
MeshGS: Adaptive Mesh-Aligned Gaussian
Splatting for High-Quality Rendering

Jaehoon Choi1, Yonghan Lee1, Hyungtae Lee3,
Heesung Kwon2, and Dinesh Manocha1

1 University of Maryland, College Park, USA
2 DEVCOM Army Research Laboratory, Adelphi, USA

3 BlueHalo, Rockville, USA
{kevchoi,lyhan12}@umd.edu, hyungtae.lee@bluehalo.com,

heesung.kwon.civ@army.mil, dm@cs.umd.edu

Abstract. Recently, 3D Gaussian splatting has gained attention for its
capability to generate high-fidelity rendering results. At the same time,
most applications such as games, animation, and AR/VR use mesh-based
representations to represent and render 3D scenes. We propose a novel
approach that integrates mesh representation with 3D Gaussian splats
to perform high-quality rendering of reconstructed real-world scenes. In
particular, we introduce a distance-based Gaussian splatting technique to
align the Gaussian splats with the mesh surface and remove redundant
Gaussian splats that do not contribute to the rendering. We consider
the distance between each Gaussian splat and the mesh surface to dis-
tinguish between tightly-bound and loosely-bound Gaussian splats. The
tightly-bound splats are flattened and aligned well with the mesh ge-
ometry. The loosely-bound Gaussian splats are used to account for the
artifacts in reconstructed 3D meshes in terms of rendering. We present a
training strategy of binding Gaussian splats to the mesh geometry, and
take into account both types of splats. In this context, we introduce sev-
eral regularization techniques aimed at precisely aligning tightly-bound
Gaussian splats with the mesh surface during the training process. We
validate the effectiveness of our method on large and unbounded scene
from mip-NeRF 360 and Deep Blending datasets. Our method surpasses
recent mesh-based neural rendering techniques by achieving a 2dB higher
PSNR, and outperforms mesh-based Gaussian splatting methods by 1.3
dB PSNR, particularly on the outdoor mip-NeRF 360 dataset, demon-
strating better rendering quality. We provide analyses for each type of
Gaussian splat and achieve a reduction in the number of Gaussian splats
by 30% compared to the original 3D Gaussian splatting.

Keywords: Neural rendering · Gaussian splatting · Mesh

1 Introduction

Rendering realistic depictions of real-world objects and environment has long
been a significant challenge with numerous practical applications in fields like

This ACCV 2024 paper, provided here by the Computer Vision Foundation, is the author-created version.
The content of this paper is identical to the content of the officially published ACCV 2024

LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/accv

3310



2 Jaehoon et al.

computer vision, graphics, and AR/VR. Most graphics and game engines use
polygonal mesh-based representations of the objects in the scene [19], including
real-time rendering and animation. Recently, Neural Radiance Fields (NeRF)
[2,3,30,31] have demonstrated promising capabilities for 3D reconstruction and
novel-view synthesis. However, NeRFs, which rely on volumetric rendering, suffer
from slow rendering speeds and are not easily compatible with modern graphics
engines [7, 14, 40]. Instead, researchers have been investigating methods based
on neural implicit representation to facilitate mesh-based rendering. MobileN-
eRF [5] utilizes a classical rasterization pipeline, incorporating z-buffers and
fragment shaders, to train neural fields based on polygonal mesh representa-
tions. Subsequently, various methods [27, 29, 34, 40, 46] first reconstruct a 3D
mesh and then utilize this mesh to train appearance models employing high-
speed rasterization [18, 24, 38]. These techniques facilitate real-time rendering
and demonstrate potential for integration into graphics and game engines. How-
ever, all of these methods are constrained by the quality of the mesh surface, par-
ticularly exhibiting a loss in rendering quality when dealing with highly detailed
structures, a well-known limitation of mesh-based approaches [21,42]. Given the
inherent difficulty in achieving perfect geometric reconstruction for real-world
unbounded scenes, rendering algorithms must demonstrate robustness in han-
dling mesh artifacts such as thin-level structures.

More recently, the 3D Gaussian Splatting method [22] has attracted consid-
erable interest due to its high-quality rendering and real-time rendering speed.
Compared to mesh-based representation, 3D Gaussian splats excel in capturing
intricate details of the scene with high fidelity due to their high degree of free-
dom in splat positions and shapes. However, 3D Gaussian splats are limited in
their ability to represent the geometry of a scene and are not widely applicable
to various applications. SuGaR [13] extracts mesh solely based on 3D Gaussian
splats. Their method shows detailed structure at the object level and tightly
binds the 3D Gaussian splats to the surface of the mesh. Other previous works
adopt a similar method for tightly binding the 3D Gaussian splat to the mesh
triangles [33, 41]. This is very useful for rigging, animation, or any deformation
tasks. However, this assumes that the mesh can cover nearly all geometrical el-
ements of the target object, such as the head or a human avatar. In unbounded
scenes, since meshes frequently exhibit artifacts, we need better strategies to
effectively bind 3D Gaussian splats to the mesh surface.

Main Results: In this paper, we present a new approach to integrate the
strengths of mesh and 3D Gaussian splats in rendering and geometry for un-
bounded large-scale scenes. For geometry reconstruction, we first employ the
BakedSDF [46] technique and extract a 3D mesh using Marching cube algo-
rithm [28]. In unbounded large-scale scenes, meshes typically consist of a large
number of triangles to represent complex geometric objects in the scene. Prop-
erly initializing Gaussian splats with millions of vertices and triangles becomes
exceptionally challenging. Inspired by LTM [7], we employ mesh decimation and
eliminate redundant triangles to extract a lightweight mesh with fewer triangles.
Based on this lightweight mesh, we initialize the Gaussian splats for each mesh

3311



Adaptive Mesh-Aligned Gaussian Splatting for High-Quality Rendering 3

triangle. Subsequently, we introduce a mesh-based Gaussian splatting method
that consists of two components. First, we conduct forward splatting consider-
ing mesh geometry and eliminate any Gaussian splats that are occluded by the
mesh surface. This impacts our training process to align the Gaussian splats with
the explicit mesh geometry and to remove redundant Gaussian splats positioned
behind the mesh surface considering all training viewpoints.

Secondly, we segregate tightly-bound Gaussian splats from loosely-bound
Gaussian splats using the distance between each Guassian splat’s center and their
corresponding mesh triangles. As current mesh reconstruction methods cannot
fully capture the 3D geometry of real-world scenes, we introduce loosely-bound
Gaussian splats to depict regions where explicit mesh-based representation is not
available, thus representing their appearance. We employ different training and
densification strategies for each type of splat. The tightly-bound Gaussian splats
are aligned with the mesh surface through various geometric regularization tech-
niques, whereas the optimization of loosely-bound Gaussian splats relies solely
on image supervision.

