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Abstract. Weakly supervised Referring Expression Comprehension (R-
EC) tackles the challenge of identifying specific regions in an image based
on textual descriptions without predefined mappings between the text
and target objects during training. The primary obstacle lies in the mis-
alignment between visual and textual features, often resulting in inac-
curate bounding box predictions. To address this, we propose a novel
cross-modality attention module (CMA) module that enhances the dis-
criminative power of grid features and improves localization accuracy by
harmonizing textual and visual features. To handle the noise from incor-
rect labels common in weak supervision, we also introduce a false nega-
tive suppression mechanism that uses intra-modal similarities as soft su-
pervision signals. Extensive experiments conducted on four REC bench-
mark datasets: RefCOCO, RefCOCO+, RefCOCOg, and ReferItGame.
Our results show that our model consistently outperforms state-of-the-
art methods in accuracy and generalizability. Our source code is pub-
licly available at https://github.com/t22786959/Cross-Modality-
Attention-in-weakly-supervised-REC.git

Keywords: Referring expression comprehension · cross-modality · sim-
ilarity regularization · false negative suppression

1 Introduction

Referring Expression Comprehension (REC), often referred to as visual ground-
ing, focuses on identifying specific objects in images based on descriptive expres-
sions. Unlike traditional object detection, which works with predefined categories
and relies solely on visual information, REC operates across both visual and tex-
tual modalities, allowing it to handle a broader range of applications in fields,
such as robotics [12] and human-computer interaction [14, 26]. For instance, in
robotics, REC can enhance object manipulation and navigation based on verbal
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2 Ting-Yu Chu et al.

Fig. 1: Our anchor-based framework for weakly supervised referring expression com-
prehension. With the anchor features extracted from the text-guided anchor feature
extration module, our model can obtain more discriminative features for the referred
object.

instructions, while in human-computer interaction, it can improve user interfaces
by enabling more natural and intuitive visual searches. Despite the progress made
in fully supervised REC, the costly annotation process required at the instance
level remains a significant obstacle to its advancement. This has led to increased
interest in weakly supervised REC [10,22,24,32,36,39], which aims to reduce the
reliance on detailed annotations. However, weakly supervised REC faces several
key challenges. The primary obstacle lies in the misalignment between visual and
textual features, often resulting in inaccurate bounding box predictions. Addi-
tionally, the absence of precise annotations makes it di!cult to train models
e"ectively, as they cannot rely on accurate instance-level labels for supervision.

To address the challenges of weakly supervised Referring Expression Com-
prehension, we propose a novel Cross-Modality Attention (CMA) module and
the Feature-wise Linear Modulation (FiLM) module. The CMA module syn-
chronizes text and visual features across di"erent layers, while FiLM ensures
precise alignment between specific text tokens and corresponding visual features
at varying levels of abstraction. This layer-specific di"erentiation is essential for
accurately capturing both low-level and high-level details. This approach signif-
icantly improves multi-layer localization, resulting in more accurate and robust
bounding box predictions. In addition, we introduce an equivariant regulariza-
tion method to tackle the lack of ground truth in weakly supervised contrastive
learning. This method ensures the changes in semantics corresponds to consis-
tent changes in similarity scores between anchor-text pairs. By aligning similar-
ity scores between di"erent anchor-text pairs, this approach compensates for the
lack of precise annotations, providing more reliable supervision signals. This en-
hances the robustness and accuracy of feature representations, enabling e"ective
model training even in the absence of accurate instance-level labels. Further-
more, to mitigate the noise introduced by false negative samples, we develop
a mechanism that uses similarity scores between intra-modal pairs as soft su-
pervision signals for inter-modal pairs. This ensures that inter-modal similarity

2768



Cross-Modality Attention in weakly supervised REC 3

is consistent with intra-modal similarity, reducing the impact of false negatives
and providing cleaner, more reliable training data.

