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Abstract. The three-dimensional reconstruction of the aorta plays a
crucial role in assisting minimally invasive vascular interventions to treat
coronary artery disease, aiding surgeons in finding the optimal proce-
dural angles for locating and delivering intervention devices. However,
existing reconstruction methods face challenges such as weak imaging
capability for low-density tissues in X-rays, limiting the accurate cap-
ture and reconstruction of the aorta and other blood vessels. To ad-
dress these challenges, we propose PARNet, a deep-learning approach
for 3D aortic reconstruction from orthogonal X-rays. PARNet leverages
pre-training information to extract global and local features using Aortic
Reconstruction with Background X-rays (ARB) module and Aortic Re-
construction with Mask X-rays (ARMask) module, respectively, thereby
enhancing the model’s reconstruction performance with more aortic de-
tails. Additionally, customized loss functions are introduced to adapt to
the low-density characteristics of the aorta. The results demonstrate that
our method outperforms existing approaches, producing results that are
visually closest to the ground truth on mainstream datasets.

Keywords: 3D aortic reconstruction · GAN · Pre-trained.

1 Introduction

Cardiovascular disease has a high mortality rate [30], with coronary heart dis-
ease(CHD) being one of the most prevalent, primarily due to vascular stenosis
or occlusion, which leads to myocardial ischemia, hypoxia, or necrosis. Patients
with coronary heart disease typically undergo minimally invasive vascular inter-
vention, involving percutaneous puncture of the thigh or arm, guiding devices
through the aorta to the lesion site, where the stenosed vessel is dilated, and
a stent is placed to restore normal blood flow. Therefore, the aorta, which can
carry out internal blood delivery [27], is essential for the delivery of interven-
tional devices. To assist surgeons in accurately locating interventional devices
during surgery, the digital subtraction angiography (DSA) system is commonly
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(a) Illustration of the PARNet for aorta
reconstruction from X-rays to 3D visual-
ization results

(b) 2D/3D aortic visualization results for
interventional surgeries

Fig. 1: (a). Illustration of the proposed method for aorta reconstruction from X-
rays to 3D visualization results. (b). The 2D/3D aortic visualization results for
interventional surgeries. The first row shows that DSA systems can only produce
2D X-rays during the balloon catheter delivery. However, our method (see sec-
ond row) can provide a 3D visualization of the aorta to simulate the guidewire
delivery process and assist surgeons in delivering interventional devices. Sur-
geons can rotate to view multiple views of the aorta through the 3D Mouse, a
six-dimensional manipulator in the bottom right corner.

used to generate X-rays (see Fig 1b), which map the devices’ positions within
the patient’s blood vessels[10].

In vascular interventional surgery, X-rays are advantageous due to their fast
imaging speed, lower radiation damage compared to CT [35], low cost, and con-
venient process [38]. As a result, surgeons can only use the two-dimensional X-ray
images generated by DSA to guide interventional procedures with experience and
imagination. In this case, providing surgeons with valuable 3D vascular infor-
mation by developing a method to convert 2D aortic X-rays into 3D CT images
holds great practical value. Due to the possibility of artifacts in the reconstruc-
tion of small vessels such as coronary arteries affecting the accuracy, this method
cannot completely replace DSA. However, it can accurately reconstruct vascular
structures like the aorta, providing clinically valuable 3D information during in-
terventional surgery where CT imaging equipment is limited. 3D visualization of
the aorta and other blood vessels can help surgeons locate the interventional de-
vices and determine the optimal operating angle for their delivery (see Fig 1b),
thereby improving the accuracy and safety of surgery and reducing radiation
exposure for patients.