Our main contributions include:

– We present a novel approach for mesh-based Gaussian splatting. We inte-
grate Gaussian splats with the triangle mesh and introduce a new method
for initializing and training Gaussian splats based on the triangle mesh.

– We differentiate between two types of Gaussian splats based on their dis-
tance from the mesh surface. Subsequently, we introduce different training
strategies for each type of Gaussian splat to accommodate different rendering
requirements.

– Our method surpasses the rendering quality of the state-of-the-art mesh-
based neural rendering algorithms [7, 46] by 2dB PSNR on mip-NeRF360
dataset. Compared to the original 3D Gaussian splatting [22], we achieve
comparable rendering quality while utilizing 30% fewer Gaussian splats for
rendering.

2 Related Work

Neural Rendering. Neural Rendering has recently received considerable atten-
tion. Neural Radiance Fields (NeRF) [30] utilize a multi-layer perceptron (MLP)
to encode a scene by applying differentiable volumetric rendering to represent
RGB radiance and density. Various methods have been proposed to accelerate
the training time and rendering speed by leveraging data structures [4, 9, 39],
encoding techniques [2, 3, 31], and baking processes [16, 35]. Other researchers
utilize neural implicit surface representation [12], employing MLP to map co-
ordinates to a signed distance function (SDF) or occupancy grids. These ap-
proaches [6, 26, 32, 42, 45, 46, 48] involve converting volume density to SDF or
occupancy and perform training with differentiable volumetric rendering.
Mesh-Based Rendering. Polygonal mesh-based rendering [38] is a classic
problem in computer graphics to visualize 3D models on a 2D screen using

3312



4 Jaehoon et al.

rasterization. To address rendering speed issue, recent neural rendering methods
also leverage explicit mesh and bake the neural appearance, enabling mesh-
based neural rendering. SNeRG [16] builds on deferred shading [8] and bakes
neural appearance into sparse voxel grid. MobileNeRF [5] directly optimizes the
triangle faces and embeds opacities and features into texture maps through a
baking process. Subsequently, other approaches involve baking the neural fields
into textures and representing view-dependent effects using either a small neural
network [27, 29, 34, 40] or spherical Gaussians [46]. VMesh [14] proposes hybrid
representation combining mesh and volume rendering to achive high efficiency
and expressiveness. Shells [44] extract the mesh and conduct volumetric render-
ing within a narrow band surrounding the mesh. LTM [7] employs significant
mesh decimation to achieve efficient mesh representation for large-scale scenes
while simultaneously training neural appearance and geometry through differen-
tiable rendering [24]. Many existing methods encounter limitations due to mesh
artifacts stemming from 3D reconstruction techniques in real-world scenarios,
posing challenges in achieving photorealistic rendering quality with neural fields.
Our approach aims to address this limitation by leveraging Gaussian splatting
for mesh-based rendering.
Point-Based Rendering and Gaussian Splatting Point-based rendering
is a technique for rendering 3D scenes using point-based geometry representa-
tion instead of traditional polygon meshes. In this context, a variety of recent
approaches have been proposed for the point-based rendering [23, 36], sphere
rendering [25], and differentiable splatting [47]. The 3D Gaussian Splatting [22]
employs 3D Gaussian splats [50], which are rendered through sorting and ras-
terization processes. SuGaR [13] utilizes Poisson reconstruction [20] to extract a
mesh from 3D Gaussian splats and bind them to the triangle for rendering. Gaus-
sianAvatars [33] and GaMeS [41] focus on tightly binding 3D Gaussian splats to
meshes and rendering dynamic scenes, including human avatars or single ob-
jects. However, these methods are mainly tailored for a single object or human
avatars. Our goal is to develop a new mesh-based Gaussian splatting technique
suitable for large-scale scenes, even in cases where the mesh only captures mod-
erate levels of geometry. More recently, 2D Gaussian splatting [17] utilize the 2D
Gaussian primitives instead of 3D Gaussian splats. In our paper, we focus solely
on 3D Gaussian splat representation and the integration of 3D Gaussian splats
with the mesh. We provide a more detailed analysis comparing 2DGS [17] with
our method in the supplementary material.

3 Our Method

Given posed images, our goal is to reconstruct both the precise geometry and
rendering high-fidelity images of unbounded large-scale scenes. An overview of
our pipeline is illustrated in Fig. 1. First, we employ the BakedSDF [46] technique
and extract a 3D mesh M via Marching Cubes [28]. Following the method in [7],
we significantly reduce the number of triangles in the mesh to facilitate the

3313



Adaptive Mesh-Aligned Gaussian Splatting for High-Quality Rendering 5

Camera 
Poses

Multi-view 
Images

Input

Transform 
SDF

Geometry Reconstruction

𝒈𝒈𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

𝒇𝒇𝒔𝒔𝒔𝒔𝒇𝒇

Render 
Color

Marching
Cube

Mesh
Decimation

Mesh-based Gaussian Splatting

Gaussian 
Splats

Mesh

Output

𝒇𝒇𝒔𝒔𝒔𝒔𝒇𝒇

Mesh 𝑴𝑴

𝒇𝒇𝒋𝒋

𝒎𝒎𝒋𝒋

Initialization

𝒇𝒇𝒋𝒋
𝒔𝒔𝒊𝒊

𝒎𝒎𝒋𝒋

View 𝑷𝑷𝒊𝒊

View 
direction

𝒔𝒔k

𝒔𝒔𝒋𝒋

Splatting Training

𝒏𝒏𝒊𝒊

Normal Loss 
𝑳𝑳𝒊𝒊𝒎𝒎𝒈𝒈

Projection Loss 
𝑳𝑳𝒑𝒑𝒄𝒄𝒄𝒄𝒋𝒋

Scale Loss
𝑳𝑳𝒔𝒔𝒄𝒄𝒔𝒔𝒄𝒄𝒔𝒔

Tightly-bound 
Splats

Loosely-bound 
Splats

Loss Function

Image Loss 
𝑳𝑳𝒊𝒊𝒎𝒎𝒈𝒈

Fig. 1: Our Approach: In Section 3.1, we jointly train the geometry fsdf and ap-
pearance gcolor using differentiable volumetric rendering (shown in orange). Then, we
extract the lightweight mesh M which is important for the initialization of Gaussian
splats. Next, in Section 3.2., we present the mesh-based Gaussian splatting for train-
ing, which involves the removal of Gaussian splats (green Gaussian splats) occluded by
mesh surface. Given the distance di between each Gaussian splat and its corresponding
triangle, we distinguish between tightly-bound Gaussian splats (blue splat) and loosely
Gaussian splats (red splat). In Section 3.3, we introduce the training and densification
strategy for both tightly-bound Gaussian splats and loosely Gaussian splats.

integration with Gaussian splats to generate high-quality rendering. Next, we
bind the Gaussian splats G to the explicit mesh to represent their appearance.