Our initial framework, depicted in Fig 1, provides an overview of the over-
all architecture. However, these anchor-based approaches might not fully uti-
lize the contextual information present in the entire scene, potentially limiting
their e"ectiveness in more complex scenarios. Our approach builds upon re-
cent advancements in one-stage detectors. Following previous work, we select
YOLOv3 [30], which we adapt for weakly supervised REC. By leveraging the
e!ciency of one-stage detectors and addressing the challenges specific to weakly
supervised learning, our method achieves state-of-the-art performance on four
benchmark datasets: RefCOCO, RefCOCO+, RefCOCOg, and ReferItGame.
The main contributions of our work can be summarized as follows:

– Enhance feature relevance and localization: The Cross-Modality At-
tention (CMA) module improves the discriminative power of grid features
and enhances localization accuracy by optimizing their relevance within the
textual context.

– Strengthen multi-modal similarity alignment: Our equivariant regu-
larization technique enhances the alignment between multi-modal(visual and
textual) similarities, ensuring they accurately reflect semantic changes.

– Suppress noise from false negative samples: We develop a mechanism
that uses intra-modal similarities as soft supervision signals, reducing noise
and improving training reliability.

– State-of-the-art Performance: Extensive evaluation on four REC bench-
mark datasets (RefCOCO, RefCOCO+, RefCOCOg, and ReferItGame) demon-
strates that our approach consistently surpasses existing state-of-the-art
methods in both accuracy and generalizability, highlighting its robust per-
formance across diverse scenarios.

2 Related Work

2.1 Weakly Supervised Referring Expression Comprehension

In weakly supervised Referring Expression Comprehension (REC), the annota-
tion process is both time-consuming and labor-intensive. In recent years, the
weakly supervised training scheme has increasingly gained attention. In con-
trast to fully supervised REC, weakly supervised REC presents greater chal-
lenges due to the absence of bounding box annotations. Many existing tech-
niques are developed using two-stage supervised REC models [24,36] and frame
weakly supervised REC as a region-text ranking problem. The primary chal-
lenge lies in providing e"ective supervision signals from image-text pairs. To
tackle this challenge, current approaches utilize methodologies such as sentence
reconstruction [22, 32] and contrastive learning [10, 39]. These approaches work
by constructing both positive and negative sample pairs from carefully selected
regions and expressions, and then calculating the contrastive loss. However, all
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paradigms ignore the heterogeneous gap between textual descriptions and vi-
sual images. In this paper, we utilize a contrastive learning-based approach and
introduce the CMA module to obtain higher-quality sample pairs.

2.2 Equivariant Similarity

Equivariant Similarity regularization, aimed at faithfully reflecting the semantic
change between di"erent image-text pairs. In other words, the same semantic
changes should lead to a similar amount of similarity changes. The equivari-
ance property plays an important role in various fields, including self-supervised
learning [6, 38], representation learning [29], and language understanding [9].

In order to focus on this issue, [37] points out the significance of the equiv-
ariant similarity measure in vision-language models, imposing additional equiv-
ariance regularization on image-text pairs for vision-language foundation models
learning without additional supervision. Based on its exploration on equivariant
similarity, we propose a novel loss for the regularization of equivariance.

2.3 False Negatives in Contrastive Learning

In the conventional methodology of contrastive learning, the generation of posi-
tive sample pairs is typically achieved through the application of data augmen-
tation techniques. These techniques involve the manipulation of original data
samples in order to create new, but similar samples. Meanwhile, the rest of the
samples within the same batch are defined and treated as negative sample pairs,
regardless of semantic similarities. This scheme inevitably encounters the false
negatives issue, where instances sharing identical semantic concepts are incor-
rectly labeled as negatives, leading to misguidance in model learning.

Based on this, some works use clustering-based methods [18] to encode se-
mantic structures and then perform contrastive learning on these semantically
similar cluster centers. Some research focuses on improving architectures [5] or
data augmentation [34] strategies. Despite these advances, there is little work
addressing the false negative problem directly. This problem can significantly
impact the performance and reliability of contrastive learning models.