Due to the characteristics of X-rays, smaller anatomical tissues often lack
distinct features and are occluded by denser surrounding tissues and organs, so
the 3D reconstruction of the aorta faces great challenges [29, 23]. To assist sur-
geons in minimally invasive vascular interventional procedures, we designed a
deep learning method called PARNet to convert 2D X-rays into 3D aortic CT
images. We used digitally reconstructed X-ray images (DRRs) [28] to simulate
X-rays and generate paired datasets. We also used CycleGAN [47] to learn the
style of real X-rays to make up for the gap between DRR images and real X-rays
[4, 5, 45]. Based on the central architecture of Generative Adversarial Networks
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PARNet: Aortic Reconstruction from Orthogonal X-rays 3

(GANs) [31], as shown in Fig 1a, PARNet takes the orthogonal X-rays of the
human chest obtained by the above process as input and outputs 3D CT result
containing the aorta. In addition, PARNet obtains the aortic X-ray map by pre-
training as input information. Finally, using the automatic segmentation tools
TotalSegmentator [37, 19] to obtain three-dimensional CT data of the aorta and
visualization separately. Overall, this study enhances PARNet by incorporating
pre-training information on aortic X-ray surface features and additional tech-
niques to achieve a more accurate 3D reconstruction of the aorta. The specific
contributions of this study are as follows.

1) A novel deep learning-based network, the PARNet, is designed, which uti-
lizes aortic X-rays from pre-training information, enabling 3D aortic reconstruc-
tion through comprehensive orthogonal 2D X-rays, culminating in the acquisition
of reconstructed aorta results using an automated segmentation tool.

2) The ARB and ARMask modules are proposed to improve model perfor-
mance. PARNet uses the ARMask module to extract pixel-level features as local
features from pre-training aortic X-rays and performs feature fusion with the
global spatial feature information extracted from chest orthogonal X-rays by
the ARB module. This approach enhances PARNet’s perception of aortic fea-
tures, avoids the loss of aortic feature information, and improves reconstruction
accuracy.

3) To enhance PARNet’s 3D reconstruction capabilities, a customized loss
function is implemented to help accurately reconstruct low-density soft tissues
like the aorta, preventing the loss of reconstruction details.

2 RELATED WORKS

To provide valuable preoperative information for surgeons, it is imperative to
develop 3D visualizations of the aorta and other blood vessels. While certain
studies have successfully automated the meticulous reconstruction of 3D vascu-
lar structures, including the aorta, from chest CT scans [42, 15], these methods
rely on three-dimensional CT data for vascular reconstruction. However, dur-
ing surgical procedures, it is more feasible to obtain X-rays of patients. The
aforementioned methods are incapable of directly deriving the necessary 3D re-
construction from X-rays, thus failing to meet the visualization requirements of
vascular interventional surgeries.

Other studies have focused on visualizing and reconstructing the aorta and
other vasculature based on thoracic and pulmonary reconstructions [16, 22, 40],
but these methods do not generate images comparable to three-dimensional CT
scans. However, due to the lower radiation exposure [35] and widespread use
of X-rays for vascular imaging, the 3D reconstruction of anatomical structures
from 2D X-rays has long been a significant research focus in the field of medical
imaging.

Recent advancements in 3D reconstruction from X-ray images have predom-
inantly relied on deep learning techniques, with numerous research teams pio-
neering innovative approaches employing convolutional neural networks (CNNs),
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GANs, and transformer models to attain high-accuracy 3D anatomical recon-
struction from single or dual-view X-ray perspectives [25, 2]. Other studies are
concerned with 3D reconstruction based on sparse or limited view X-rays and
require a large number of simulations of multi-view projection results [7, 6, 43,
41, 9]. Henzler et al. [16] developed a deep CNN method that initially learns a
coarse fixed-resolution volume and then fuses it with input X-rays to produce
a high-resolution volume, ultimately generating the full 3D skull. Shen et al.
[34] utilized deep learning to map projected X-rays of patients to their corre-
sponding 3D anatomical structures, generating volumetric X-ray tomography
images from a single projection view to reconstruct regions such as the upper
abdomen, lungs, and head and neck. Kasten et al. [21] designed an end-to-end
convolutional neural network method capable of directly reconstructing the 3D
structure of knee joints from orthogonal X-rays, effectively learning the shape
distribution of bones from training images. In the context of sparse view CT
reconstruction, Wang et al. [36] proposed a deep learning model called DIDR-
Net, which achieves 3D reconstruction and detail recovery through an iterative
reconstruction sub-network and a detail recovery sub-network.