3.1 Geometry Reconstruction

During this stage, we leverage the neural surface representation to extract a
mesh and decimate it for integrating the Gaussian splats with the mesh. The
original 3D Gaussian Splatting method (3DGS) [22] is specifically tailored to
sparse point clouds generated by Structure-from-Motion (SfM) techniques [37].
Dense point clouds are not conducive to rendering and can even be detrimental
to the rendering quality. Hence, it is imperative to meticulously design mesh
reconstructions for the initialization of Gaussian splats. Following the approach
of BakeSDF [46], we jointly train two multilayer perceptrons (MLPs) to encode
both the signed distance field fsdf and the appearance field gcolor, as shown in
the Geometry Reconstruction block in Fig. 1. Both MLPs are optimized using
differentiable volumetric rendering and Eikonal regularization techniques [12].
Details are described in [46]. Then, we employ Marching Cube algorithm [28] to
obtain a mesh M = {V, F} with vertices V and faces F extracted from fsdf .

However, in large-scale scenes, the output mesh occupies a significant num-
ber of triangles (average 27 millions) [46]. Given occupying a large amount of
triangles, they still cannot represent detailed geometry or reflective surfaces due
to the strong smoothness regularization. Furthermore, a large number of trian-
gles are allocated to distorted regions, especially in background regions. Several
prior mesh-based Gaussian splatting methods [13,33,41] assume that at least one
Gaussian splat is attached to the mesh surface to represent the appearance of

3314



6 Jaehoon et al.

(a) BakedSDF ( # of Vertices: 111M / # of Faces 44M) (b) SuGaR ( # of Vertices: 1053K / # of Faces: 1996K) (c) LTM ( # of Vertices: 270K / # of Faces: 429K)Scene

Fig. 2: The examples of extracted mesh from BakedSDF [46], SuGaR [13], and LTM [7].
We employ LTM [7] to extract a lightweight mesh with moderate triangle count, using
it for the initialization of Gaussian splats. The primary reason is that LTM utilizes a
minimal number of triangles while maintaining geometric quality. Zoomed-in regions
visualize that the mesh frequently lacks highly detailed geometry or complex structures.
“K" and “M" denotes the 103 and 106 units, respectively.

its triangles. If we strictly follow their strategy, we allocate redundant Gaussian
splats to distorted regions, resulting in a rapid increase in GPU memory usage
after just a few training and densification steps. In Fig.2 (a), the mesh recon-
structed by BakedSDF occupies 44 million triangles to represent geometry. The
original 3DGS [22] necessitates 4 million Gaussian splats to achieve high-fidelity
rendering quality, yet the very large number of Gaussian splats undermines ren-
dering quality. SuGaR also imposes constraints on the vertex count (10K∼15K);
however, a significant number of vertices are needed to faithfully represent the
geometry, particularly in expansive, unbounded scenes. We observe that SuGaR
sacrifices geometric quality, particularly in background regions (see Fig.2 (b)),
and then trains Gaussian splats attached to mesh faces. However, since we aim
to achieve moderate geometry quality, adopt the methodology of LTM [7]. They
utilize aggressive mesh decimation based on the Quadric Error Metric [10,11] to
efficiently represent moderate geometry with a fewer number of triangles ( see
Fig. 2 (c)). Using this mesh as a foundation, we can easily integrate Gaussian
splatting with the explicit mesh.

3.2 Mesh-based Gaussian Splatting

3D Gaussian Splatting: 3D Gaussian Splatting (3D-GS) [22] employs mil-
lions of 3D Gaussians G to represent a 3D scene. These 3D Gaussian splats
are constructed based on a sparse point cloud obtained from Structure from
Motion [37], incorporating various attributes to model both the geometry and
appearance of the scene. The geometry attributes of each 3D Gaussian (ellip-
soids) Gi is defined by its center (position) pi ∈ R3 and 3D covariance matrix
Σi ∈ R3x3 in world space:

Gi(x) = e−
1
2 (x−pi)

TΣ−1
i (x−pi). (1)

To constrain valid covariance matrices, 3D-GS utilizes a semi-definite parame-
terization Σi = RiSiSi

TRi
T with two learnable components: a scaling matrix

3315



Adaptive Mesh-Aligned Gaussian Splatting for High-Quality Rendering 7

Si ∈ R3 and a rotation matrix Ri ∈ R3x3, encoded by a quaternion q ∈ R4.
For rendering, given a viewpoint defined by rotation Rcw ∈ R3x3 and translation
tcw ∈ R3, the 3D Gaussians are projected into the camera space: pci = Rcwpi+tcw
and Σc

i = RcwΣiRcw
T . Next, to transform camera space into ray space, 3D-GS

utilize the affine transformation Ji ∈ R2x3 defined by pci following [50], and the
2D covariance matrix in ray space can then be defined as Σ′

i = JiΣ
c
i Ji

T . We can
obtain the 2D Gaussian gi defined by corresponding 2D covariance Σ′

i and 2D
center p′i as follows:

gi(x) = e−
1
2 (x−p′

i)
TΣ′

i
−1(x−p′

i). (2)

Additionally, each Gaussian includes an per-point opacity oi ∈ [0, 1] and the
view-dependent color ci represented by spherical harmonic (SH) [22]. 3D-GS
orders all the Gaussians that contributes to a pixel and renders 2D image via
alpha blending with the sorted Gaussians using the following equation:

c =

n∑
i=1

ciαi

i−1∏
j=1

(1− αj), αi = oigi(x). (3)

The blending weight αi is obtained by computing the 2D projection of the 3D
Gaussian gi(x) multiplied by a per-point opacity oi.
Distance-based Gaussian Splatting: In this section, we present our approach
that builds the connection between large-scale mesh and Gaussian splats. Before
training, we initialize a 3D Gaussian splats at the center mj of each triangles fj .
Given mesh M , we can render a depth Di from a given viewpoint Pi. When ren-
dering for each viewpoint, we utilize the corresponding viewpoint depth map to
mask out the Gaussian splats occluded by the surface. In light of our assumption
that the mesh surface is entirely opaque, Gaussian splats occluded by it should
be excluded for rendering purposes. In the Splatting block shown in Fig. 1, given
that the depth dk of the green Gaussian splats is greater than that of dj , those
Gaussian splats located behind the mesh surface do not contribute to rendering
pixels. Furthermore, during the training process, we assess the visibility of Gaus-
sian splats across all training views and identify those located behind the mesh
surface hat are never observed by any of the training views. Then, we remove all
redundant Gaussian splats situated behind the mesh surface at specific training
iterations.

