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Abstract. Deep learning has been extensively employed in the field
of medical image segmentation, demonstrating its robustness and effi-
cacy. However, the pursuit of consistent segmentation performance across
diverse instrumental conditions and the challenge of achieving precise
boundary delineation in segmented images remain significant hurdles. In
this paper, we aim to develop a model capable of achieving consistent,
high-quality segmentation of identical regions of interest across varying
instrumental conditions, with precise boundary delineation. Toward this
end, we introduce our Hybrid Dynamic MedNeXt (HDNeXt) model, an
advanced framework capable of dynamically generating weights across
diverse medical images to maintain consistently high segmentation per-
formance. HDNeXt builds on the robust segmentation framework of Med-
NeXt by incorporating dynamic convolution techniques, which endow
the model with the capability for dynamic weight adjustment, signif-
icantly enhancing its segmentation performance. To tackle the second
challenge, we devised a novel loss function, LCR, formulated on the Cur-
vature of the segmentation boundary and Region-Fitting energy derived
from level set methods, which significantly enhances boundary precision
during training and optimizes overall segmentation performance. Exper-
iments were conducted on the abdominal CT datasets Synapse and the
cardiac MRI datasets ACDC to demonstrate the efficiency and effective-
ness of our method. Our method achieved an average Dice coefficient of
84.38 on the Synapse datasets and 93.59 on the ACDC datasets, surpass-
ing other 2D state-of-the-art segmentation models and achieving optimal
performance for 2D medical image segmentation. Codes are available at
https://github.com/HaoyuCao/HDNeXt

Keywords: Medical Image Segmentation · Dynamic Networks · Loss
Function Regularization.

1 Introduction

Medical image segmentation is a fundamental task in medical image processing.
This task involves partitioning medical images into distinct regions that corre-
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(a) Serrated edges (b) Smooth edges

Fig. 1: Two images with similar Dice coefficients for segmentation are presented.
Sub-figure (a) exhibits serrated edges that do not conform to anatomical struc-
tures. Sub-figure(b) features regular segmentation edges that meet clinical cri-
teria, optimized through our LCR loss function.

spond to various anatomical structures or regions of interest (ROIs). The advent
of deep learning technologies has led to significant advancements in the accuracy
and efficiency of medical image segmentation, establishing deep learning as the
predominant approach in this field.

Generally, Convolutional Neural Networks (CNNs) are the fundamental deep
learning approach for medical image segmentation. CNNs have demonstrated re-
markable capabilities in image analysis tasks due to their hierarchical feature ex-
traction process, exemplified by architectures such as the U-Net family[33,45,14]
and the DeepLab series[5,35,22]. However, CNNs inherently suffer from a re-
stricted receptive field due to window-based convolution calculations.

Recently, Vision Transformers (ViT)[8,24,23], initially developed for natural
language processing, have been adapted to vision tasks with notable success. ViT
is a model that directly applies the Transformer architecture[36] to sequences of
image patches. It leverages the Transformer’s capability to handle long-range
dependencies and compensates for the inherent shortcomings of CNNs. Notable
successes of Transformer models include TransUNet[4] and Swin-UNet[1] have
demonstrated outstanding performance across various benchmarks.

A key reason for the notable success of Vision Transformers (ViT) in the
visual domain is their strong scalability. However, in the field of medical imaging,
where data annotation is costly, the development of ViT is severely constrained.
Consequently, most modern networks predominantly use either purely CNN-
based architectures or hybrid CNN-Transformer systems, capitalizing on the
strengths of both.

Given these considerations, our study is based on the MedNeXt[34] archi-
tecture incorporating large kernel convolutions, a purely convolutional network
design. Research has indicated that large kernel convolutions, can effectively
integrate the strengths of convolutional networks and Transformers, thereby
enhancing the network’s feature extraction capabilities in image segmentation.
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(a) Original distribution (b) Cluster scores (c) Cluster result

Fig. 2: The heterogeneity and cluster analysis of the Synapse dataset

Table 1: Different Synapse dataset partitions were obtained from the cluster
analysis (Figure 2c). MedNeXt shows obvious inconsistent performance across
different dataset partitions.

