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Abstract. Understanding trajectories in multi-agent scenarios requires
addressing various tasks, including predicting future movements, im-
puting missing observations, inferring the status of unseen agents, and
classifying di!erent global states. Traditional data-driven approaches of-
ten handle these tasks separately with specialized models. We intro-
duce TranSPORTmer, a unified transformer-based framework capable
of addressing all these tasks, showcasing its application to the intri-
cate dynamics of multi-agent sports scenarios like soccer and basket-
ball. Using Set Attention Blocks, TranSPORTmer e!ectively captures
temporal dynamics and social interactions in an equivariant manner.
The model’s tasks are guided by an input mask that conceals missing or
yet-to-be-predicted observations. Additionally, we introduce a CLS extra
agent to classify states along soccer trajectories, including passes, pos-
sessions, uncontrolled states, and out-of-play intervals, contributing to
an enhancement in modeling trajectories. Evaluations on soccer and bas-
ketball datasets show that TranSPORTmer outperforms state-of-the-art
task-specific models in player forecasting, player forecasting-imputation,
ball inference, and ball imputation. https://youtu.be/8VtSRm8oGoE
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1 Introduction

Multi-agent systems are prevalent in various real-world scenarios encompassing
pedestrian modelling [2, 5, 25, 29, 38, 50, 51, 57, 59, 68], human pose estimation
[1,11,24,28,35,45,46,48], and sports analytics [3,30,33,71,72]. This paper focuses
on the latter, where trajectory understanding plays a pivotal role in unraveling
the inter-dependencies within multi-agent sports scenarios. This understanding
opens up diverse applications such as performance evaluation [10,15,62], scouting
[53], tactical analysis [16, 66] and event detection [21, 65]. In contrast to urban
contexts, the realm of sports requires the capturing of both individual player
influences and comprehensive team strategies, all of which involve heightened
levels of interactions and complex dynamics.

This ACCV 2024 paper, provided here by the Computer Vision Foundation, is the author-created version.
The content of this paper is identical to the content of the officially published ACCV 2024

LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/accv
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Fig. 1: TranSPORTmer is a holistic model that is able to perform multiple tasks
for trajectory understanding in multi-agent sport scenarios. The images showcase ex-
amples using soccer and basketball data for the tasks of forecasting: predicting future
trajectories given past observations; imputation: predicting agent trajectories given par-
tial observations; inference: predicting the trajectory of an unobserved agent given the
state of other ones; and state classification: assigning a semantic label to each frame of
the sequence. Continuous and dashed lines correspond to observed states and predicted
trajectories, respectively.

Despite the promising applications, challenges persist in this domain. Inher-
ent inaccuracies in optical tracking data, often arising from occlusions, pose a
significant hurdle. The substantial costs associated with adopting GPS technol-
ogy for ball tracking [36] add an extra layer of complexity. Additionally, the
intricacies introduced by o!-screen players [52,69] and the nuances of broadcast-
ing videos further contribute to the challenges in multi-agent sports scenarios.
Moreover, the annotation of a match demands a significant amount of manual
work due to the density of events and states that unfold during gameplay.

Previous research has proposed task-specific solutions for trajectory fore-
casting [13, 18, 70] and imputing missing observations [43, 52]. Some works o!er
unified frameworks capable of addressing both tasks [55,69]. However, a common
limitation across these models is the assumption that all agents have either com-
plete or partially observed data, overlooking scenarios involving entirely unseen
agents. Furthermore, several of these models rely on recursive prediction strate-
gies, potentially compromising e"ciency in match processing and performance
when modeling long-range sequences.

In the domain of unseen agent inference, recent e!orts have concentrated on
predicting both ball location [36] and player positions [20]. Nevertheless, these
approaches require additional data beyond agent locations, including velocities
and customized event data. Moreover, prior works focusing on event and state
classification using trajectory data often center around a limited set of sparse
scenarios [21] or specific events like passes and receptions [32, 36], without pro-
viding comprehensive annotation for every state of the game.

In this paper, we present TranSPORTmer, a comprehensive approach for tra-
jectory understanding in multi-agent sports scenarios. Our approach uses trans-
former encoders, or Set Attention Blocks (SABs) [17,19,37,40], to capture tem-
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TranSPORTmer 3

poral dynamics and inter-agent (or “social”) interactions, maintaining agent per-
mutation equivariance. To enhance adaptability, we use a socio-temporal mask
for handling missing or future observations and defining game tasks like predict-
ing opponent movements. Building on CLS tokens [17], we introduce the CLS
extra agent for state classification at each timestep alongside trajectory comple-
tion tasks. We also implement a learnable uncertainty mask in the loss function
to improve predictions near visible observations by modeling their uncertainty.
Our method is validated on one soccer and two basketball datasets. The key
contributions can be summarized as follows:

– We develop a holistic transformer-based model that integrates trajectory
forecasting, imputation, inference, and state classification in multi-agent
sports scenarios, outperforming state-of-the-art task-specific methods.