Given that reconstructed meshes in real-world environments often exhibit
geometric artifacts, our goal is to render not only well-represented regions but
also those inaccuracies resulting from severe mesh artifacts. When we tightly
bind all Gaussian splats exclusively to the mesh surface, rendering performance
suffers, particularly when addressing severe mesh artifacts. Therefore, during the
training step, We calculate the distance di between each Gaussian splat’s center
pi and corresponding mesh faces fj . We treat tightly-bound Gaussian splats
Gt

i (di < dth) and loosely-bound Gaussian splats Gl
i (di > dth), distinctly. If the

Gaussian splats are located at a distance greater than a certain threshold dth
from the mesh surface, we classify them as loosely-bound Gaussian splats. We
aim to flatten Gt

i and align these splats with the mesh surface.

3316



8 Jaehoon et al.

3.3 Training for Tightly-bound and Loosely-bound Gaussian Splats

Objective Function: Following 3D-GS [22], we employ the combination of L1

loss and D-SSIM as the image loss Limg between the rendered image Îi and the
ground truth image Ii expressed as follows:

Limg = (1− λimg)L1(Îi, Ii) + λimgSSIM(Îi, Ii)). (4)

We utilize the normal consistency loss Lnc to refine tightly-bound Gaussian
splats Gt to align with the corresponding mesh surface. To estimate normals ni

for Gaussian splats, we first identify the minimum scale axis among the scale
parameters Si, and then apply the rotation matrix Ri to transform them into
world coordinates. Then, we exploit the cosine similarity between the splat’s
normals ni and the corresponding face normals nf as follows:

Lnc =
∑

i∈Gt,f∈F

(1− ni · nf ). (5)

Furthermore, we apply the regularization to suppress the scale parameters
Si = (s1, s2, s3) ∈ R3 of tightly-bound Gaussian splats Gt and align them with
the mesh surface. We regularize the minimum scale and then the maximum scale
with threshold value ρ.

Lscale =
∑
i∈Gt

(λmin|min(s1, s2, s3)|+ λmax|max(s1, s2, s3)− ρ|). (6)

This ensures that the tightly-bound Gaussian splats do not expand excessively
in comparison to the corresponding mesh face fj , thus hindering the rendering
process. Finally, given the mesh M consisting of face fj and its face normal nj ,
we project the Gaussian Splat’s center Pi to the closest point si on the mesh
surface.

si = Pi + ((Pi − vi) · fj) · fj ,

Lproj =
∑
i∈Gt

∥ si − Pi ∥2 . (7)

This loss function ensures that the tightly-bound Gaussian splats remain close
to the mesh surface, preventing them from moving too far from the surface. The
total loss function L is defined as:

L = Limg + λncLnc + Lscale + λprojLproj . (8)

where λ denotes the weight used to balance between the different loss terms.
Densification Strategy Here, we adopt two different densification strategies
for loosely-bound Gaussian splats Gl and tightly-bound Gaussian splats Gt. Re-
garding Gl, we follow the method outlined in the original 3DGS [22]. The original
Gaussian densification strategy inherently overlooks the existing 3D geometry.
In terms of Gt, we find the mesh triangle close to Gt and generate new Gaussian

3317



Adaptive Mesh-Aligned Gaussian Splatting for High-Quality Rendering 9

splats by employing random sampling from the corresponding mesh face. For
both cloning and splitting, we conduct point sampling from the triangle and
utilize this position to initialize new Gaussian splats. During cloning, additional
attributes are copied to the new Gaussians, while during splitting, their scale is
divided by a factor of 1.6.

4 Experiments

4.1 Experiment Settings

Datasets: For comparison, we assess the rendering quality of our method using
the extensively utilized real-world large-scale scenes published by Mip-NeRF360
[3]. Furthermore, to assess the generalization capability, we employ a different
large-scale dataset which are two scenes from Deep Blending [15].
Implementation Details: For geometry reconstruction section in Sec 3.1, we
utilize the LTM [7] code for extracting mesh from neural field and decimating
those mesh. In Sec 3.2, when applying distance-based Guassian splatting, we add
the 0.01 to the depth Di. We prune the Gaussian splats located behind the mesh
at every 500 training iterations. To distinguish the tightly-bound and loosely-
bound Gaussian splats, we set the distance threshold dth to 0.01. For training
Gaussian splatting, we generally follow the original 3DGS paper [22]. we run all
experiments for 30k iterations. We set the loss weights to λimg=0.001, λnc=0.1,
λmin=0.1, λmax=10, and λproj=50. We set the threshold ρ to 0.1. Following the
train/test split in Mip-NeRF360, we subsampled every eight frames for test sets.
We evaluate all our method trained with 30K iterations.

4.2 Experimental Results

We compare our proposed method with three different approaches: LTM [7],
which represents the state-of-the-art method for reconstructing lightweight meshes
and training a neural field for the corresponding mesh. SuGaR [13], which builds
upon the original 3DGS [22] by reconstructing the mesh and binding the Gaus-
sian splats to the corresponding mesh. 3DGS [22], which relies on sparse point
clouds instead of an explicit mesh representation. As BakedSDF [46] has not
released public code, we include only metrics reported in their original paper.