Different Division
Synapse Score Dice↑ Hd95↓

Green, Yellow (Train) - Purple (Test) 77.58 28.83
Green, Purple (Train) - Yellow (Test) 74.28 26.61
Yellow, Purple (Train) - Green (Test) 76.17 30.08

Random uniform division 79.92 25.19

MedNeXt architecture has demonstrated superior performance across various
medical image segmentation tasks, achieving state-of-the-art (SOTA) results on
board and surpassing networks based on the three aforementioned architectures.

However, despite MedNeXt’s outstanding performance across various met-
rics, our findings indicate that MedNeXt struggles to maintain consistent seg-
mentation performance across datasets with varying distributions. As shown in
Figure 2, we calculated the clustering scores of the Synapse dataset (Figure 2b)
and discovered that the Synapse dataset can be divided into three clusters (Fig-
ure 2c). By using two clusters as the training set and one cluster as the testing
set, as well as random uniform divisions, the performance of MedNeXt exhibits
significant fluctuations (Table 1). Additionally, MedNeXt exhibits coarse and
blurred boundary delineations due to a lack of precise boundary awareness dur-
ing segmentation (Figure 1a).

In this work, we propose HDNeXt (Hybrid Dynamic MedNeXt), a segmenta-
tion model that achieves consistent segmentation performance while maintaining
precise boundary delineations.

The major contributions of our work can be summarized as follows:

1. We developed the novel Dynamic MedNeXt Module (DyNeXt), which incor-
porates dynamic convolutions to endows the network with dynamic weight-
ing capabilities. DyNeXt augments both the efficacy and uniformity of network-
based segmentation outcomes.
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4 Cao et al.

2. We designed a loss function LCR based on curvature regularization and re-
gion fitting term in level set frame work, which significantly enhances the
accuracy of boundary segmentation and smooths the segmentation results.

3. Based on these innovations, we proposed the novel HDNeXt network archi-
tecture and conducted experiments on Synapse and ACDC datasets. Our
network achieved state-of-the-art performance in 2D medical image segmen-
tation.

2 Related Work

2.1 Large Kernel Convolutional Neural Networks

The development of large kernel convolutional neural networks has played a key
role in overcoming the limitations of traditional CNN architectures, particularly
in enhancing the receptive field and more effectively capturing global context.
The seminal work by Peng et al.[28] highlights the utility of large kernels in bridg-
ing the gap between pixel-level predictions and global contextual understanding
necessary for accurate semantic segmentation.

The ConvNeXt series[25,37,43] employs larger convolutional kernels, such as
7x7 or even larger, to increase the receptive field. These models incorporates
design ideas from the architecture of Transformers, adjusting the scale of layers,
regularization strategies, pre-training methods, and kernel sizes, thereby demon-
strating that pure convolutional networks can achieve performance on pair with
or even surpassing that of Transformers in visual tasks. MedNeXt[34] adapts this
large kernel convolutional network to medical image segmentation, showcasing
its immense potential in handling complex 3D medical image segmentation tasks
and establishing a new state-of-the-art model.

2.2 Dynamic Weight Network

Making the weights of a neural network sample-adaptive through dynamic mech-
anisms has shown great potential for boosting model capacity and generalisation.
DyConv[6] enables dynamic adjustment of weights by generating specific convo-
lution kernels for each input. CondConv[41] increases the capacity and flexibility
of the model by using different convolution kernels for different input conditions.
OmniConv[19] proposes an all-inclusive convolution strategy that dynamically
adjusts the size and shape of the convolution kernel according to the character-
istics of the input.

In our work, we discovered that the MedNeXt model does not achieve consis-
tent segmentation performance across images from different imaging conditions.
To address this issue, we leverage the advantages of dynamic weight networks
and propose a large kernel convolution module based on dynamic convolutions.
This module enables the network to adaptively generate dynamic weights based
on the input, thereby enhancing its generalization and segmentation capabilities.
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Fig. 3: Overview of our HDNeXt model. The proposed HDNeXt is a nested
double-U model with a large size CNN branch and an auxiliary light weight
ViT branch. The PNFA module plays a significant role in the feature fusion of
CNN-ViT without adding extra learnable parameters.