– We propose a CLS extra agent to infer per-frame game states, achieving
robust state classification while enhancing trajectory completion accuracy.

– We implement a learnable uncertainty mask in the loss function for boundary
observations, which reflects uncertainty and leads to more accurate predic-
tions.

– We analyze the coarse-to-fine manner of our architecture in the ball inference
task, resulting in a 25% improvement over current state-of-the-art methods.

2 Related Work

This section discusses the related work in trajectory forecasting, imputation,
inference, and state classification, with a specific emphasis on multi-agent sports
scenarios.
Trajectory Forecasting consists in predicting future positions based on past
observations. In the context of multi-agent sports, earlier approaches [23, 71,
72] predicted long-term behaviors using Variational Recurrent Neural Networks
(VRNNs) [14]. However, these methods lack equivariance properties and rely
on heuristics like tree-based role alignment [44, 60] to define a specific order-
ing of the agents. The combination of VRNNs with Graph Neural Networks
(GNNs) [7], results in GVRNN [61, 70], defining an equivariant model treating
agents as nodes of a fully connected graph. This approach allows the aggrega-
tion of spatial interactions for final predictions. However, GVRNN treat agent
dependencies equally by aggregating agent information at each timestep. To
handle dependencies between di!erent agents more e!ectively, [9, 18, 22, 34, 49]
used a Graph Attention Network (GAT) [64], replacing fully connected graphs.
Transformer-based models [63] have been used in this task [3,4], demonstrating
a superior performance compared to graph-recurrent-based methods. Neverthe-
less, conducting attention in both temporal and social dimensions simultaneously
still incurs a notable computational cost. In contrast, TranSPORTmer employs
attention in both temporal and social dimensions sequentially. This design choice
results in a substantial reduction in computational cost without compromising
performance. Moreover, by departing from recursive sequence construction, our
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model gains a significant advantage in long-term sequence prediction, thanks to
its inherent look-ahead temporal property.

Trajectory Imputation involves predicting agents’ behavior in unknown frames
using available information, such as partial trajectories of the target agent. Pre-
vious research tackled value imputation in time series with an autoregressive
RNN [12]. A bidirectional GVRNN structure proposed by [52] addressed im-
puting missing agent observations in soccer games. However, due to its autore-
gressive nature, these approaches may lead to suboptimal results in long-range
sequences [27, 39]. Liu et al. [43] introduced a non-autoregressive imputation
model exploiting the multi-resolution structure of sequential data, although it
falls short in handling trajectory forecasting. Another asynchronous approach
solved imputation and forecasting tasks using imitative techniques [55]. Some
research leveraged GVRNN to handle both tasks simultaneously [69]. Similarly,
our method is equipped to handle this unified task e!ectively.

Trajectory Inference aims to predict the behavior of agents across all frames
based solely on information from other agents. This is often approached as ball
inference [6, 36]. The fusion of Set Transformers [40] with Bi-LSTM [31] has
been utilized to infer the ball trajectory and identify the ball possessor (or pass
receiver). This method relies on player trajectories and their corresponding veloc-
ities [36]. As we will demonstrate later, TranSPORTmer does not require player
velocities to infer the ball position. Moreover, it can be applied to any type of
agent, including the goalkeeper, that exhibits very particular motion patterns.

State/Event Classification: On this context, [65] applied a rule-based frame-
work to identify soccer events based on agent trajectories. [21] proposed a method
using a variational autoencoder and support vector machine to detect events such
as corner kicks, crosses, and counterattacks. Another significant work is [32], in-
troducing a pass receiver Transformer-LSTM model that integrates visual infor-
mation with player and ball trajectories. The recent work previously mentioned
for ball inference [36] can also serve as a pass receiver prediction model. How-
ever, these approaches primarily focus on limited soccer context situations such
as set pieces and often rely on robust and precise estimations of ball and/or
player trajectories. TranSPORTmer provides a more detailed coverage of events,
referred to as states, including passes, possessions, uncontrolled situations, and
transitions between in-play and out-of-play states. The model also demonstrates
robustness against missing observations, showcasing its ability to perform state
classification even with an unseen ball.