In Table 1, we report the rendering quality using the standard PSNR, SSIM
[43], and LPIPS [49] on outdoor scenes in mip-NeRF 360 dataset [3]. Generally,
mesh-based Gaussian splatting methods, including our method, SuGaR [13],
and GaMeS [41], exhibit superior performance (with around 2 PSNR increase)
compared to state-of-the-art mesh-based neural rendering techniques such as
LTM [7], BakedSDF [46], and others. Our method also demonstrates better
quality compared to other recent mesh-based Gaussian splatting methods such
as SuGaR [13] (with a 1.3 PSNR increase) and GaMeS [41] (with a 0.9 PSNR
increase). Table 2 reports the rendering quality on indoor scenes in mip-NeRF
360 dataset [3]. Our method also exhibits higher rendering quality compared

3318



10 Jaehoon et al.

Method Mesh Rendering Outdoor (PSNR ↑ / SSIM ↑ / LPIPS ↓)
Bicycle Garden Stump Mean

Instant-NGP [31] X Volume 22.1 / 0.49 / 0.49 24.5 / 0.65 / 0.31 23.6 / 0.57 / 0.45 23.4 / 0.57 / 0.42
mip-NeRF 360 [3] X Volume 24.4 / 0.68 / 0.30 26.9 / 0.81 / 0.17 26.4 / 0.74 / 0.26 25.9 / 0.75 / 0.24
3DGS [22] X Splat 25.2 / 0.77 / 0.20 27.4 / 0.86 / 0.10 26.5 / 0.77 / 0.21 26.4 / 0.70 / 0.17

MobileNeRF [5] O Mesh 21.7 / 0.43 / 0.51 18.8 / 0.59 / 0.36 23.9 / 0.56 / 0.43 21.5 / 0.53 / 0.43
NeRF2Mesh [40] O Mesh 22.1 / 0.48 / 0.51 23.4 / 0.55 / 0.40 22.5 / 0.54 / 0.46 22.7 / 0.52 / 0.46
BakedSDF [46] O Mesh 22.0 / 0.57 / 0.37 24.9 / 0.75 / 0.21 23.6 / 0.59 / 0.37 23.5 / 0.64 / 0.32
LTM [7] O Mesh 22.4 / 0.52 / 0.44 23.5 / 0.64 / 0.30 23.7 / 0.57 /0.42 23.2 / 0.58 / 0.39
SuGaR [13] O Splat 23.1 / 0.64 / 0.34 25.3 / 0.77 / 0.22 24.7 / 0.68 / 0.34 24.4 / 0.70 / 0.30
GaMeS [41] O Splat 23.4 / 0.67 / 0.33 26.3 / 0.83 / 0.14 24.6 / 0.66 / 0.35 24.8 / 0.72 / 0.39

MeshGS (Ours) O Splat 24.4 / 0.71 / 0.26 26.8 / 0.85 / 0.12 25.8 / 0.74 / 0.25 25.7 / 0.77 / 0.21
MeshGS* (Ours) O Splat 24.9 / 0.75 / 0.25 26.8 / 0.86 / 0.12 26.3 / 0.76 / 0.22 26.0 / 0.79 / 0.20

Table 1: Quantitative Comparison on outdoor mip-NeRF 360 Dataset. Splat-
based rendering demonstrates superior performance compared to mesh-based neural
rendering techniques such as LTM [7] and BakedSDF [46]. MeshGS* did not utilize
any regularization techniques to tightly align Gaussian splats; instead, it solely applied
image loss Limg for training. Compared to GaMeS [41] and SuGaR [13], our method
enhances the PSNR by 0.9 dB and 1.3 dB, respectively.

Method Mesh Rendering Indoor (PSNR ↑ / SSIM ↑ / LPIPS ↓)
Room Counter Kitchen Bonsai Mean

Instant-NGP [31] X Volume 29.2 / 0.85 / 0.30 26.43 / 0.80 / 0.34 28.5 / 0.82 / 0.25 30.3 / 0.89 / 0.23 28.6 / 0.84 / 0.28
mip-NeRF 360 [3] X Volume 31.6 / 0.91 / 0.21 29.5 / 0.89 / 0.20 32.3 / 0.92 / 0.13 33.5 / 0.94 / 0.18 31.7 / 0.92 / 0.18
3DGS [22] X Splat 30.6 / 0.91 / 0.26 28.7 / 0.90 / 0.29 30.3 / 0.92 / 0.22 31.9 / 0.94 / 0.29 30.4 / 0.92 / 0.19

MobileNeRF [5] O Mesh 28.9 / 0.85 / 0.28 25.1 / 0.72 / 0.29 26.8 / 0.79 / 0.79 23.8 / 0.71 / 0.72 26.2 / 0.77 / 0.52
NeRF2Mesh [40] O Mesh 25.7 / 0.79 / 0.35 23.9 / 0.71 / 0.35 24.0 / 0.61 / 0.36 25.0 / 0.77 / 0.29 24.7 / 0.72 / 0.34
BakedSDF [46] O Mesh 28.7 / 0.87 / 0.25 25.7 / 0.81 / 0.28 26.7 / 0.82 / 0.24 27.2 / 0.85 / 0.26 27.0 / 0.84 / 0.26
LTM [7] O Mesh 29.3 / 0.88 / 0.23 25.1 / 0.77 / 0.27 26.5 / 0.80 / 0.21 27.3 / 0.84 / 0.22 27.1 / 0.82 / 0.23
SuGaR [13] O Splat 30.0 / 0.91 / 0.25 27.6 / 0.89 / 0.23 29.6 / 0.91 / 0.16 30.5 / 0.93 / 0.22 29.4 / 0.91 / 0.22
GaMeS [41] O Splat 28.8 / 0.89 / 0.26 26.4 / 0.84 / 0.29 27.2 / 0.86 / 0.22 27.8 / 0.89 / 0.29 27.6 / 0.87 / 0.26

MeshGS (Ours) O Splat 30.3 / 0.90 / 0.24 28.0 / 0.89 / 0.21 29.7 / 0.90 / 0.17 30.7 / 0.93 / 0.20 29.6 / 0.91 / 0.20
MeshGS* (Ours) O Splat 30.9 / 0.93 / 0.23 27.8 / 0.90 / 0.21 29.3 / 0.90 / 0.17 30.5 / 0.93 / 0.19 29.6 / 0.91 / 0.20

Table 2: Quantitative Comparison on indoor mip-NeRF 360 Dataset. Splat-
based rendering exhibits superior performance when compared to mesh-based neural
rendering techniques. MeshGS* did not utilize any regularization techniques to tightly
align Gaussian splats; instead, it solely applied image loss Limg for training. Compared
to GaMeS [41] and SuGaR [13], our method enhances the PSNR by 2.0 dB and 0.2
dB, respectively.

to GaMeS [41] (with a 2.0 PSNR increase) and SuGaR [13] (with a 0.2 PSNR
increase). Overall, our method shows slightly lower rendering quality compared
to the original 3DGS. Without considering geometry, 3D Gaussian splats are
more flexible in representing the scene based solely on image loss. This is why
most mesh-based splatting methods are not superior to the original 3DGS. Our
goal is to find a balance between rendering quality and geometric alignment.
Thus, we emphasize the performance by solely comparing mesh-based neural
rendering and mesh-based Gaussian splatting.