2.3 Level Set Regularization

The level set method, a mathematical algorithm for segmentation via iterative
evolution of high-dimensional functions, is often used as a regularization term
in deep learning due to its adaptive handling of topological changes. Kim et
al.[16] were the first to embed the level set function as a loss term in neural
network training and demonstrated the great potential of the level set method
as a regularization term. Kim and Ye [15] extended the Mumford–Shah func-
tional as a loss function effectively captures smooth segmentation boundaries.
Yang et al.[42] were the first to embed the curvature-based euler functional into
the network as a loss function, significantly enhancing network performance.
Researchers derived different loss functions by designing energy functionals with
varying properties, further regularizing and enhancing model performance. Based
on the Euler elasticity model, we proposed a curvature and region based loss
LCR, which effectively optimizes boundary accuracy and smoothness.

3 Methodology

As shown in Figure 3, the proposed HDNeXt model is a nested double-U struc-
ture comprising a large-size CNN branch and a small-size light weight Trans-
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6 Cao et al.

former branch in Figure 3. The network uses CNN as the fundamental backbone,
serving as the source for processing inputs and generating segmentation masks.
The original image is downsampled through two layers of DyNeXt modules. The
DyNeXt modules not only enable the network to adaptively adjust weights based
on the input but also generate more features in the shallow layers of the network.

Then we divide the downsampled image into patches and perform token em-
bedding to introduce a light weight auxiliary ViT branch. The light weight ViT
component does not directly participate in the network’s predictions but serves
as an auxiliary branch to establish long-range dependencies, compensating for
the limited receptive field of the convolutional network. The CNN-ViT interacts
through our innovatively designed PNFA module in Figure 3, which enables ef-
fective fusion of dual-path features without adding extra learnable parameters
to the network.

The hybrid loss incorporating LCR is computed on the final predicted seg-
mentation masks and updates the model parameters through back-propagation.
We will describe the details of our model design in the following sections and
demonstrate the effectiveness of our module design through comparative and
ablation experiments.

3.1 Dynamic MedNeXt Module(DyNeXt)

Dynamic weight networks have been proven to possess good generalization ca-
pabilities when dealing with non-uniformly distributed datasets. we propose our
Dynamic MedNeXt(DyNeXt) Module as shown in Figure 4 building on the con-
cept of dynamic modules[6,32,9] to introduce dynamic properties.

Our implementation focuses on the MedNeXt[34] module (see Figure 4).
MedNeXt module follows the design philosophy of the large kernel convolution,
comprising a depth-wise convolution using a 7 × 7 kernel, as well as two 1 × 1
convolutions in an inverted bottleneck design. We assume the input is in the
shape of (B,C,H,W ). Dynamic properties can be divided into two modules:

The first module is a self-operating branch, referred to as the Input Adap-
tive Weight Module. It generates parameters for depth-wise convolution through
adaptive global pooling followed by two fully connected layers based on the in-
put. The second module is called the Weight Aggregation Module, where the
reshaped original input undergoes self-convolution operations with the weights
generated by the first module.

The computation flow of DyNeXt can be expressed with the following equa-
tions. Let x̃ be the output of the Input Adaptive Weight Module, and x′ be the
output after the Weight Aggregation Module. The two outputs are combined
with the residual from the original input through an invert bottleneck, resulting
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Fig. 4: Overview of DyNeXt Block. We introduce dynamic properties into the 2D
MedNeXt Block, endowing the network with dynamic weight properties. We add
a self-operating module called the Input Adaptive Weight Module in MedNeXt,
which dynamically generates depth-wise convolution kernel weights based on the
input and performs self-convolution operations with the original input.

in the final output of the DyNeXt module. The equations are as follows:

x̃ = FC(LN(FC(AGP(x)))) (1)
x′ = reshape(x)︸ ︷︷ ︸

(1,B×C,H,W )

⊙ reshape(x̃)︸ ︷︷ ︸
(B×C,1,K,K)

(2)

y = (InvertBottleneck(LN(x′))) + x (3)

Through the interaction of the two modules, the DyNeXt module adaptively
generates convolution weights based on the input, producing input-adaptive out-
puts.