3 Methodology

3.1 Overview

Referring Expression Comprehension (REC) aims to locate the target instance
within an image by generating a bounding box, guided by a provided text expres-
sion. In the current weakly supervised setting, it is challenging for the model to
acquire detection bounding box merely on text expressions and images. In this
case, existing weakly supervised solutions usually adopt a pre-trained object
detection network, to provide a set of candidate bounding boxes. Afterwards,
the model conducts weakly supervised training based on semantic reconstruc-
tion [23, 32] or cross-modal contrastive learning [11, 40]. As shown in Fig 2, our
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Fig. 2: Illustrates the overall architecture of our network, adapted from RefCLIP [15].
It includes a novel cross-modality attention module and a similarity regularization
method. Additionally, false negative suppression is implemented to enhance sample
quality.

architecture is adapted from the model RefCLIP [15]. The original RefCLIP
framework employs the e!cient one-stage detector YOLOv3 [30] to build the
visual encoder. The language encoder is a bidirectional GRU [3] followed by a
self-attention layer [35]. Given an image I and a text expression T , along with a
visual encoder Ev and a text encoder Et, RefCLIP also simplifies the REC task
to an anchor-text matching problem, i.e., which anchor is most likely to have
the target box:

a
→ = argmax

a↑A

ω(Ev(I), Et(T ), a), (1)

where a
→ represents the optimal anchor, with A representing the set of anchor

points in image I provided by the pretrained YOLOv3, and ω(·) denoting a
simple linear ranking module like cosine similarity.

Our overall model architecture is as shown in Fig 2. Our proposed architec-
ture introduces an additional cross-modal attention module (CMA). The feature
maps extracted by the backbone of pretrained YOLOv3 and the language fea-
tures extracted by the bidirectional GRU, denoted as Y , will then be fed into
the cross-modal attention module. By integrating textual features into image fea-
tures, the proposed approach emphasizes the areas expressed in the text within
the image features. This enhances the accuracy of weakly-supervised contrastive
learning by fusing the text feature information with the image features.

3.2 Cross-Modality Attention Module

To enhance the relevance of extracted image features to the described objects in
text, our objective is to optimize the discriminative of these features within the
context of textual input. Our approach involves a detailed sequence of operations
at each layer of the CMA module, as shown in Fig 3, aimed at achieving this
goal.
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Fig. 3: A illustration of the architecture of the Cross-Modality Attention Module. It
consists of three key components: a self-attention layer, which preserves the original
visual features; Feature-wise Linear Modulation, responsible for modulating the fea-
tures in a feature-wise manner; and a cross-attention layer, which facilitates e!ective
information exchange between image and text modalities by fusing the cross-modality
features.

Firstly, we start by applying a layer of multi-head self-attention [19, 31] to
the raw image features, denoted as X → RH↓W↓C , where H, W , and C repre-
sent the height, width, and number of channels respectively. The self-attention
mechanism computes attention weights for each pair of feature vectors, capturing
the importance of spatial relationships within the image. The input data X is
transformed into three distinct representations: Query,Key, and V alue. These
transformations are achieved through the multiplication of X with corresponding
weight matrices Wq, Wk, and Wv, where Wq, Wk, and Wv are learnable weight
matrices. The attention weights are computed using the scaled dot-product at-
tention mechanism:

F = softmax(
Query ·Key

T

↑
C

) · V alue (2)

Then, the computed attention feature map F is fed into a dense feed-forward
layers, which is composed of 2 linear layer and 1 gelu layer. Additionally, inspired
by [1], we insert tanh-gating layer after self-attention layer and feed-forward layer
respectively. The tanh-gating mechanism involves multiplying the output of a
newly introduced layer by tanh(ε) before combining it with the input represen-
tation from the residual connection. Here, ε represents a layer-specific learnable
scalar initialized to 0 [2]. This approach allows our model output to match that
of the pretrained YOLOv3 at initialization, improving training stability and final
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performance. This tanh(ε) layer ensures a stable starting point, mitigates early
training fluctuations, and provides flexibility for gradual optimization.

Continuing with our methodology, we introduce a Feature-wise Linear Mod-
ulation (FiLM) module modified from [13] into our framework. This module
dynamically amplifies fine-grained features at di"erent layers. This di"erentia-
tion across layers is essential as it emphasizes the alignment between specific
text tokens and corresponding visual features at varying levels of abstraction,
ensuring that both low-level and high-level details are accurately captured and
matched. Given the generated language feature Y and the attention map F

obtained in the previous stage. The specific operations are as follows:

ϑ = MLPω(Y ), ϖ = MLPε(Y ), (3)

F
↔ = ReLU (ϑ ↓ F ↔ ϖ) , (4)

where MLPω and MLPε are two one-layer MLPs that map language vector Y to
coe!cients ϑ and ϖ. Then we apply these coe!cients to visual feature F followed
by a ReLU operations, yielding the output F

↔ → RH↓W↓C , where ↓ and ↔
represent the broadcast element-wise multiplication and addition, respectively.
This step enhances the discriminative of the extracted features by incorporating
semantic information from the textual input.