Furthermore, we train and evaluate on Playroom and DrJohnson scenes from
the Deep Blending dataset [15]. These two scenes are collected from bounded
indoor scenes and have many complex textures on Playroom scene and contain
many textureless regions on DrJohnson scene. These two scenes were captured
from bounded indoor environments, with the Playroom scene consisting intri-
cate textures and the DrJohnson scene comprising several textureless regions.

3319



Adaptive Mesh-Aligned Gaussian Splatting for High-Quality Rendering 11

Method Mesh Rendering Deep Blending [15]
DrJohnson Playroom

Instant-NGP [31] X Volume 27.7 / 0.84 / 0.38 19.5 / 0.78 / 0.46
mip-NeRF360 [3] X Volume 29.1 / 0.90 / 0.24 29.6 / 0.90 / 0.25
3DGS [22] X Splat 29.1 / 0.90 / 0.24 30.0 / 0.90 / 0.24

MobileNeRF [5] O Mesh 25.9 / 0.78 / 0.31 28.7 / 0.85 / 0.28
NeRF2Mesh [40] O Mesh 24.0 / 0.75 / 0.51 26.6 / 0.83 / 0.41
LTM [7] O Mesh 26.5 / 0.82 / 0.40 29.1 / 0.87 / 0.32
SuGaR [22] O Splat 28.6 / 0.88 / 0.27 30.3 / 0.89 / 0.26

MeshGS (Ours) O Splat 28.8 / 0.90 / 0.24 30.5 / 0.90 / 0.25

Table 3: Quantitative Comparison on Deep Blending Dataset. We report
PSNR ↑, SSIM ↑, and LPIPS ↓ on Deep Blending datasets [15]

In Table 3, Our method demonstrates comparable rendering quality to both the
original 3DGS [22] and SuGaR [13].

In Fig. 3, we visualize the rendering results for comparison. Our method
builds on the mesh reconstructed by LTM [7]. Compared to LTM, the Gaussian
splatting in our method exhibits sharper and more high-frequency details than
the neural appearance field. As meshes struggle to represent highly detailed ge-
ometry such as dense foliage, tree leaves, and thin iron structures, LTM may
not adequately capture these appearances for rendering (see the zoomed-in re-
gions in Fig. 3). SuGaR is based on the original 3DGS and reconstruct the mesh
solely based on Gaussian splats. However, compared to our geometry recon-
struction, the mesh generated by SuGaR exhibits numerous geometric artifacts,
particularly in the background region, where defects are prevalent due to weak
smoothness regularization (see the background region in Fig. 2 and Fig. 4). Due
to the geometric artifacts present in the background region, SuGaR often pro-
duces blurry rendering results, especially in unbounded outdoor scenes (see the
background regions of Bicycle, Garden, and Stump in Fig. 3).

4.3 Ablation Study

In Table 1 and Table 2, MeshGS* (ours) denotes we only use image loss Limg to
train our mesh-based Gaussian splatting in Section 3.3. Compared to MeshGS
(ours), MeshGS* did not employ any regularization technique to tightly align
Gaussian splats with the mesh surface. We observe that MeshGS* shows slightly
better rendering quality compared to our method. This is a trade-off between
aligning splats geometrically and achieving high-quality rendering.

In Table 5, we show the proportion of tightly-bound Guassian splats and
loosely-bound Gaussian splats. Compared to MeshGS*, our approach employs
fewer Gaussian splats overall. Furthermore, our method utilizes Gaussian splats
that are 6% less tightly bound compared to MeshGS*. It is noteworthy that
the Stump scene generates a significantly higher proportion of loosely-bound
Gaussian splats (42%) compared to other scenes (22%). In the Stump scene, we
observe that the majority of background regions are covered by loosely-bound
Gaussian splats. This is due to the inability of the mesh to accurately cover all

3320



12 Jaehoon et al.

Scene (a) Ours (b) SuGaR (d) LTM(c) 3DGS

B
ic

y
c
le

G
a
rd

e
n

C
o

u
n

te
r

S
tu

m
p

Fig. 3: Qualitative Comparisons with Existing Methods. We visually compare
our method with SuGaR [13], 3DGS [22], and LTM [7]. For a detailed description, we
visualize the zoomed-in blue and red regions.

(a) Ours - Stump (b) SuGaR - Stump (c) Ours - Garden (d) SuGaR - Garden

Fig. 4: Qualitative Comparisons of Our Method and SuGaR [13]. We show
shading mesh without texture.

background regions, causing Gaussian splats to often move far from the mesh
surface.

Figure 6 presents a visualization of both loosely-bound and tightly-bound
Gaussian splats using the outdoor mip-NeRF 360 dataset. In Fig. 6-(a), tightly-
bound Gaussian splats can cover the most regions for rendering. Nevertheless,
due to limitations in mesh geometry, they fail to address all mesh artifacts.
In Fig. 6, the red dotted box highlights regions where tightly-bound Gaussian
splats cannot accurately represent details such as the bicycle wheel, thin trunk
around the vase, and dense tall grass, which closely resemble mesh artifacts.
Loosely-bound Gaussian splats can serve as a supplementary method to cover
these artifacts. In the Stump scene, loosely-bound Gaussian splats demonstrate
their ability to accurately depict the detailed thin grass and leaves covering the
trunk, thereby facilitating high-fidelity rendering. Moreover, given that the mesh
geometry shows more geometric defects in the background region, it necessitates
the use of numerous loosely-bound Gaussian splats to achieve high-quality ren-

3321



Adaptive Mesh-Aligned Gaussian Splatting for High-Quality Rendering 13

# of Splats Bicycle Garden Stump Room Counter Kitchen Bonsai Mean

3DGS [22] 6132 5834 4961 1593 1222 1852 1244 3263

MeshGS 3792 3838 4252 1103 1067 893 1576 2360
MeshGS-(a) (Tightly-bound Splats) 3236 3651 2723 1024 912 647 1378 1939
MeshGS-(b) (Loosely-bound Splats) 556 187 1522 82 156 245 198 421

MeshGS* 4231 4255 4537 1230 1215 934 1640 2577
MeshGS*-(c) (Tightly-bound Splats) 3359 3788 2626 1077 1010 688 1283 1976
MeshGS*-(d) (Loosely-bound Splats) 859 467 1904 154 206 244 356 598

Fig. 5: The number of Gaussian Splats The unit for the number of Gaussian splats
is 103. Compared to the original 3DGS, we utilize 30% fewer Gaussian splats. MeshGS*
did not utilize any regularization techniques to tightly align Gaussian splats; instead,
it solely applied image loss Limg for training. MeshGS-(a) and MeshGS*-(c) shows the
number of tightly-bound Gaussian splats. MeshGS-(b) and MeshGS*-(d) denotes the
number of loosely-bound Gaussian splats.