Pedestrian Motion Modeling: We review advances in pedestrian motion
modeling, noting that Becker et al . [8] found an RNN with an MLP decoder
outperformed social pooling methods [2, 29, 41] despite lacking social encod-
ing. Transformer-based models have also advanced the field, with [26] achiev-
ing strong results on the TrajNet benchmark [58] by focusing on temporal dy-
namics. Subsequent approaches [1, 25] improved social interaction modeling us-
ing transformer encoders without positional encoding. Recently, di!usion mod-
els [47,56,67] have emerged for stochastic human behavior modeling.
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3 Revisiting Attention Mechanisms

Attention mechanisms are e!ective at capturing relationships in sequences or
sets. Utilizing n queries Q and nv keys K of dimension dk, and nv values V

of dimension dv as inputs, the attention mechanism computes weighted sums of
values by assessing the compatibility between queries and keys measured using
dot or scaled dot products. The masked attention expression A(Q,K,V,M),
incorporating a binary mask M, can be written as:

softmax
(
(QK

→) + o(M)→
dk

)
V, (1)

with Q ↑ Rn↑dk , K ↑ Rnv↑dk , V ↑ Rnv↑dv , and M ↑ {0, 1}n↑nv . M determines
which keys are used in computing attention for each query. Specifically, entries
filled with zeros in M indicate keys to be included, while entries filled with ones
denote those to be excluded. The function o(·) maps 0/1 values to 0/↓↔. Note
that the softmax operator output will assign zero weight to the latter set of
keys, ensuring that similarity scores are normalized. The weighted value sum is
obtained by multiplying attention weights with their corresponding values.

In practice, attention mechanism is often extended with multiple attention
heads, also called Multi-Head Attention (MHA) [63], allowing to capture di!er-
ent aspects of the data. Instead of computing a single attention function, this
method projects Q, K, V onto H di!erent d

h
k , dhk , dhv dimensional vectors, re-

spectively. Each attention head computes its own attention weights and weighted
sum of values, and the outputs of the attention heads are concatenated or linearly
transformed to obtain the final attention output.

MHA(Q,K,V,M) is inferred using concat(head1, . . . , headh, . . . , headH)WO,
where headh = A(QW

Q
h ,KW

K
h ,VW

V
h ,M) and h = {1, . . . , H} represents the

h-th attention head. Therefore, MHA is a [n↗ d] matrix, with learnable param-
eters {WQ

h ,W
K
h } ↑ Rdk↑dh

k , WV
h ↑ Rdv↑dh

v , and W
O ↑ Rhdh

v↑d. In this work
we will use dk = dv = d and d

h
k = d

h
v = dk/H as it is standard in literature.

The MHA operation was extended [40] to operate on sets by defining the
SAB. Given one set of d-dimensional vectors and one mask determining which
vectors are used to compute the attention, denoted by X and M, respectively,
the SAB is defined as:

SAB(X,M) = LayerNorm(H+ rFFN(H)), (2)

where H = LayerNorm(X+MHA(X,X,X,M)) and rFFN(H) denotes the row-
wise feed-forward neural network applied to H. Note that SAB is an adapta-
tion of the encoder block of the transformer but lacks the positional encod-
ing. The MHA operation itself provides the property of permutation equivari-
ance, allowing SAB to e!ectively capture relationships in the absence of posi-
tional information. When no mask is provided, the SAB operation is denoted as
SAB(X) = SAB(X,0), where 0 denotes an all-zero-values mask.
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4 Method

4.1 Problem Statement

Let us consider a set of N ↑ N agent observations by including players and a
ball in our case, denoted as X = {x1

, . . . ,x
n
, . . . ,x

N} with n = {1, . . . , N},
where each observation contains the (x, y) pitch locations. We can now collect
T observations along time for every agent, defining the tensor X1:T where all
x
n
t with t = {1, . . . , T} are considered. Trajectory completion aims at inferring

missing or unobserved entries of a data structure based on the visible ones. Given
partial observations XU

1:T and a [T↗N ] binary mask M to encode by 0 the visible
observations and by 1 the unobserved ones, the goal is to find a function f1(·)
to infer the full observations such that:

f1(X
U
1:T ,M) = X1:T . (3)

Based on that idea, we can define three sub-tasks by imposing specific con-
straints on the mask M:
Trajectory forecasting: Full observability is assumed for timesteps up to t̂ <

T , with M entries for these observations set to 0.
Trajectory imputation: At least one observation per agent is available, mean-
ing at least one null entry per row in M.
Trajectory inference: This task is the most challenging, as it involves at least
one agent having no observations throughout the entire duration, meaning that
at least one entire row of the matrix M lacks null entries.

In addition, we delve into the classification of states within the game, seeking
another function that takes the same input as in Eq. (3) but generates an output
corresponding to a specific state for each timestep. These states involve the
actions pass, possession, uncontrolled, and out of play, 4 in total, all of which
are pertinent in a soccer context. Specifically, our objective is to estimate a
classification function f2(·) such that:

f2(X
U
1:T ,M) = s1:T , (4)

where s1:T is a [T ↗ 4] dimensional tensor that represents the probability distri-
bution over each game state for each timestep.