3.2 Light-ViT Block

To address the limited receptive field in CNNs, we introduce an auxiliary Lightweight
ViT branch at an appropriate downsampling stage. This branch helps establish
long-range dependencies, enhancing the model’s ability to segment abdominal
CT scans, particularly when target objects span multiple regions or have elon-
gated structures. This approach significantly improves the model’s capacity to
capture spatial relationships crucial for accurate segmentation.

The Light-ViT structure is illustrated in Figure 5. We employ the original
Swin Transformer [24] to reduce the self-attention computational complexity
from N2 to linear. In medical image segmentation, the frequency domain often
captures higher-dimensional semantic information with reduced noise, which is
critical for clinical applications where detecting signal amplitude variations helps
differentiate tissues and organs. Thus, we incorporate the principles of LightViT
[11] with spatial frequency domain extraction [40,13,38] in the feed-forward neu-
ral network. Specifically, feature extraction is conducted in the spatial frequency
domain using Fast Fourier Transform (FFT) and its inverse operation (iFFT)
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Fig. 5: Overview of our Light-ViT Block. We adopt the Swin Transformer as the
foundation module, applying the feed-forward neural network component in the
frequency space to capture high-level semantic information.

for reconstruction. This integration optimizes processing speed and scalability,
making the transformer architecture more suitable for efficient segmentation
with enhanced contextual understanding.

3.3 Pre-Normalized Feature Aggregation(PNFA) Module

We further explored the distinctions between Transformer modules and dynamic
convolutional networks. The computation in a deep convolutional network can
be expressed as follows:

yi =
∑

j∈L(i)

wi−j ⊙ xj , (4)

Self-attention is the fundamental computational unit of the Transformer ar-
chitecture. Its computation can be represented by the following formula:

yi =
∑

j∈L(i)

exp
(
x⊤i xj

)∑
k∈L(i) exp

(
x⊤i xk

)xj (5)

An ideal network model should combine the inherent translation invariance
of convolutional neural networks with the dynamic weighting and global re-
ceptive field capabilities of Transformer networks. Our method is inspired by
CoAtNet[7,10] for feature aggregation involves directly summing a global depth-
wise convolutional kernel with an adaptive attention matrix before the Softmax
normalization. This approach results our method of pre-normalized feature ag-
gregation (PNFA):

yprei =
∑

j∈L(i)

exp
(
x⊤i xj + wi−j

)∑
k∈L(i) exp

(
x⊤i xk + wi−k

)xj , (Pre-Normalization) (6)

We discovered that the pre-normalized feature aggregation module corre-
sponds to a specific variant of the relative self-attention mechanism[36]. In this
scenario, the attention weights are jointly determined by convolutional inputs,
which exhibit translational invariance, and by adaptively weighted inputs. The
output is capable of simultaneously leveraging the complementary features of
both aspects. The PNFA module is illustrated in Figure 3.
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3.4 Curvature-Region Regularization Loss

The level set method possesses excellent properties for handling topological
changes, which can effectively compensate for the insensitivity of neural net-
works to boundaries when used as a loss function. We consider a class of Euler
elasticity models from the level set energy functional:

min

∫
Ω

ψ(κ)|∇u|dx︸ ︷︷ ︸
R(·)

+µD(u, f), (7)

where R(·) is the curvature regularity term, and D(u, f) the data fidelity term.
In the level set method, R(·) measures the smoothness of segmentation edges,
while D(u, f) ensures convergence to the ground truth. Following Eqn. (7), we
use the ADMM and augmented Lagrange Multiplier methods to minimize the
energy functional, as shown in Figure 6:

Eqn. (1)
𝐷(𝑢, 𝑓)

𝑅(·) 𝐿௨௩

𝐿௧
𝐿௨௫௬

𝐿௫௧

Auxialiary for decouple
minimize problem Eqn. (1) 

Relaxation for avoid 0 
division error

𝐿௨௫௬ and 𝐿௫௧ 

are inseparable and 
together constitute 𝐿௨௩

𝐿௧

𝑣 = ∇𝑢

< 𝑝, 𝑣 > = |𝑣|

min න 𝛹 𝜅 ∇𝑢
ஐ

d𝑥

ℛ ⋅

+ 𝜇𝒟 𝑢, 𝑓 ,        (1)
Lagrange Multiplier

Fig. 6: Derivation Process of LCR via ADMM and augmented Lagrange method.