Ying et al. [39] were the first to leverage the advantages of GANs to recon-
struct CT volumes from orthogonal X-rays. The proposed X2CT-GAN benefits
from the additional views, enabling high-quality image synthesis and extracting
finer anatomical structures, such as blood vessels within the lung. Since then,
most related research has been carried out based on CNNs and GANs, which
are also the main architectures of our proposed PARNet. Saravi et al. [32]
proposed an improved method of X2CT-GAN and Gao et al. [12] proposed
3DSRNet, demonstrating the potential of GANs for synthesizing orthogonal X-
rays for 3D spine reconstruction. Saravi et al.. effectively utilized feature fusion
techniques to combine information from multiple views. Gao et al.. employed
the CNN-transformer framework and detail extraction method for pixel-level re-
construction, which inspired the design of PARNet, particularly in integrating
local and global features to enhance the accuracy of aortic reconstruction. Zhang
et al. [44] proposed XTransCT, a super-fast volume CT reconstruction method
using a transformer framework, achieving significant progress in reconstruction
speed.

Despite the potential adaptability of these methods for aortic reconstruc-
tion, they still face significant hurdles in effectively handling low-density vascu-
lar tissue details in 2D X-rays. Existing techniques heavily rely on CNNs and
transformers to extract features from orthogonal 2D X-rays of the human chest,
often falling short in capturing sufficient aortic feature information. Moreover,
the presence of high-density organs like bones, which can obscure aortic imaging,
exacerbates the challenge. Crucial low-level features may be lost in deep convo-
lutions, impeding the extraction of precise high-level details from the extensive
sensory field. This, in turn, leads to blurring and loss of image information,
undermining their efficacy in practice. Therefore, the accuracy of existing meth-
ods for reconstructing 3D geometry from 2D X-rays of the aorta still requires
improvement.
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3 Method

In this paper, we introduce PARNet, an orthogonal 2D X-ray-based network that
leverages pre-training information within a generative adversarial framework for
3D CT image reconstruction of the aorta. Consistent with other 3D GAN archi-
tectures, our network comprises a 3D generator and a 3D discriminator. In this
cross-modal application scenario, our method facilitates competition between
the generator and discriminator during the training phase, ingeniously recre-
ating the rich 3D details of the aorta through a self-learning mechanism. The
overall architecture of the reconstructed network is depicted in Fig 1a. Within
the human chest, low-density anatomical tissues such as the aorta exhibit dif-
ferent imaging details compared to high-density tissues like bone, with these
features varying across different regions. Building on this understanding, this
paper employs aortic X-rays obtained through pre-training as extra information
input.

The ARB and ARMask algorithms are proposed to enhance reconstruction
ability by utilizing both the global structural information of chest X-rays and the
local details of the aorta obtained from pre-training information respectively and
fuse these features effectively. Specifically, the ARB module extensively extracts
the global structural information of orthogonal chest X-rays as background in-
formation, while the ARMask module processes the pre-training features from
aortic X-rays as focused local attention features to enhance the model’s visual
field perception of the aorta. The results obtained by these two modules are
fused and output to the generator’s decoding module to enhance the aorta’s de-
tailed features. Additionally, PARNet integrates ASPP from 3DSRNet [48, 12]
with transformer and other modules, with the proposed T-ASPP maximizing
the utilization of global features and low-level detail information to enhance re-
construction ability. Together, these methods contribute to PARNet’s efficacy
for 3D reconstruction of aortic vessels. These methods are described in detail
below.