4.2 TranSPORTmer

We next present TranSPORTmer our holistic and versatile approach to address
trajectory forecasting, imputation, inference and state classification. Figure 2
depicts its main components.
Input processing: The input tensor X

U
1:T contains partial observations, indi-

cated by the input mask matrix M. We can append additional known informa-
tion to this tensor, such as the agent type, which is an integer corresponding to
each observation representing: 0 for ball, 1 for o!ensive team player, and 2 for
defensive team player. Therefore, the shape of XU

1:T can go from [T ↗M ↗ 2] to
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Fig. 2: TranSPORTmer. The architecture uses sequential Set Attention Blocks for
attention in both temporal (SABT ) and social (SABS) axes. A Positional Encoder (PE)
precedes each encoder to maintain the temporal sequence. The mask M identifies the
values to be predicted (dashed arrow), forming the complete observation tensor X1:T .
The extended mask M̄ is applied to the 2 → SABT of the first Encoderc, conveying
information about hidden and visible states. Blue-gray segments are involved in state
classification, including the CLS extra agent and the final classification head to rank
the state classes per frame. (c) operation stands for concatenation and (s) for split.

[T ↗M ↗ 3] with (x, y, agent type). Initially, XU
1:T is transformed by a row-wise

feed-forward network (rFFN), becoming an embedding tensor of dimension d.
CLS extra agent: Then a CLS tensor of dimension [T ↗ d] is appended as
an extra agent along the social axis, resulting in a [T ↗ (N + 1) ↗ d] tensor
J. To ensure consistency, the mask M̄ of dimensions [T ↗ (N + 1)] extends M,
setting all entries corresponding to the CLS extra agent to one to indicate hidden
observations. This extended mask is used in the initial SAB operations to make
a first approximation of the hidden observations using temporal information.
Coarse-to-fine encoders: The next block comprises two encoders, applied
sequentially and that operate in a coarse-to-fine manner. Formally:

J
↓ = Encoderc(J, M̄) = SABS

(
SABT

(
SABT (J+ PE, M̄), M̄

))
, (5)

Encoderf (J↓) = SABS(SABT (SABT (J
↓ + PE))) , (6)

where PE corresponds to the original positional encoder [63] to preserve tem-
poral ordering. SABT and SABS are temporal and social set attention blocks,
respectively. SABT processes individual temporal dynamics through the tem-
poral embeddings of each agent, while SABS addresses social interactions by
encoding the embeddings of all agents at each timestep. The sequential configu-
ration of SABT followed by SABS enables the implicit integration of information
from both future and past time steps through temporal attention, enhancing the
model’s ability to consider a broader temporal context in social attention.
Output construction: After passing through the encoder blocks, the output
tensor retains the dimensions of J. This output is then split into two tensors: the
encoded trajectory embeddings and the encoded CLS extra agent. The former
undergoes a rFFN operation to yield a tensor of dimension [T ↗ N ↗ 2] cor-
responding to the predicted (x, y) pitch locations. The binary mask M is then
employed to directly propagate the visible (x, y) values from the input tensor,
X

U
1:T , resulting in the full observation tensor X1:T . On the other side, the encoded
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Fig. 3: Binary mask (M) and learnable uncertainty mask (Munc) for a single agent.
Null values indicate visible observations.

CLS extra agent is reshaped and processed through another rFFN operation to
obtain probability scores for each class at each time, s1:T , of dimension [T ↗ 4].

Note that our model exhibits permutation equivariance under agent permu-
tations, as the operations along the social axis inherently maintain this property.
In this architecture, an additional mask can be employed in all SAB blocks to
ignore corrupt or NaN inputs observations not to predict, or to facilitate padding
during batching with length-varying sequences and di!erent numbers of agents
involved. We denote this mask as NaN-mask.

4.3 Loss Functions

We introduce a learnable uncertainty mask Munc, with the same dimension as
M to represent observation uncertainty. Here, Munc

n
t = 1 where M

n
t = 1, in-

dicating areas of maximum uncertainty (hidden observations). Along the time
axis, we use two learnable weights: w1 ↑ (0, 1) bounded using a sigmoid function,
and w2 := 1↓ w1. These weights are applied to the immediate neighbors of 1’s
(Munc

n
t = w1) and to the second neighbors if they are not immediate neighbors

(Munc
n
t = w2). All other values are set to null entries, signifying visible observa-

tions and, consequently, a lack of uncertainty. Extending the mask in the loss for
boundary observations to reflect uncertainty enables the model to reconstruct
them, leading to more accurate overall predictions. Figure 3 illustrates the di!er-
ences between the binary mask (M) and the learnable uncertainty mask (Munc)
for a single agent over time.