Furthermore, our model architecture incorporates a cross-attention mecha-
nism, which facilitates a more cohesive integration of textual and visual informa-
tion. This mechanism operates by attending to both modalities simultaneously,
enabling the model to construct a collaborative relationship between text and
image features. The definitions of Query

↔
,Key

↔
, and V alue

↔ among di"erent
modalities are as follows:

Query
↔ = F ·Wq

Key
↔ = F

↔ ·Wk

V alue
↔ = F

↔ ·Wv

(5)

Then the cross attention weights are computed using the scaled dot-product
attention mechanism. Our cross attention mechanism design involves using the
attention map F , produced by the self-attention layer, as the Query

↔. This strate-
gic choice enables the model to focus on the most relevant regions within the
image. Additionally, we utilize the image feature F

↔ generated by the Feature-
wise Linear Modulation, serving it as both Key

↔ and V alue
↔. This integration

facilitates a thorough understanding of the image content by establishing as-
sociations between textual descriptions and visual features. By leveraging the
complementary nature of text and images, this layer promotes a more stable
and nuanced fusion of the two modalities.

By integrating the CMA module and the FiLM module. Our model ensures
precise alignment between specific text tokens and corresponding visual features
at varying levels of abstraction. This layer-specific di"erentiation is essential
for accurately capturing both low-level and high-level details, which are often
overlooked in existing methods like RefCLIP [15].
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3.3 Similarity Regularization

Equivariant similarity refers to the conception that changes in semantics should
correspond to consistent changes in similarity scores between anchor-text pairs.
In other words, when the meaning of an anchor and its text changes, the sim-
ilarity between them should change consistently with the meaning changes. To
address this similarity regularization issue, some researchers, like Cyclip [8], fo-
cus on regularizing the CLIP cosine similarity score, S, with intra-modal consis-
tency, i.e., forcing S(A1, A2) is close to S(T1, T2) and cross-modal consistency,
i.e., forcing S(A1, T2) is close to S(A2, T1). Unlike these previous studies, we
focus on ensuring that changes in similarity scores should faithfully respect to
the semantic changes. We propose a similarity regularization loss. We define A1

as the anchor feature that best matches the text feature T1 in cosine similarity,
and A2 as the anchor feature that best matches the text feature T2 in cosine
similarity. Using the two matched anchor-text pairs {Ai, Ti} and {Aj , Tj}, we
can calculate four similarity scores: Sii, Sij , Sjj , and Sji. Here, Sii represents
the similarity score between anchor feature Ai and text feature Ti. Similarly
Sij denotes the similarity score between anchor feature Ai and text feature Tj .
In our implementation, we adopt mean average error to regularize the equation
of similarities and utilize a margin parameter ϱ to control the strength of reg-
ularization. For any two matched anchor-text pairs {Sii,Sjj} in a batch, our

Fig. 4: Measuring the similarity score change of unregularized similarity and regular-
ized similarity.
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optimization objective is formulated as:

Lregular(i, j) = L1 (Sii ↗ Sij , Sjj ↗ Sji)

+ L1 (Sii ↗ Sji, Sjj ↗ Sij)↗ ϱ
(6)

where L1 represents the L1 distance. Then we adopt mean average error to
calulate the loss of similarity regularization. By the design of our similarity
regularization loss, our model is capable of more accurately reflecting semantic
changes in similarity scores. This enhancement allows for a deeper understanding
of the evolving semantic context within the model’s predictions.

Fig 4 illustrates the e"ectiveness of equivariant similarity. We consider two
matched anchor-text pairs denoted as {A1, T1} and {A2, T2} that are semanti-
cally similar but only di"erent in the object in the dust. One of the objects is
a cow, and the other is a man riding a horse. The changes in similarity scores
guided by the unregularized similarity are highly inconsistent (-1.35 v.s. -0.37).
However, our regularized similarity between anchor and text accurately captures
semantic changes, ensuring that equivalent semantic alterations correctly result
in comparable changes in similarity scores. For example, as illustrated in Fig 4,
the same semantic changes lead to a similar amount of change (-0.55 v.s. -0.45)
in similarity scores in our regularized approach.