We choose TSC [18] for R(·) and RSF [21] for D(u, f). The rationale for these
selections is explained in Section 4.4. During the optimization process, several
new parameters are introduced, u represents the input image, and ∇ denotes the
gradient operator. We introduce a relaxation variable v = ∇u to decouple the
problem, and a auxiliary variable p, such that < p, v >= |v| to prevent division
by zero errors. ∆ refers to the Laplace operator, while w serves as the multiplier
in the augmented Lagrange method. µ, β, α, η and λi are non-negative constant
parameters. ϕ is the level set function, and δ(·) and ei follows the definition in the
original RSF[21] paper. Finally, we embed the equivalent first-order optimality
condition of Eqn. (7) in residual form as a loss function into the neural network:LData = η∆u−∇ · [w + v] + µδ(ϕ) [−λ1e1 + λ2e2]

LAuxiliary = ∇(−ηu+ 2α∇ · u) + w + ηv
LRelaxation = 2β∇(∇ · p)|v| − ∇u

(8)

Our final curvature-region regularization loss is composed of the above three
residual forms of the first order optimality conditions:

LCR = LData + LAuxiliary + LRelaxation︸ ︷︷ ︸
LCurve
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Table 2: Performance comparison between our HDNeXt and other state-of-the-
art methods on the ACDC dataset

Method Backbone Resolution Dice↑ IoU↑ Hd95↓

UNet++ CNN 5122 89.01 80.43 9.24
nnUNet CNN 5123 92.61 86.52 8.63
MedNeXt CNN 1283 91.36 84.41 5.91

TransUNet Hybrid 2242 90.71 84.26 8.77
PVT-CASCADE Hybrid 2242 89.62 83.03 7.32
TransCASCADE Hybrid 2242 89.07 82.84 8.99
PVT-GCASCADE Hybrid 2242 92.46 87.12 2.58

Swin-UNet Transformer 2242 91.00 84.39 3.31
MERIT Transformer 2562 91.58 86.21 4.81
MISSFormer Transformer 2242 88.90 83.66 5.34
nnFormer Transformer 5123 92.78 87.04 2.37

HDNeXt Hybrid 2242 93.59 87.62 1.53

Initially, we do not introduce the LCR loss function. Once the network pro-
duces stable predictions, LCR is incorporated to further regularize and optimize
the network. At this stage, the holistic loss function of the model consists of Dice
Loss, Cross-Entropy Loss, and LCR, with equal weights assigned to each term:

LTotal = LDice + LCross−Entropy + LCR

4 Experiment

We evaluated HDNeXt’s performance on image segmentation using the Dice
coefficient, IoU score for overall segmentation accuracy, and the 95% Hausdorff
distance (Hd95) to assess boundary precision. We use abdominal CT datasets
Chaos and cardiac MRI datasets Cardiac as auxiliary datasets for SimMIM pre-
training strategy [39].

Comprehensive comparisons across these datasets were conducted against
state-of-the-art models, including CNN-based architectures (UNet++ [45], nnUNet
[14], MedNeXt (2D) [34]), Transformer models (Swin-UNet [1], MERIT [31],
MISSFormer [12], nnFormer [44]), and hybrid architectures (TransUNet [4],
PVT-CASCADE [29], TransCASCADE [29], PVT-GCASCADE [30]).