3.1 Generator Architecture

The overall architecture of the generator network is shown in Fig 2a. The genera-
tor network comprises two encoder-decoder networks with identical architectures
for posteroanterior (PA) and lateral (LA) X-ray inputs, respectively. By intro-
ducing convolutional layers for feature extraction, the encoder-decoder network
learns a mapping in the feature space from the input 2D X-rays to the target
3D CT images. Parallel skip connections are utilized for feature extraction to
augment the original detail information. Additionally, a separate set of encoders
is specifically designed for extracting feature information from pre-training aor-
tic X-rays. After fusing these feature representations with the feature output
extracted by the encoder from the orthogonal X-ray input, the fusion result is
fed into the feature fusion network of the generator. This feature fusion net-
work captures and backpropagates any structural inconsistencies between the
outputs of the two decoders, ensuring that the visual constraints of both views
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(a) Architectural details of the generator

(b) Network architecture of the ARB mod-
ule

(c) Network architecture of the ARMask
module

Fig. 2: (a). The framework of the generator. Two parallel encoders extract fea-
tures from two orthogonal input images. ARB in (b) and ARMask in (c) are two
modules that can obtain more features of aortic images.

are enforced. The decoder part consists of 3D deconvolution layers, which are
responsible for generating the 3D CT image and ultimately producing and vi-
sualizing the 3D reconstruction result of the aorta using segmentation tools. In
addition, a feature map dimension transformation module is introduced between
the encoder and decoder parts of the network to expand the 2D feature map to
a pseudo-3D feature map. This proposed method preserves rich low-level infor-
mation, enhancing the strong correlation between input and output regarding
shape and appearance.

The generator network uses a pyramid-like convolutional neural network
encoder-decoder architecture to aggregate local features hierarchically. Although
CNNs can effectively extract 2D features through the above multiple pyramid-
like convolutional layers, these features alone are not sufficient for 3D aortic
reconstruction. Therefore, we adopt the T-ASPP module [12], which integrates
atrous spatial pyramid pooling (ASPP) and transformer algorithm as skip con-
nections to improve the accuracy and completeness of reconstruction. The gen-
erator feature fusion network is connected, and the fusion feature results are
inputted. This enables the generator network to focus on both high-level at-
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tributes and low-level details of the image to produce the final 3D output and
enhance the effectiveness of 3D aortic reconstruction. In summary, PARNet can
achieve richer and more detailed 3D aortic structure reconstruction.

3.2 Pre-training Process

In the 3D reconstruction of the aorta, mitigating the impact of high-density
organs like bones on aortic feature extraction, aiding the model in extracting
sufficient high-level features from 2D X-ray images, and enhancing the abil-
ity to capture key aortic features from the extensive sensory field accurately is
paramount. Drawing inspiration from the pre-trained model [24], our research
embarks on a similar path. PARNet leverages pre-training information through
the pre-training process to improve the specificity of the generative adversarial
network in the 3D aortic CT reconstruction task and enhance reconstruction
performance. Unlike the typical pre-training process of general deep learning
models, PARNet does not retain hyperparameters such as weights after pre-
training. Instead, it uses the X-rays of the aorta as input information for the
model. During the model pre-training process, the generator utilizes only chest
orthogonal X-rays as input information, without separate aortic X-rays as ad-
ditional pre-training information. In this state, where the ARB and ARMask
modules are not yet employed for feature detail extraction and fusion, the model
is pre-trained to obtain 3D CT reconstruction results of the entire chest. The
output of the pre-trained model is then processed using a segmentation tool to
isolate the 3D CT data of the aorta. Finally, digitally reconstructed radiograph
(DRR) technology [28] generates 2D X-rays of the aorta as the final pre-training
results, providing richer pre-training information for subsequent training. Incor-
porating the pre-trained 2D X-ray of the aorta into the model as input for the
ARMask module enhances the input information for the generator, improving
the model’s perception and attention to aortic feature details. Subsequent ex-
periments demonstrate that this method effectively improves the accuracy and
detail performance of 3D aortic reconstruction.

