the HLoc [16] frame-
work for building a Structure-from-Motion (SfM) [18] database from the training
sequences. Then, the images in the test set are localized by computing image
correspondences between the current frame and the SfM models using the de-
scriptors provided by each competitor.

Metrics. As a standard practice [16], for each localized image from the test set,
we use the camera translation error in meters, and rotation errors in degrees,
according to the ground-truth camera poses provided by the benchmark [5].
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Table 3. Visual localization results in 7Scenes. For each scene we report the
camera pose error achieved by the competing methods. We also include LightGlue as
a learned matcher reference, providing an upper bound in matching quality.

Translation errors (m) ↓, Rotation errors (°) ↓
Methods ↓ Chess Fire Heads Office Pumpkin Kitchen Stairs

LightGlue 0.024, 0.803 0.019, 0.792 0.011, 0.715 0.027, 0.826 0.039, 1.044 0.033, 1.127 0.051, 1.324
DeDoDe-G 0.025, 0.902 0.018, 0.793 0.011, 0.810 0.028, 0.892 0.046, 1.357 0.035, 1.250 0.069, 1.708
XFeat 0.027, 0.919 0.018, 0.731 0.013, 0.865 0.028, 0.842 0.042, 1.072 0.035, 1.189 0.043,1.108
Ours+XFeat 0.026, 0.913 0.018,0.725 0.013, 0.881 0.027, 0.840 0.043, 1.111 0.035, 1.215 0.048,1.108
SuperPoint 0.025,0.822 0.018, 0.738 0.011,0.759 0.027,0.820 0.040,1.052 0.034,1.130 0.055, 1.427
Ours+SuperPoint 0.026, 0.876 0.019, 0.755 0.012, 0.802 0.027, 0.826 0.041,1.052 0.034, 1.171 0.046, 1.167

Results. The visual localization benchmark results are shown in Tab. 3. An
interesting observation is that our method is able to reduce XFeat errors in sev-
eral cases. For SuperPoint, our approach was not able to provide meaningful
improvements. We hypothesize that XFeat being a smaller backbone, provides
more concise and less redundant features, making it less prone to overfitting
and leverages the semantic information the most. We achieve the highest aver-
age percentage of correctly localized cameras when considering the percentage
of localized cameras within different thresholds. From stricter thresholds of 1◦,
1 cm up to 500 cm, 10◦, LightGlue, the gold standard but expensive matcher,
correctly localizes 66.97% of the cameras. This is followed by Ours (with Super-
Point as base texture detector): 66.95%, Superpoint: 66.88%, XFeat: 66.36%, and
DeDoDe-G: 64.44%. This demonstrates that semantic information can increase
correspondences in ambiguous regions, as shown in Fig. 3.

4.3 Sensitivity and Ablation Studies

In this section, we investigate the design decisions that led to our final seman-
tic condoning method. Every variant in these experiments was evaluated using
relative pose estimation on the Scannet1500 benchmark, using XFeat [12] as the
base extractor. The choice of XFeat in these experiments was guided since it
is a recent lightweight descriptor with competitive performance along different
visual correspondence benchmarks.

DINOv2 backbone size. As the DINOv2 model family has many versions with
different capacities, they also require increasingly higher amount of computation.
Following DeDoDe [4], we fixed the dimension of the input images to DINOv2 to
mitigate the fast-growing computational complexity of the vision transformer,
which is quadratic in the number of tokens. To study which type of model and
image resolution, we trained four versions of our network, one for each DINO
model, and evaluated fixing the input DINOv2 image size in inference to 518 and
896 on the long edge. Table 4 shows that, while fixing image size to 518, larger
DINOv2 models can yield better pose estimation results; the results difference
is smaller for the larger images. We chose to fix the input size to 896 and use

1277



Leveraging Semantic Cues for Local Feature Correspondence 11

Table 4. Sensitivity analysis to semantic model capacity. We evaluate fixing
DINO interval resizing dimension and varying model size.

DINOv2 AUC ↑ @ size 518 Inference AUC ↑ @ size 896 Inference
Size @5° @10° @20° time (ms) @5° @10° @20° time (ms)

S 18.80 36.33 53.11 54.80 19.72 36.77 53.19 121.11
B 19.87 37.57 53.88 88.86 20.70 37.93 54.30 225.96
L 19.54 37.13 53.95 174.54 19.88 37.70 55.00 561.63
G 20.41 38.20 55.22 446.01 20.89 38.58 55.66 1695.00

Table 5. Pose estimation evaluation on Scannet1500. SC means Semantic Con-
ditioning, #AL is the number of aggregation layers, and K is the type of Key used in
the texture reasoning. The version used in all experiments is marked in bold.

AUC ↑
Exp SC K #AL @5° @10° @20°

1 A 5 18.27 34.29 49.80
2 ✓ A 3 18.71 35.57 51.68
3 ✓ A 5 19.72 36.77 53.19
4 ✓ A 7 19.19 36.12 52.21
5 ✓ A 9 19.35 36.34 52.66
6 ✓ S 5 19.18 36.19 52.60
7 ✓ T 5 19.48 36.64 52.58

the smaller version of DINOv2 as it already yields satisfactory results. This also
leads to a lower inference time.