The loss function for trajectory completion uses the Average Displacement
Error (ADE) with the learnable uncertainty mask, assessing the disparity be-
tween the predictions and the ground truth:

LADE = (
N∑

n=1

T∑

t=1

Munc
n
t )

↔1
N∑

n=1

T∑

t=1

↘x̂n
t ↓ x

n
t ↘2 Munc

n
t , (7)

where x̂
n
t denotes our estimation of the n-th agent at time t, xn

t corresponds
to the ground truth. We also utilize a standard Cross Entropy (CE) loss as the
training metric for the state classification task:

LCE = ↓ 1

T

T∑

t=1

4∑

c=1

s
c
t log(ŝ

c
t), (8)

where s
c
t represents the ground truth probability of game being in state c

at time t, and ŝ
c
t is the predicted probability. The overall loss is L = LADE +
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ωLCE, where ω is a weighting factor set to ω = 4 when classifying states. In
the supplementary (suppl), we detail the training procedure and the chosen
hyperparameters.

We will study the importance of each part of the method by considering:
Ours w/o CLS (without utilizing state classification), Ours w/o Munc (using the
binary mask M instead of Munc in the loss term), and Ours w/o SOC (without
employing SABS nor state classification). Additionally, we depict combinations
of these variations.

5 Experimental Evaluation

We next present experimental results on trajectory completion and state clas-
sification, comparing our approach with competing methods. For quantitative
evaluation, we utilize the ADE metric in Eq. (7) but considering the binary
mask M instead of Munc. For trajectory forecasting, we use the Final Displace-
ment Error (FDE) to measure the final prediction deviation. We also consider
the Maximum Error (MaxErr) to capture the largest discrepancies:

MaxErr =
1

D

N∑

n=1

max
t↗{1,...,T}

(↘xn
t ↓ x̂

n
t ↘2 ·M

n
t ) ,

where D =
∑N

n=1

(∑T
t=1 M

n
t

)
, with (·) as the unit step function. For state

classification, being I(·) the indicator function, Accuracy (Acc) is computed as:

Acc =
1

T

T∑

t=1

I
[
argmax

c
(sct) = argmax

c
(ŝct)

]
.

5.1 Datasets

Soccer: This dataset comprises real soccer match data from LaLiga’s 2022-2023
season, including 283 matches. The matches are split into sequences of T = 60
frames, representing 9.6 seconds sampled at 6.25 Hz. Each frame contains 23 ob-
servations (x, y) for each one of the agents (22 players and the ball). The agent
type is known in this dataset. Goalkeepers may contain NaNs if they are not vis-
ible. To ensure consistency with prior research, the agent order is standardized.
The dataset is split into 82,954 / 7,500 / 6,258 sequences for training, validation
and testing, respectively, with each split using di!erent matches. For the state
classification task, the dataset is complemented with one state label per frame,
considering the states pass, possession, uncontrolled and out-of-play.
Basketball-VU: This dataset consists of basketball player tracking data pro-
vided by STATS SportVU from the 2016 NBA season. To evaluate our model on
player forecasting, we use the same splits as in [49]. Each sequence consists of
50 timesteps representing 10 seconds sampled at 5Hz, where each one contains
the (x, y) observations for 10 players and the ball.
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10 G. Capellera et al.

Basketball-TIP: We also consider another basketball dataset from the 2012
NBA season. Following the same splits as [71], Xu et al. [69] pre-processed it
allowing to evaluate in both player imputation and forecasting tasks, renaming
it as Basketball-TIP. This dataset employs two distinct strategies to simulate
the appearance and disappearance of players: the “circle mode” and the “camera
mode”. Each sequence consists on 50 frames representing 8 seconds sampled at
6.25Hz, each one containing the (x, y) observations for 10 players and the ball.
ETH-UCY: For completeness, we conducted an experiment using the ETH-
UCY pedestrian dataset [42, 54]. Our approach performs comparably to deter-
ministic SOTA architectures [57,68], achieving a 4.3% improvement in ADE on
the ETH subset. Detailed information and results are available in the suppl.

5.2 Player Forecasting and Imputation

First, we assess our model’s e!ectiveness in (i) soccer player forecasting
and imputation. The predicted players, referred to as agents of interest P , are
predicted using all future visible observations of conditioning agents, like the
ball and/or an opponent team. In the forecasting task, the model observes 20
timesteps (3.2s) and predicts the next 40 timesteps (6.4s) of P . The imputation
task is similar but with the final location of each player of interest set as visible.
As in previous studies [70], goalkeepers are excluded from this analysis.