3.3 Aortic Reconstruction with Background and Mask X-rays
Modules

In the aortic reconstruction task, we aim to fully leverage the global structural
information of the human chest and the local detail information of the aortic
vessels from the pre-training information to enhance reconstruction capability.
To achieve this, we propose the ARB algorithm module and the ARMask al-
gorithm module shown in Fig 2b and Fig 2c, inspired by [8], building on CNN
feature extraction. These modules use a branch feature extraction and fusion
method to meet our objectives better. The ARB algorithm module is designed
to extract the global structural information from the human chest orthogonal
X-rays as background information, while the ARMask algorithm module focuses
on the aortic X-ray features from the pre-training information. The feature ex-
traction results from both module branches are then fused and input into the
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feature fusion network of the generator to provide detailed features. Detailed
descriptions of these two modules are provided below.

The human chest orthogonal X-ray is processed through the encoder’s layered
convolution to obtain the feature map. Specifically, the feature maps from layers
2 to 5 of the encoder are selected as the input for the ARB algorithm module,
allowing for a more comprehensive acquisition of the global receptive field of the
chest X-ray. The ARB module employs multiple convolutional layers, normaliza-
tion layers, and activation layers to perform transformer operations effectively.
This enhances the intermediate layers of PARNet with a larger receptive field,
enabling the full extraction of key features from the global structural information
of the chest X-rays. Additionally, compared to methods employing inter-channel
attention and pixel attention, spatial attention used in the ARB module offers
a favorable trade-off between transmission speed and spatial resolution perfor-
mance [8]. It effectively balances the trade-off between resolution accuracy and
computational resource consumption. We employ average pooling within the
spatial attention module to compress features into two dimensions, generating
two-dimensional attention masks. This process injects global information into
the output features, thereby enhancing the CNN network training process. The
specific steps of ARB are as follows.

I0 = GCNN(X0), I1 = GTrans-Spatial (I
′
0) (1)

GTrans-Spatial (I
′
0) = Spatial Attention(Q,K, V ). (2)

where I0 represents the feature maps generated by the middle layers of the CNN
from the input image X0. Meanwhile, I ′0 denotes the intermediate features de-
rived from I0, and I1 represents the predicted feature maps after being processed
by the spatial self-attention mechanism with query (Q), key (K), and value (V )
from I ′0, along with the dimension (d).

To provide more feature details for 3D aorta reconstruction, the ARMask al-
gorithm module is specifically designed to treat the pre-training information in
Fig 3.2, primarily focusing on extracting detailed features from 2D aortic X-rays.
Much like ARB, ARMask employs feature extraction techniques that facilitate
independent extraction of underlying image information and multi-scale detail
information from aortic X-rays within the pre-training information embedded
in the generator network. These extracted features are subsequently fused with
background features extracted by the ARB module branch. Following multi-layer
feature extraction of the input through CNN, the feature map from layer 2 to
layer 5 in the middle part of the encoder serves as input to the ARMask branch.
While these shallow features are inputted into the transformer branch of AR-
Mask, a distinct attention module is employed. ARMask utilizes Pixel Attention
(PA) [46] to discern X-ray color and shape (edges). Through this process, PA
generates 3D attention masks without any pooling or downsampling, ensuring
that the output feature maps retain rich local information to be focused on.
Furthermore, PA boasts fewer parameters than spatial attention (SA), enabling
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it to achieve more precise attention features. The specific steps of ARMask are
as follows.

I2 = GCNN(X2), I3 = GTrans-Pixel (I
′
2) (3)

GTrans-Pixel (I
′
0) = Pixel Attention(Q,K, V ) (4)

where I2 represents the feature maps generated by the middle layers of the CNN
from the input image X2, while I ′2 denotes the intermediate features derived
from I2, and I3 represents the predicted feature maps processed by the pixel
self-attention mechanism.