Scene (a) Tightly-bound Splats (b) Loosely-bound Splats (c) Ours

G
a

rd
e

n
s

tu
m

p
B

ic
y

c
le

Mesh

Fig. 6: Visualization results of both loosely-bound and tightly-bound Gaus-
sian splats. The second column shows wireframe mesh extracted without texture.
The third column visualizes only the tightly-bound Gaussian splats, while the fourth
column illustrates the loosely-bound Gaussian splats. The fifth column presents the
final rendering results achieved by our method.

dering. Furthermore, in the mesh geometry, the process of mesh decimation sig-
nificantly reduces the number of triangles in the background region. As a result,
the initialization of Gaussian splats becomes more sparse, posing challenges in
rendering images.

4.4 Compositional scenes

In Fig. 7, we visualize the practical application of our method for scene composi-
tion. We incorporate an artist-designed human model from Mixamo [1] into the
scene reconstructed by our method. This human asset consists of high-polygon
meshes with photorealistic materials and textures. We show the composition of
a synthetic human into a different scene. The background region rendered by our
method shows photorealistic image quality of compositional scenes. Thanks to
the mesh, we can composite the object and scene. Furthermore, the composited
scene can be rendered using Gaussian splatting without causing severe artifacts
around the human’s boundary.

3322



14 Jaehoon et al.

Fig. 7: Scene Composition: Rendering obtained by embedding the synthetic human
to a reconstructed scene. The first row visualizes the shading mesh without texture.
The second row shows the composition of a human in the scene reconstructed by our
method. The third row visualizes the composition of the same human in the scene
generated by LTM [7].

5 Conclusion, Limitations, and Future Work

This paper presents a practical approach for integrating mesh representation
with 3D Gaussian splatting rendering. our method attains a high level of pho-
torealistic rendering quality by employing Gaussian splats bound to the mesh
surface and executing distance-based Gaussian splatting to ensure alignment
with the mesh surface. Additionally, we differentiate between two types of Gaus-
sian splats and present training strategies tailored to their respective roles. We
present that a combination of mesh-based representation and Gaussian splatting
is crucial for enhancing rendering quality and ensuring compatibility with game
engines in practical applications. However, our method does have limitations.
Compared to textured mesh, our approach necessitates large disk storage and
a high-end GPU for real-time rendering. Moreover, we require a more sophis-
ticated method for assessing the quality of Gaussian splats and ensuring their
tight binding to the surface mesh. Additionally, our method is constrained by
the underlying mesh shape, particularly when dealing with excessively large faces
that cannot appropriately initialize Gaussian splats. In the future, our goal is to
develop surface extraction techniques from loosely-bound splats to address mesh
defects and evaluate geometric quality. Furthermore, we should explore adaptive
methods for distributing Gaussian splats to individual triangles, akin to mesh
subdivision or remeshing techniques.

Acknowledgements This work was supported in part by ARO Grant W911N
F2310352 and Army Cooperative Agreement W911NF2120076.

3323



Adaptive Mesh-Aligned Gaussian Splatting for High-Quality Rendering 15

References

1. Mixamo, www.mixamo.com
2. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srini-

vasan, P.P.: Mip-nerf: A multiscale representation for anti-aliasing neural radiance
fields. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 5855–5864 (2021)

3. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-
nerf 360: Unbounded anti-aliased neural radiance fields. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5470–
5479 (2022)

4. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: Tensorial radiance fields. In:
European Conference on Computer Vision. pp. 333–350. Springer (2022)

5. Chen, Z., Funkhouser, T., Hedman, P., Tagliasacchi, A.: Mobilenerf: Exploiting
the polygon rasterization pipeline for efficient neural field rendering on mobile
architectures. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 16569–16578 (2023)

6. Choi, J., Jung, D., Lee, T., Kim, S., Jung, Y., Manocha, D., Lee, D.: Tmo: Textured
mesh acquisition of objects with a mobile device by using differentiable rendering.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 16674–16684 (2023)

7. Choi, J., Shah, R., Li, Q., Wang, Y., Saraf, A., Kim, C., Huang, J.B., Manocha, D.,
Alsisan, S., Kopf, J.: Ltm: Lightweight textured mesh extraction and refinement of
large unbounded scenes for efficient storage and real-time rendering. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 5053–5063 (2024)

8. Deering, M., Winner, S., Schediwy, B., Duffy, C., Hunt, N.: The triangle proces-
sor and normal vector shader: a vlsi system for high performance graphics. Acm
siggraph computer graphics 22(4), 21–30 (1988)

9. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenox-
els: Radiance fields without neural networks. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 5501–5510 (2022)

10. Garland, M.: Quadric-based polygonal surface simplification. Carnegie Mellon Uni-
versity (1999)

11. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In:
Proceedings of the 24th annual conference on Computer graphics and interactive
techniques. pp. 209–216 (1997)

12. Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric regu-
larization for learning shapes. In: Proceedings of the 37th International Conference
on Machine Learning. ICML’20, JMLR.org (2020)

13. Guédon, A., Lepetit, V.: Sugar: Surface-aligned gaussian splatting for efficient
3d mesh reconstruction and high-quality mesh rendering. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5354–
5363 (2024)

14. Guo, Y.C., Cao, Y.P., Wang, C., He, Y., Shan, Y., Zhang, S.H.: Vmesh: Hybrid
volume-mesh representation for efficient view synthesis. In: SIGGRAPH Asia 2023
Conference Papers. pp. 1–11 (2023)

15. Hedman, P., Philip, J., Price, T., Frahm, J.M., Drettakis, G., Brostow, G.: Deep
blending for free-viewpoint image-based rendering. ACM Transactions on Graphics
(ToG) 37(6), 1–15 (2018)

3324

www.mixamo.com


16 Jaehoon et al.

16. Hedman, P., Srinivasan, P.P., Mildenhall, B., Barron, J.T., Debevec, P.: Bak-
ing neural radiance fields for real-time view synthesis. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 5875–5884 (2021)

17. Huang, B., Yu, Z., Chen, A., Geiger, A., Gao, S.: 2d gaussian splatting for geo-
metrically accurate radiance fields. arXiv preprint arXiv:2403.17888 (2024)