4.1 ACDC Dataset Comparison Experiment

Table 2 compares the performance of HDNeXt with various state-of-the-art seg-
mentation models on the ACDC dataset, showcasing HDNeXt’s superior per-
formance.mong the evaluated models, HDNeXt, a hybrid architecture, demon-
strates the highest Dice score of 93.59% and the highest IoU of 87.62%, beating
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Fig. 7: Qualitative results on ACDC dataset. (a) Origin image. (b) Ground truth.
(c) MedNeXt. (d) PVT-CASCADE. (e) PVT-GCASCADE. (f) MISSFormer. (g)
nnFormer. (h) Ours.

nnFormer by 0.81% and 0.58% respectively. HDNeXt also achieves the lowest
Hd95 index of 1.53mm2, which indicates more precise contour delineations com-
pared to its counterparts. For instance, PVT-GCASCADE and the transformer-
based nnFormer model record higher Hausdorff distances of 2.58 mm2 and 2.37
mm2, respectively, suggesting less accuracy in capturing boundary details.

We selected competitive models for visualization based on their performance
metrics on the ACDC dataset. As shown in Figure 2, visible results illustrates
the comparison of our segmentation results with those of other models under
different conditions (ES/ED) and various instrument settings. The visualization
results clearly demonstrate that our segmentation achieves superior overall and
edge accuracy, as well as enhanced stability.

4.2 Synapse Dataset Comparison Experiment

Table 3 compares HDNeXt with leading segmentation models on the Synapse
dataset. HDNeXt achieves a Dice coefficient of 84.38%, slightly surpassing MERIT
(84.03%) and indicating improved segmentation consistency. Notably, HDNeXt
also excels in boundary accuracy, with a significantly lower Hd95 value of 10.53mm2

compared to PVT-GCASCADE’s 13.23mm2. PVT-CASCADE and TransCAS-
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Fig. 8: Qualitative results on Synapse dataset. (a) Origin image. (b) Ground
truth. (c) MedNeXt. (d) PVT-CASCADE. (e) PVT-GCASCADE. (f) MISS-
Former. (g) nnFormer. (h) Ours.

CADE, achieve Dice scores of 81.06% and 82.68% but fall short in boundary
accuracy, with Hd95 values of 20.23 mm2 and 17.34 mm2.

Figure 8 visualizes segmentation results on the Synapse dataset, sampling
three longitudinal abdominal CT slices (high, medium, low positions). Thanks to
the DyNeXt module, HDNeXt consistently outperforms other models, especially
on challenging Synapse samples.

4.3 Ablation Study on Network Components

Table 4 illustrates the ablation study results for the HDNeXt model variants
on both Synapse dataset and ACDC dataset. The baseline model MedNeXt
(2D Version) achieves a Dice score of 79.92% and a Hd95 of 25.19 mm2 on
Synapse and a Dice score of 91.08% and a Hd95 of 6.33 mm2. This serves as the
foundational performance metric for further enhancements.

The integration of the DyNeXt module yields a substantial performance
boost, raising the Dice score to 82.98% and reducing Hd95 to 19.49 mm2 on
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Table 3: Performance comparison between our HDNeXt and other state-of-the-
art methods on the Synapse dataset

Method Backbone Dice↑ Hd95↓

UNet++ CNN 76.03 33.26
nnUNet CNN 76.63 25.26
MedNeXt CNN 80.62 22.68

TransUNet Hybrid 77.48 31.69
PVT-CASCADE Hybrid 81.06 20.23
TransCASCADE Hybrid 82.68 17.34
PVT-GCASCADE Hybrid 83.06 13.23

Swin-UNet Transformer 79.13 21.55
MERIT Transformer 84.03 14.52
MISSFormer Transformer 81.96 18.20

HDNeXt Hybrid 84.38 10.53

Table 4: Network Components Ablation studies on the Synapse and ACDC.
Synapse ACDC

Method SimMIM CNN DyNeXt ViT PNFA Skip LCR Dice↑ Hd95↓ Dice↑ Hd95↓

MedNeXt ✓ ✓ 79.92 25.19 91.08 6.33
✓ ✓ ✓ 80.53 22.68 91.36 5.91

HDNeXt

✓ ✓ ✓ 82.98 19.49 92.51 5.34
✓ ✓ ✓ ✓ ✓ 83.37 22.31 92.63 5.08
✓ ✓ ✓ ✓ ✓ ✓ 83.82 15.52 93.03 4.67
✓ ✓ ✓ ✓ ✓ 83.48 19.36 92.59 4.98
✓ ✓ ✓ ✓ ✓ 83.53 22.47 92.67 5.14