Drawing inspiration from extraction and fusion of feature branches [11], our
PARNet employs a similar hybrid fusion of feature branches from the ARB and
ARMask as follows,

IO = l(α) ∗ I1 + (1− l(α)) ∗ I3 (5)

where I1 and I3 represent the output images of the spatial and pixel branch
networks, respectively, and the parameter l(α) is a learnable parameter of the
activation function, constrained between 0 and 1.

3.4 Loss Functions

To ensure stable and efficient convergence during the training of the aortic re-
construction model within the GAN framework, we have devised a customized
loss function comprising multiple components. Firstly, to ensure that the gen-
erated 3D results align with the semantic information provided by the input
2D X-rays, it is crucial to enforce a constraint that minimizes the discrepancy
between the generated CT image and the ground truth in terms of voxel values.
Traditionally, this is achieved by introducing the Mean Squared Error (MSE)
loss function, formulated as follows,

LGAN (G) = EMSE∥y −G(x)∥22 (6)

where x is the input of the 2D X-ray image and y is the 3D CT volume.
Besides, motivated by the challenges posed by Federated Learning (FL) [13],

we introduce the Weighted Gradient Smoothing (WGS) loss function. As shown
below, the WGS loss function aims to reduce noise and discontinuities in gener-
ated images, thereby preventing the generator from overfitting the training data
and improving the model’s generalization ability.

LWGS =
∑
i,j,k

(
1− l(β)

2

(
(G(x)i,j+1,k −G(x)i,j,k)

2

+ (G(x)i+1,j,k −G(x)i,j,k)
2
)
+ l(β)

(
(G(x)i,j,k+1 −G(x)i,j,k)

2
)) (7)
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where G(x) represents the pixel value and β is the weighting coefficient for
the three directions, which we adjust to fit the input aortic data.

In addition to the WGS loss function, in the frequency domain, the following
adjustments to the function [20] are necessary to accommodate the characteris-
tics of low-density aortic structures.

G(a, b, c) =

X−1∑
x=0

Y−1∑
y=0

Z−1∑
z=0

I(x, y, z)f(e) (8)

f(e) = e−i2π( ax
X + by

Y + cz
Z ) (9)

where I(x, y, z) represents the pixel values of the aortic data in the space. We
redefine the weighting function W (u, v, w) using a three-dimensional Gaussian
function to reflect the characteristics of low-density structures. The 3D loss func-
tion to constrain the generated structure in the frequency domain is as follows,

W (p, q, r) = G(p, q, r) = Ga, Z =
1

XY Z
Gm = |Gr(p, q, r)−Gf (p, q, r)|m

(10)

L3D = Z ×
X−1∑
p=0

Y−1∑
q=0

Z−1∑
r=0

W (p, q, r)G2 (11)

where G(u, v, w) represents the 3D Gaussian function, and the dynamic scaling
factor a is an integer not less than 1 to meet the special flexibility requirements
of the aortic structure.

We combined various loss components to integrate the above information
into a unified loss function within the GAN framework and obtain the following
final loss function for aortic reconstruction.

Lall = λGAN · LGAN(G) + λWGS · LWGS

+ λ3D · L3D
(12)

where λGAN , λWGS , and λ3D are parameters that control the relative importance
of each loss function. It is necessary to focus on the local feature information of
the aorta. Therefore, we let λGAN = 0.3, λWGS = 0.4, and λ3D = 0.3.