18. Johnson, J., Ravi, N., Reizenstein, J., Novotny, D., Tulsiani, S., Lassner, C., Bran-
son, S.: Accelerating 3d deep learning with pytorch3d. In: SIGGRAPH Asia 2020
Courses, pp. 1–1 (2020)

19. Karis, B., Games, E.: Real shading in unreal engine 4. Proc. Physically Based
Shading Theory Practice 4(3), 1 (2013)

20. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceed-
ings of the fourth Eurographics symposium on Geometry processing. vol. 7 (2006)

21. Kazhdan, M., Hoppe, H.: Screened poisson surface reconstruction. ACM Transac-
tions on Graphics (ToG) 32(3), 1–13 (2013)

22. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics 42(4) (2023)

23. Kopanas, G., Philip, J., Leimkühler, T., Drettakis, G.: Point-based neural render-
ing with per-view optimization. In: Computer Graphics Forum. vol. 40, pp. 29–43.
Wiley Online Library (2021)

24. Laine, S., Hellsten, J., Karras, T., Seol, Y., Lehtinen, J., Aila, T.: Modular primi-
tives for high-performance differentiable rendering. ACM Transactions on Graphics
(TOG) 39(6), 1–14 (2020)

25. Lassner, C., Zollhofer, M.: Pulsar: Efficient sphere-based neural rendering. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. pp. 1440–1449 (2021)

26. Li, Z., Müller, T., Evans, A., Taylor, R.H., Unberath, M., Liu, M.Y., Lin, C.H.:
Neuralangelo: High-fidelity neural surface reconstruction. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 8456–
8465 (2023)

27. Liu, J.Y., Chen, Y., Yang, Z., Wang, J., Manivasagam, S., Urtasun, R.: Real-time
neural rasterization for large scenes. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. pp. 8416–8427 (2023)

28. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. ACM siggraph computer graphics 21(4), 163–169 (1987)

29. Lu, F., Xu, Y., Chen, G., Li, H., Lin, K.Y., Jiang, C.: Urban radiance field represen-
tation with deformable neural mesh primitives. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 465–476 (2023)

30. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. Commu-
nications of the ACM 65(1), 99–106 (2021)

31. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives
with a multiresolution hash encoding. arXiv preprint arXiv:2201.05989 (2022)

32. Oechsle, M., Peng, S., Geiger, A.: Unisurf: Unifying neural implicit surfaces and
radiance fields for multi-view reconstruction. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 5589–5599 (2021)

33. Qian, S., Kirschstein, T., Schoneveld, L., Davoli, D., Giebenhain, S., Nießner,
M.: Gaussianavatars: Photorealistic head avatars with rigged 3d gaussians. arXiv
preprint arXiv:2312.02069 (2023)

34. Rakotosaona, M.J., Manhardt, F., Arroyo, D.M., Niemeyer, M., Kundu, A.,
Tombari, F.: Nerfmeshing: Distilling neural radiance fields into geometrically-
accurate 3d meshes. In: Proc. of the International Conf. on 3D Vision (3DV) (2023)

3325



Adaptive Mesh-Aligned Gaussian Splatting for High-Quality Rendering 17

35. Reiser, C., Szeliski, R., Verbin, D., Srinivasan, P., Mildenhall, B., Geiger, A., Bar-
ron, J., Hedman, P.: Merf: Memory-efficient radiance fields for real-time view syn-
thesis in unbounded scenes. ACM Transactions on Graphics (TOG) 42(4), 1–12
(2023)

36. Rückert, D., Franke, L., Stamminger, M.: Adop: Approximate differentiable one-
pixel point rendering. ACM Transactions on Graphics (ToG) 41(4), 1–14 (2022)

37. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4104–
4113 (2016)

38. Segal, M., Akeley, K.: The opengl graphics system: A specification (version 4.6 (core
profile)-october 22, 2019). The Khronos Group Inc.[cit. 2020-12-05]. Dostupné z:
https://www. khronos. org/registry/0penGL/specs/gl/glspec46. core. pdf (2021)

39. Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: Super-fast conver-
gence for radiance fields reconstruction. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 5459–5469 (2022)

40. Tang, J., Zhou, H., Chen, X., Hu, T., Ding, E., Wang, J., Zeng, G.: Delicate
textured mesh recovery from nerf via adaptive surface refinement. arXiv preprint
arXiv:2303.02091 (2022)

41. Waczyńska, J., Borycki, P., Tadeja, S., Tabor, J., Spurek, P.: Games: Mesh-based
adapting and modification of gaussian splatting. arXiv preprint arXiv:2402.01459
(2024)

42. Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: Neus: Learn-
ing neural implicit surfaces by volume rendering for multi-view reconstruction. In:
Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neu-
ral Information Processing Systems (2021), https://openreview.net/forum?id=
D7bPRxNt_AP

43. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing
13(4), 600–612 (2004)

44. Wang, Z., Shen, T., Nimier-David, M., Sharp, N., Gao, J., Keller, A., Fidler, S.,
Müller, T., Gojcic, Z.: Adaptive shells for efficient neural radiance field rendering.
arXiv preprint arXiv:2311.10091 (2023)

45. Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit
surfaces. Advances in Neural Information Processing Systems 34, 4805–4815 (2021)

46. Yariv, L., Hedman, P., Reiser, C., Verbin, D., Srinivasan, P.P., Szeliski, R., Barron,
J.T., Mildenhall, B.: Bakedsdf: Meshing neural sdfs for real-time view synthesis.
arXiv (2023)

47. Yifan, W., Serena, F., Wu, S., Öztireli, C., Sorkine-Hornung, O.: Differentiable sur-
face splatting for point-based geometry processing. ACM Transactions on Graphics
(TOG) 38(6), 1–14 (2019)

48. Yu, Z., Peng, S., Niemeyer, M., Sattler, T., Geiger, A.: Monosdf: Exploring monoc-
ular geometric cues for neural implicit surface reconstruction. Advances in neural
information processing systems 35, 25018–25032 (2022)

49. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 586–595 (2018)

50. Zwicker, M., Pfister, H., Van Baar, J., Gross, M.: Ewa splatting. IEEE Transactions
on Visualization and Computer Graphics 8(3), 223–238 (2002)

3326

https://openreview.net/forum?id=D7bPRxNt_AP
https://openreview.net/forum?id=D7bPRxNt_AP

	MeshGS: Adaptive Mesh-Aligned Gaussian Splatting for High-Quality Rendering