HDNeXt +LCR ✓ ✓ ✓ ✓ ✓ ✓ ✓ 84.38 10.53 93.59 1.53

Synapse, while enhancing the Dice score to 92.51% and lowering Hd95 to 5.34
mm2 on ACDC. The addition of the Vision Transformer (ViT) as an auxiliary
feature extraction branch, coupled with the PNFA module for feature fusion,
further amplifies model performance. The complete HDNeXt configuration, in-
cluding SimMIM, DyNeXt, ViT, PNFA, and skip connections, achieves a Dice
score of 83.82% and a Hd95 of 15.52 mm2 on Synapse, along with a Dice score of
93.03% and a Hd95 of 4.67 mm2, underscoring its robust feature representation
and effective feature integration capabilities.

The HDNeXt + LCR configuration further refines the Dice coefficient to
84.38% with a notable reduction in Hd95 to 10.53 mm2 on the Synapse dataset,
along with improvements in the Dice score to 93.59% and Hd95 to 1.53 mm2

on the ACDC dataset. underscoring LCR’s efficacy in enhancing boundary de-
lineation accuracy and achieving significant advancements in edge refinement.
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14 Cao et al.

Table 5: Comparison Study on Curvature Regularization Term TAC, TRV, and
TSC (Left) and Data Fidelity Term: CV, RSF, MICO, ALF, and RLSF (Right).

Curvature Synapse ACDC Data Synapse ACDC
Model Loss Dice↑ Hd95↓ Dice↑ Hd95↓ Model Term Dice↑ Hd95↓ Dice↑ Hd95↓

HDNeXt

— 83.82 15.52 93.03 4.67 — 84.04 12.77 93.19 2.37
+TAC 83.99 13.91 93.18 2.84 HDNeXt +CV 83.25 14.97 91.80 4.18
+TRV 84.02 16.32 93.21 3.63 +LCurve +RSF 84.38 10.53 93.59 1.53
+TSC 84.04 12.27 93.19 2.37 +MICO 84.46 14.81 93.33 1.25

+ALF 84.45 11.37 93.39 1.07
+RLSF 83.90 22.03 93.53 2.14

4.4 Ablation Study on LCR Components

We conducted an ablation study on the components of LCR, exploring different
curvature regularization strategies (TAC[17], TRV[2], TSC[18]) and data fidelity
terms (C-V[3], RSF[21], MICO[20], ALF[26], and RLSF[27]), with results sum-
marized in Table 5. The results indicate that selecting TSC as the curvature
term and RSF as the data fidelity term yielded the best performance on both
the Synapse and ACDC datasets, resulting in an increase in Dice score from
83.82% to 84.38% and a reduction in Hd95 from 15.52 mm2 to 10.53 mm2 on
the Synapse dataset and a Dice score improved from 93.03% to 93.59%, and the
Hd95 index decreased from 4.67 mm2 to 1.53 mm2 on the ACDC dataset.

It is important to note that due to the flexibility of the variational-based
energy functional in Eqn. (7), these choices are not fixed. Different combinations
may outperform the current configuration. Our selection was primarily based on
experimental outcomes. Further research in this area holds significant value.

5 Conclusion

In this paper, we present HDNeXt, a segmentation network featuring the DyNeXt
module, a dynamically adaptive large-kernel convolution that enhances segmen-
tation performance and consistency. We also propose a meticulously designed
loss function, LCR, based on curvature regularization and regional energy terms,
which improves boundary accuracy and can be viewed as a plug-in loss function
applicable to other segmentation tasks.

Our extensive experiments substantiate that HDNeXt attains state-of-the-
art performance in 2D medical image segmentation, highlighting the efficacy of
our proposed methodologies and contributions. We intend to further evaluate
the method’s robustness across diverse datasets and aim to extend LCR to a 3D
formulation, facilitating its application to 3D segmentation in future work.
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