4 Experiments

To evaluate the performance of PARNet, we selected several public human chest
datasets, including LIDC-IDRI [3], VerSe ’20 [33], VerSe ’19 [33], and LungCT-
Diagnosis [14], totaling 1200 CT datasets for this study. The voxel spacing of all
CT data and the image size of input X-rays were resampled and adjusted to the
same value. To validate the effectiveness of our method and its improvements,
we conducted comparative experiments with four mainstream algorithms: PSR
[34], X2CT [39], XTransCT [44] and 3DSRNet [12]. To be fair, we only compared
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algorithms based on X-ray-CT paired learning. PSR takes a single X-ray as
input, while X2CT, 3DSRNet, and XTransCT are based on the GAN framework
and use orthogonal X-rays as input data, which is consistent with our method.
We will conduct a fair comparison and comprehensive analysis of our proposed
method against other mainstream methods based on multiple metrics, including
Peak Signal-to-Noise Ratio (PSNR) [17], Cosine Similarity (CS), Mean Absolute
Error(MAE) and Mean Squared Error (MSE) [1].

4.1 Datasets

To validate our proposed CT reconstruction method, ideally, we need to con-
struct a large dataset containing paired X-ray projections and corresponding CT
reconstructions. However, in practical scenarios, such datasets are often scarce
and costly to collect. Therefore, we adopt the DRR technique to simulate corre-
sponding X-rays from actual CT volumes, aiming to reduce costs while enriching
the dataset. Furthermore, our utilized reconstruction algorithm dataset com-
prises 1200 pairs of data, with 1000 for training, 100 for validation, and 100 for
testing. Since multiple datasets were utilized in this study, the imaging modali-
ties of the data differ, having distinct capture ranges and resolutions. Therefore,
a fixed cubic region of 320× 320× 320 (mm)3 was cropped from each CT scan,
and the image size of the input X-rays was adjusted to 128× 128 pixels.

4.2 Tools for Training and Implementation Details

The specific segmentation tool to be employed in the pre-training process of
Fig 3.2 is TotalSegmentator [37, 19]. It can provide efficient segmentation in
a wide range of images, ensuring robust results. It is a powerful tool used to
isolate the aorta from the reconstruction results for pre-training and evaluation,
removing other tissues and organs, which is widely used in previous work. To
bridge the disparity between simulated synthetic X-rays from DRRs and real
X-rays, we employ CycleGAN [47] to learn the characteristics of real X-rays
onto simulated X-rays and establish the mapping relationship. Specifically, our
approach involves using 100 real X-rays from CheXpert [18] and an equal number
of randomly selected synthetic X-rays from our study’s training dataset for the
CycleGAN training process.

We used the Stochastic Gradient Descent (SGD) optimizer [26] with a decay
weight of 0.01 and momentum of 0.99 to train PARNet over a total of 300 epochs,
validating every ten epochs. The experiments were conducted on an NVIDIA
4090 GPU using the PyTorch framework, with a batch size of 2 and a learning
rate starting at 0.01 on the GPU.

5 Results

In this study, we utilized a consistent segmentation tool to assess the overall effi-
cacy of aortic reconstruction. Following established practices in related research
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[39, 32, 12, 44], our experimental findings exclusively present averages across all
datasets to assess the generalization ability and robustness of our method, ob-
jectively quantifying performance disparities and enhancements.

5.1 Quantitative Results

Based on the characteristics of aortic 3D reconstruction and the needs of vas-
cular interventional surgery, we aim to reconstruct and restore the details of
the aorta precisely. Data in Table 1 show that PARNet outperforms other 3D
reconstruction methods across all evaluation metrics.

Table 1: Average Quantitative Results of Different Methods for Aortic Recon-
struction.

Method PSNR ↑ SSIM ↑ CS ↑ MAE ↓ MSE ↓

PSR [34] 37.633 0.743 0.555 35.320 14308.362
X2CT [39] 42.355 0.849 0.704 26.358 10543.356

XTransCT [44] 38.453 0.802 0.578 30.336 13728.213
3DSRNet [12] 43.263 0.862 0.712 24.384 8356.254
Ours(PARNet) 45.153 0.881 0.741 19.378 3269.211