3.4 False Negative Suppression

In weakly supervised contrastive learning, negative anchor-text pairs are created
using other anchors within the same batch. Without the supervision of labels,
the selected negative pairs could actually belong to the same semantic category.
We define these undesirable negatives as false negatives, i.e., negative pairs from
the same semantic category. According to a study from [33], the false negative
pairs existed in every batch that may harm the learning process. To suppress
the false negative e"ects, we introduce a false negative suppresssion loss. An
overall architecture is shown as Fig 5. We use the similarity scores between
intra-modal pairs as a soft supervision signal for inter-modal pairs to mitigate
the impact of false negative samples. Put simply, when two anchor scenes in the
same batch are semantically similar, their corresponding text expressions should
also be similar. Based on this theory, we hope that the inter-modal similarity
should be consistent with the intra-modal similarity.

In our implementation, we employ the anchor features Za → RB↓H
→↓W

→↓C
→
and

text features Z
t → RB↓C

→
extracted through the cross-modality attention mod-

ule, where B, H ↔, W ↔, and C
↔ represent the batch size, height, width, and number

of channels of the anchor point, respectively. Then we use Z
t to calculate a dot

product with (Zt)T to obtain the pairwise self-similarity matrix W
t → RB↓B

for text-modal. We denote W
t

ij
as the element in the i-th row and j-th column

of W
t. Likewise, we process the same operations to the anchor features and

obtain a visual adjacency matrix W
a → RB↓B . Sij represents the inter-modal

similarity between Ai and Tj . For example, when the negative pairs Sij are sim-
ilar, the similarity value of their text features, W t

ij
, should be high, as well as
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Fig. 5: An overall architecture of False Negative Suppression. The image adjacency
matrix and text adjacency matrix are respectively constructed to calculate the intra-
modal similarity.

the visual similarity, W a

ij
. And we observed that the similarity scores between

di"erent modalities exhibit a heterogeneous gap. Therefore, we use the average
similarity score between the textual and visual modalities as the soft supervi-
sion signal. Then we implement a loss function to mitigate the impact of false
negative samples on misleading the model’s training process. For a sample Sij

in the inter-modal similarity matrix, its optimization objective is formulated as:

Lfns(i, j) = L1

(
Sij ,

1

2

(
W

a

ij
+W

t

ij

))
(7)

Specifically, we adopt mean average error to calulate the loss of false negative
suppression. We compute the L1 distances between the inter-modal contrastive
matrix and intra-modal adjacency matrices, thereby accounting for all pairwise
similarities across modalities.

In the overall formulation of the loss function, we incorporate the similar-
ity regularization method and the false negative suppression method into our
model. Both methods can be seamlessly integrated with our contrastive learn-
ing framework as additional optimization terms. In practice, we introduce two
learnable balancing factors, denoted as ς and ς

↔. These balancing factors play
a crucial role in ensuring that our model achieves the desired balance between
di"erent objectives or constraints. By allowing the model to automatically ad-
just these factors, it can acquire more valuable learning directions during the
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training process. As a result, the final loss can be as:

Losstotal = Lcontrastive + ςLregular + ς
↔
Lfns (8)

where LContrastive represents the basic contrastive loss, and ς and ς
↔ are learn-

able parameters. And the contrastive loss LContrastive used in our work is defined
as follows:

Lcontrastive = ↗ log
exp

(
sim(f i

a0
, f

i

t
)/φ

)

∑
N

n=0

∑
M

j=0 I¬(i=j↗n ↘=0) exp
(
sim(f j

an , f
i
t
)/φ

) (9)

where f
i

a0
is the feature of the correct anchor in the i-th image, f j

an
represents

the features of other negative anchors, sim(fa, ft) denotes the similarity between
anchor fa and text feature ft, φ is the temperature scaling parameter, I is an
indicator function to filter out the positive pair, and the sums over N and M

account for negative anchors across images. This loss function e"ectively maxi-
mizes the alignment of correct anchor-text pairs while minimizing the similarity
of incorrect pairs, ensuring robust cross-modal matching.