In the forecasting task, we compare against the following implemented base-
lines: Velocity extrapolation, projecting agent predictions linearly based on ob-
served velocity; RNN encoder with LSTM, using shared weights, and MLP de-
coder for prediction [8]; GRNN as the non-variational version of GVRNN [70];
GRNN+Att which is the previous baseline but using GAT instead of GNNs;
Transformer which mirrors our pipeline but uses SAB to perform attention
across all timesteps of all agents simultaneously [3], as opposed to decoupling
attention in SABT and SABS ; and Ours w/o SOC. Further details of these imple-
mentations can be found in the suppl. It is important to note that Velocity, RNN,
and Ours w/o SOC operate independently for each agent, making the agents
ordering irrelevant and preventing them from utilizing any social conditioning.

Table 1 shows the results of (i) soccer player forecasting and imputation
with conditioning agents indicated in parentheses. As expected, socially aware
architectures exhibit superior performance in all metrics, particularly when the
number of conditioning agents is increased. Results for Ours w/o SOC under-
score the clear significance of SABS . Transformer achieves slightly inferior re-
sults compared to Ours w/o CLS, likely due to its flattened attention mech-
anism, which may cause confusion with the higher number of non-correlated
observations. Additionally, Transformer is approximately four times slower at
inference time (340 vs. 88 milliseconds). Furthermore, TranSPORTmer (Ours)
outperforms Ours w/o CLS in forecasting, but in the imputation task, Ours
w/o CLS achieves slightly better results, possibly due to sub-optimal ω com-
pared to forecasting. Figure 4-top shows an example on the task of forecasting
o!ensive players (second task-row in Table 1). The RNN baseline tends to gener-
ate shorter predicted trajectories, emphasizing the need for social interactions to
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TranSPORTmer 11

Predict P
(Condition)

Forecasting Imputation

Velocity RNN Ours w/o SOC GRNN GRNN+Att Transformer Ours w/o CLS Ours Ours w/o CLS Ours

Social ↭ ↭ ↭ ↭ ↭ ↭ ↭

Players
(Ball)

ADEP ↑ 5.96 4.36 4.08 4.02 3.67 2.66 2.53 2.42 1.14 1.15
MaxErrP ↑ 13.49 8.95 8.60 7.43 7.02 5.28 5.12 4.97 2.21 2.22
FDEP ↑ 13.33 8.59 8.25 6.85 6.49 4.78 4.65 4.50 - -
Acc (%) ↓ - - - - - - - 87.35 - 89.00

O!ense
(Defense+Ball)

ADEP ↑ 5.76 4.23 3.96 3.76 3.30 2.26 2.10 2.06 0.99 1.02
MaxErrP ↑ 13.04 8.72 8.39 6.84 6.31 4.45 4.27 4.21 1.92 1.97
FDEP ↑ 12.89 8.39 8.07 6.32 5.80 3.96 3.82 3.77 - -
Acc (%) ↓ - - - - - - - 88.91 - 89.69

Defense
(O!ense+Ball)

ADEP ↑ 6.16 4.49 4.20 3.47 3.22 2.14 2.01 1.98 1.03 1.04
MaxErrP ↑ 13.94 9.18 8.81 6.29 5.98 4.17 4.04 3.98 1.99 2.00
FDEP ↑ 13.78 8.79 8.44 5.69 5.36 3.63 3.55 3.49 - -
Acc (%) ↓ - - - - - - - 89.92 - 90.47

Table 1: Evaluation in (i) soccer player forecasting and imputation. Predic-
tions are generated with a time horizon of 6.4s using a prior of 3.2s. P denotes agents
of interest. For the imputation task, the last observation of each agent is visible. All
metrics, except Acc, are in meters.

Fig. 4: Qualitative evaluation in soccer player forecasting and ball inference.
Top: O!ensive player trajectory forecasting with a time horizon of 6.4s using a prior
of 3.2s. Bottom: Ball inference through the full 9.6s sequence.

enhance performance. The GRNN+Att baseline exhibits improved performance
with conditioning in long-term predictions. However, TranSPORTmer outper-
forms these baselines, yielding more realistic results aligned with ground truth
positions (see video of our results in the suppl).

Table 1 also reports the accuracy of state classification while addressing
trajectory prediction and imputation tasks. Achieving approximately 90%, these
results demonstrate the robust and consistent classification power of our model,
primarily attributed to the ball’s visibility in all tasks. The confusion matrix
in Fig. 5-left-left specifically illustrates the state classification while forecasting
o!ensive players, achieving an overall accuracy of 88.91%. It is worth noting that
the uncontrolled class exhibits less accurate predictions due to its challenging
subjective nature in annotations and an imbalance compared to the other classes.
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Predict P
STGAT [34] Social-Ways [5] GVRNN [70] GMAT [71] AC-VRNN [9] DAG-Net [49] U-MAT [22] S-PatteRNN [50] Ours w/o CLS
ICCV’19 CVPRW’19 CVPR’19 ICLR’19 CVIU’21 ICPR’21 NeurIPS’22 IROS’22

Players - - - - - 8.55/12.37 - 8.13/12.34 7.75/11.65

O!ense 9.94/15.80 9.91/15.19 9.73/15.89 9.47/16.98 9.32/14.91 8.98/14.08 9.01/13.28 - 9.19/14.24
Defense 7.26/11.28 7.31/10.21 7.29/10.62 7.05/10.56 7.01/10.16 6.87/9.76 6.88/9.04 - 6.31/9.04

Table 2: Evaluation in (ii) basketball player forecasting using Basketball-

VU dataset (ADEP/FDEP ). Predictions have a time horizon of 8s using a prior
of 2s. Results are extracted from the original works, and no agent future condition is
considered in this task. P denotes agents of interest. All metrics are in feet.