PARNet achieved a PSNR of 45.153, SSIM of 0.881, and CS of 0.741. Ad-
ditionally, PARNet recorded the lowest MAE and MSE values at 19.378 and
3269.211, respectively. These results demonstrate that PARNet has significant
advantages in image reconstruction quality and accuracy, particularly in produc-
ing excellent aortic CT results. Compared to the single-view method PSR, PAR-
Net, and other approaches using dual-view X-rays can capture more geometric
constraints and reconstruction information, significantly enhancing reconstruc-
tion accuracy and capability. Similar to X2CT, XTransCT, and 3DSRNet, PAR-
Net also employs a dual-view orthogonal GAN framework. Experimental com-
parisons indicate that the ARB and ARMask algorithm modules integrated into
PARNet, along with additional pre-training information, effectively extracted
more reconstruction details, thereby improving the accuracy and precision of
aortic reconstruction. These findings underscore the potential of our proposed
method in delivering detailed and accurate image reconstructions, which is es-
sential for supporting surgeons in vascular interventional surgery.

5.2 Qualitative Results

Fig 3 visually compared the aortic reconstruction results of our proposed PAR-
Net method with those of other methods qualitatively. PARNet reconstructed
the ascending aorta, aortic arch, and abdominal aorta most closely to the ground
truth compared with other methods. The sagittal view clearly illustrated the ad-
vantage of PARNet in terms of overall reconstruction completeness.
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(a) GT (b) PARNet (c) 3DSRNet (d) XTransCT (e) X2CT (f) PSR

Fig. 3: 3D visualization of qualitative results. These results demonstrate that
PARNet performs well in aortic reconstruction. Significant differences are high-
lighted in the boxes within the sagittal views in the first row and the 3D views
in the second row.

Table 2: Ablation results of PARNet. Each module was removed in turn for the
experiment, and ✓ indicated the presence of the module.

Combination Metrics

ARB+ARMsak WGS Loss 3D Loss PSNR ↑ SSIM ↑ CS ↑ MAE ↓ MSE ↓

✓ ✓ ✓ 45.153 0.881 0.741 19.378 3269.211
✓ ✓ 43.218 0.855 0.721 24.897 8305.419

✓ 42.355 0.849 0.714 26.358 10543.356
38.601 0.723 0.654 33.725 15264.377

5.3 Ablation Study

To assess the effectiveness of the proposed innovative module, we conducted a
series of ablation experiments on PARNet with various settings. We deactivated
these modules in turn in four experiments and the 3D visualization results are
shown in Fig 4 (b)-(e).

Through the ablation experiment results in the Table 2, we can observe
the impact of different modules on the performance of PARNet. These abla-
tion experiment results highlight the effectiveness of each module in enhancing
reconstruction performance.

5.4 Evaluation on Real-World Data

In addition to experimenting on the dataset, we also conducted experiments on
clinically acquired real X-ray data CheXpert [18], verifying the effectiveness of
the PARNet algorithm, as shown in Fig 5.
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(a) (b) (c) (d) (e)

Fig. 4: 3D reconstruction results of ablation study. (a) is the ground truth, and
(b) - (e) are the results of the four ablation experiments.

6 Conclusion

This study proposed a deep learning method, PARNet, for three-dimensional
aortic reconstruction based on orthogonal X-rays. PARNet utilized pre-trained
generated aortic X-rays as pre-training information to enhance its accurate per-
ception of low-density tissues like the aorta, enriching the final details of aortic
reconstruction and improving the model’s reconstruction performance. Finally,
experiments verified the effectiveness of each innovative module of the proposed
method, demonstrating its superiority over existing methods. The model’s effec-
tiveness was further validated using clinical real-world data, demonstrating its
capability to furnish surgeons with valuable three-dimensional vascular informa-
tion.

(a) (b) (c) (d) (e)

Fig. 5: 3D reconstruction result of clinical real data samples. (a) and (b) are
clinically acquired real orthogonal X-rays, (c) and (d) are the corresponding
simulated generated orthogonal X-rays, and (e) is the 3D reconstruction result
based on (a) and (b).
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