Semantic conditioning. When refining the texture descriptors (Dt) with the
semantic keys (D∗

s), they can also aggregate semantic information. On Experi-
ment 1 of Tab. 5, we tested the capacity of a single descriptor playing both roles
of semantic and texture guidance. We removed the semantic refinement and only
used the texture correlation (Ct) for matching descriptors. We can see a large
drop in performance in all thresholds compared to Experiment 3, which is our
default setting.

Number of attention aggregation layers. Another factor that we investi-
gated was the number of layers for attention aggregation. This evaluation follows
an observation from LightGlue [10], where the network can collect information
from both images to decide if the descriptors are already good for matching or
need more refining. In single-view extraction we do not want to depend on other
image descriptors, so it is difficult to know when to stop refining dynamically.
For that reason, we decided to fix the number of aggregation layers. In Tab. 5,
Experiments 2 through 5 evaluate networks trained with 3, 5, 7, and 9 layers. Al-
though they all are significantly close to each other, the biggest gap was between
3 and 5 layers; for that reason, we kept the five layers as default.
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Fig. 3. Visual matching results for three refined base descriptors in the two
benchmarks. Green matches are inliers and red outlier matches. The left side of the
figure shows the results for the original descriptors SuperPoint [3], XFeat [12] and
ALIKED [23] when matching two different image pairs. The right side of the figure
shows the matching using their semantically conditioned versions using our proposed
methodology. We can observe from visual inspection that the matches are more consis-
tent between the views. Please also notice the increased inlier ratio when considering
the semantic conditioned versions.

Alternating aggregation key. We also evaluated the impact of alternating
keys in the texture descriptor refinement. In Tab. 5, experiments 6 and 7 are
versions of the default network that only use the semantic key and the texture
key, respectively. We can notice that using only the semantic key is worse than
using only the texture key. Since the network still has semantic conditioning in
the matching stage, it should leverage the texture information for fine matching.
Although the texture only is better than semantic only, alternating between both
yields better results because the network can adjust the texture features while
aggregating context from the semantics of the scene present in the image.

4.4 Qualitative Matching Analysis

The reason for using semantic cues to find matches is to reduce ambiguity be-
tween descriptors from semantically different areas by using both sets of infor-
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mation. This makes it less likely to mistakenly match a similar texture to the
wrong instance. As can be noticed in Fig. 3 with examples from the two consid-
ered benchmarks, and without any filtering, our method leverages the semantic
information for a much more consistent matching between the views. By using
semantical conditioning, we not only filter semantically wrong matches, but we
find a greater number of correct correspondences between coherent areas.

Interpretability of the features. We can also check the interpretability and
consistency of the descriptors by computing the closest 128 matches to a given
query point in the image using either solely the semantic, the texture or the
semantically conditioned features as shown in Figs. 1 and 4. Given a query
keypoint (highlight in red in the first column) we find the top 128 corresponding
keypoints ranked by feature correlation. The semantic correlation selects only
keypoints in a similar area, but without local precision. This can be seen in
Fig. 1 where the areas belonging to the sink are selected as the closest ones. The
same behavior is displayed in the top example in Fig. 4, where the query point
located in the cable also activates points located along the entire cable. On the
other hand, the texture description correlation selects keypoints locally similar
but has not regard for the context of the location (as shown in the third column
in Figs. 1 and 4). The conditioned features can find correspondences that are
relevant both in semantics and texture. In some cases, we can have high texture
and semantic correlations for non corresponding keypoints, for instance when the
correct correspondence is not visible, as shown in the last row of Fig. 4 where
the selected keypoint is not visible in the pairing view. Yet, the closest matches
in this case are the ones located in the two other handles. Other representative
visualization examples of the correlations for four other scenes are provided in
the supplementary material.

5 Conclusion

This work introduces a learning-based technique for visual feature description
that is capable of utilizing semantic cues present in the image. We design a
network performing information aggregation that leverages semantic features to
refine and condition off-the-shelf descriptors to improve indoor visual match-
ing. Our method performance in camera pose estimation is superior to existing
state-of-the-art models exploring semantic cues, and it is also competitive even
with that of recent learned matchers (such as LightGlue), while only using a
single image for feature extraction and Nearest Neighbor search for matching.
With extensive experiments, we show that our method can improve the pose
estimation results of six different base descriptors by 25% on average. The im-
proved descriptors can be used in large-scale SfM reconstructions by utilizing a
single view for image extraction, as MNN matching is much faster than running
learned matchers for thousands of image pairs.
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7Scenes Benchmark

Query Location Semantics Texture

Top 128 Correlated Features

Conditioned Features

Scannet1500 Benchmark

Query Location Semantics Texture

Top 128 Correlated Features

Conditioned Features

Fig. 4. Interpretability and consistency of the conditioned features. We show
the closest 128 matches to a given query keypoint (red point in the first column) for
the different descriptors with either solely semantics, the refined texture descriptor
or with the proposed semantic conditioned features (fourth column). Hotter colors
indicate higher similarity. Please notice the similarity ranking improvement with the
conditioned features for finding matches such as in the mouse cable (first row). Our
approach consistency is highlighted in the estimated closest keypoints when selecting
the drawer handle of the kitchen (fourth row) which is occluded in the paired view.
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