Model
r = 3ft r = 5ft r = 7ft ω = 10º ω = 20º ω = 30º

I-ADE P-ADE I-ADE P-ADE I-ADE P-ADE I-ADE P-ADE I-ADE P-ADE I-ADE P-ADE

Mean 9.07 (10.36) - 9.53 (9.44) - 9.51 (9.21) - 8.83 (8.56) - 8.64 (8.73) - 8.47 (8.92) -

Median 9.32 (10.55) - 9.82 (9.64) - 9.81 (9.44) - 9.16 (8.84) - 8.96 (9.02) - 8.75 (9.21) -

GMAT [71] ICLR’19 7.36 - 6.89 - 6.73 - 6.42 - 5.99 - 6.01 -

NAOMI [43] NeurIPS’19 7.68 - 7.08 - 7.04 - 6.33 - 6.11 - 5.91 -

LSTM [31] NeurComp 7.33 20.07 6.73 14.91 6.51 10.07 6.28 9.34 6.01 7.52 5.67 6.10

VRNN [14] NeurIPS’15 7.43 12.26 6.90 11.38 6.68 10.07 6.38 8.49 6.09 7.47 5.92 7.36

INAM [55] CVPR’20 7.35 8.93 6.93 8.24 6.80 7.68 6.50 7.32 6.13 7.10 5.92 6.96

GC-VRNN [69] CVPR’23 7.03 8.93 6.93 8.24 6.80 7.68 5.86 6.29 5.56 4.74 5.39 4.28

Our w/o CLS/Munc (5.32) (5.91) (4.71) (5.56) (4.16) (4.91) (3.60) (4.77) (3.29) (4.13) (3.08) (3.60)

Our w/o CLS (5.24) (5.89) (4.48) (5.29) (4.14) (4.90) (3.59) (4.78) (3.26) (4.09) (3.08) (3.60)

Table 3: Evaluation in (iii) basketball player unified imputation and fore-

casting using the Basketball-TIP dataset [69]. The imputation task is performed
over 6.4 seconds, and forecasting over 1.6 seconds. All metrics are in feet. Our imple-
mentation results are presented in parentheses.

Next, we evaluate the e!ectiveness of our model in (ii) basketball player
forecasting using the Basketball-VU dataset. The task at hand consists of ob-
serving 10 time-steps (2s) and predicting the following 40 (8s) of players without
future conditioning agents (refer to suppl for additional conditioning-based ex-
periments). We compare against the state-of-the-art results already published in
previous works, as shown in Table 2. Our model is trained to predict both o!en-
sive and defensive players simultaneously. Other baselines, like DAG-Net [49],
need separate training to achieve better results. The ADEP and FDEP metrics
depicted in the table demonstrate that our method outperforms in predicting
trajectories for all players and defense, using only one model trained with the
same weights. In both Soccer and Basketball-VU datasets, it can be seen that
in general, forecasting o!ensive players is more challenging than defensive ones.

Additionally, we assess our model’s capability in (iii) basketball player
unified imputation and forecasting tasks using the Basketball-TIP dataset.
This task involves observing the initial 40 timesteps (6.4s), imputing agents
outside the circle/camera view, and forecasting their locations during the sub-
sequent 10 frames (1.6s). In “circle mode”, three radii r ↑ {3, 5, 7} ft are con-
sidered, centered on the ball location. In “camera mode”, a fixed field of view
(FOV) tracks the ball from the center of the pitch, with three possible angles
ε ↑ {10, 20, 30}↘. Following Xu et al. [69], we predict players who have at least
one observation in the initial 40 timesteps, potentially varying numbers of agents
across sequences. Our method incorporates the additional NaN-mask to exclude
non-interest agents within each sequence. We add our results in Table 3, show-
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Fig. 5: Left: Confusion matrix in state classification. O!ensive player trajectory
forecasting (left) and ball inference (right). Right: Attention maps for the ball.

Visualization of attention maps in each social SABS across agents and time for the
sequences #1 and #2 in Fig. 4-bottom (animations in suppl video).

ing a clear e!ectiveness of our method against the SOTA approaches in all six
scenarios. I-ADE denotes the error in the initial 40 timesteps (imputation error)
and P-ADE signifies the error in the final 10 timesteps (forecasting error). Our
method performs notably well in imputation tasks compared to GC-VRNN [69],
due to its unidirectional recurrent nature, which a!ects forecasting reliability
based on imputed data. Refer to the suppl for detailed information and figures.

5.3 Ball Imputation and Inference

We evaluate (iv) soccer ball imputation and inference tasks. The infer-
ence task involves predicting all observations of the ball, masking 100% of them.
The imputation task involves predicting a lower percentage of the ball obser-
vations while setting the others as visible. Players’ observations serve as condi-
tioning agents in all tasks. We benchmark against the state-of-the-art method
ballradar [36], which employs a hierarchical approach involving possessor classi-
fication followed by ball trajectory regression. Additionally, we compare against
its non-hierarchical version, ballradar w/o POS, which performs ball regression
without possessor classification. Due to the requirements of ballradar, our dataset
is augmented with ground-truth possessor information, player’s velocities and
goalkeeper locations using our method (further details can be found in the suppl).

Table 4 presents a comparative analysis of ball trajectory imputation and
inference. Our methods consistently outperform the state-of-the-art, achieving
over a 25% improvement in ADE for trajectory inference. Qualitative di!erences
in two test samples are illustrated in Fig. 4-bottom. For imputation, we showcase
results by masking 80% and 90% of total ball observations for each sequence,
highlighting the superior performance of our method. Notably, employing state
classification in TranSPORTmer helps achieve generally better results, show-
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ballradar w/o POS ballradar (KDD’23) Ours w/o CLS/Munc Ours w/o CLS Ours w/o Munc Ours

Mask 100% 80% 90% 100% 80% 90% 100% 80% 90% 100% 80% 90% 100% 80% 90% 100%

ADE ↑ 5.43 0.97 1.51 3.89 0.88 1.18 2.89 0.88 1.12 2.89 0.80 1.23 2.71 0.84 1.09 2.71

MaxErr ↑ 10.98 3.73 5.16 8.79 3.47 4.59 7.78 3.44 4.48 7.78 3.25 4.48 7.39 3.24 4.39 7.39

Acc (%) ↓ - - - - - - - - - - 85.51 83.38 80.84 85.59 83.55 80.84

Table 4: Evaluation in (iv) soccer ball imputation and inference. Predictions
are generated through the full 9.6s sequence. All metrics, except Acc, are in meters.

casing its holistic nature. However, Ours w/o CLS surpasses ballradar without
requiring additional data beyond player (x, y) locations.

In terms of state classification accuracy (see Table 4), there is an anticipated
decline compared to the soccer player trajectory forecasting and imputation sec-
tion (see Table 1), likely attributed to the non-visibility of the ball, our target.
Surprisingly, the method still achieves an accuracy of 80.84% in state classifica-
tion showcasing that the game states can be inferred using only the movement
of players (refer to Fig. 5-left-right for the detailed confusion matrix). Figure 5-
right shows the attention maps generated by the SABS for the ball across all
agents and timesteps in the two examples of Fig. 4-bottom. Computed by av-
eraging contributions from each head, these maps reveal the model’s awareness.
In the first SABS , a broad, general awareness of other agents is observed, re-
sembling a coarse social perspective. The second SABS focuses attention on the
possessor player or the anticipated recipient of the ball in the event of a pass.
This highlights the coarse-to-fine nature of the two encoders in our model. Refer
to the suppl for additional ablation study regarding the coarsening-to-fine.

In both Tables 3 and 4, we include an ablation study regarding the usage
of Munc in the loss term, which generally leads to improved results. For the
first neighbors, the recorded values are w1 ↑ [0.7, 0.85], and for the second ones
w2 ↑ [0.15, 0.3], reflecting the expected level of uncertainty.

6 Conclusions

In this paper, we introduced TranSPORTmer, a holistic approach capable of han-
dling multiple tasks (forecasting, imputation, inference, and state classification)
for trajectory understanding in multi-agent sports scenarios. Unlike state-of-the-
art methods, TranSPORTmer can address all tasks using our approach, elimi-
nating the need for task-specific models. Our evaluation on soccer and basketball
datasets shows competitive performance across tasks. Notably, our approach ex-
cels in player forecasting, player imputation, ball imputation and inference tasks,
while combined with state classification tasks allows to improve the results. Ad-
ditionally, the learnable mask models uncertainty in neighboring hidden values,
further enhancing outcomes. We believe this has the potential to pave the way
for a deeper understanding of the semantic aspects of sports games.
Acknowledgment. This work has been supported by the project GRAVATAR
PID2023-151184OB-I00 funded by MCIU/AEI/10.13039/501100011033 and by
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