4 Experiments

4.1 Datasets and Metric

RefCOCO [27] comprises 142,210 referring expressions and 50,000 objects ex-
tracted from 19,994 images sourced from the MSCOCO dataset [20], which is
divided into four sets: train with 120,624 expressions, validation with 10,834 ex-
pressions, testA with 5,657 expressions, and testB with 5,095 expressions. The
referring expressions in RefCOCO are primarily about absolute spatial infor-
mation. RefCOCO+ [27] contains 141,564 referring expressions corresponding
to 49,856 bounding boxes extracted from 19,992 MSCOCO images. The data
splits are divided into train with 120,191 referring expressions, validation with
10,758 referring expressions, testA with 5,726 referring expressions, and testB
with 4,889 referring expressions. However, the descriptions within RefCOCO+
primarily focus on relative spatial information and visual attributes such as color
and texture. RefCOCOg [25, 27] consists of 104,560 referring expressions as-
sociated with 54,822 bounding boxes found in 26,711 images. In comparison
to RefCOCO and RefCOCO+, the referring expressions found in RefCOCOg
typically exhibit greater length and complexity. For our experiments, we uti-
lize the Google split [25] of RefCOCOg. ReferItGame [16] comprises 19,997
images sourced from the SAIAPR-12 dataset, featuring 99,220 bounding boxes
and 120,072 referring expressions. We partition the dataset into training, vali-
dation, and test sets according to the Berkeley split. Our evaluation metric is
IoU@0.5, where a prediction is considered correct if the Intersection over Union
(IoU) between the predicted bounding box and the ground-truth box exceeds 0.5.
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Table 1: Comparisons with state-of-the-art methods on RefCOCO [27], Ref-
COCO+ [27], RefCOCOg [25,27], ReferItGame [16]. We conduct comprehensive com-
parisons across four benchmark datasets specifically designed for REC. These experi-
ments enable us to evaluate and measure the e!ectiveness and accuracy of our approach
in a systematic and comprehensive manner.

Method RefCOCO RefCOCO+ RefCOCOg ReferItGame
val testA testB val testA testB val-g test

VC [28] - 32.68 27.22 - 34.68 28.10 29.65 14.50
KAC Net [4] - - - - - - - 15.83
MATN [41] - - - - - - - 13.61
ARN [22] 32.17 35.25 30.28 32.78 34.35 32.13 33.09 26.19
IGN [40] 34.78 37.64 32.59 34.29 36.91 33.56 34.92 -
DTWREG [32] 38.35 39.51 37.01 38.91 39.91 37.09 42.54 -
RelR [24] - - - - - - - 37.68
NCE+Distillation [36] - - - - - - - 38.39
RefCLIP [15] 60.36 58.58 57.13 40.39 40.45 38.86 47.87 39.58

Ours 63.91 61.44 63.76 41.82 42.05 40.37 48.38 38.83

4.2 Implementation Details

Our model was implemented using PyTorch and trained on a single RTX 3090
GPU. We conducted the experiment following all the training and evaluation set-
tings outlined in RefCLIP [15]. During training, our proposed model is trained
over 25 epochs using the Adam optimizer [7], with a batch size of 64. The in-
put image is resized to 416 Ã# 416, and the anchor features are projected into
512 dimensions through multi-scale fusion. The language encoder’s dimension
is set to 512, and the maximum length of the input text is restricted to 15 for
RefCOCO, RefCOCO+, and RefCOCOg, and to 20 for ReferItGame. We then
use a pretrained YOLOv3 [30], with the DarkNet-53 backbone, as the detector
to extract anchor features. This YOLOv3 model, pretrained on MS-COCO [20],
excludes images from the validation and test sets across the three datasets men-
tioned earlier in section 4.1. For a fair comparison with [21,36] in ReferItGame,
we use the YOLOv3 pretrained on Visual Genome [17] as the detector of our
model. The pretrained YOLOv3 is frozen throughout the entire training process.

4.3 Results

In Table 1, we compare our proposed model with common weakly supervised
REC models, including both one-stage and two-stage REC models, across four
di"erent datasets: RefCOCO, RefCOCO+, RefCOCOg, and ReferItGame. Our
research shows that our model outperforms these methods significantly. Notably,
we achieve accuracies of 63.91%, 61.44% and 63.76% on the val, testA and testB
splits of RefCOCO, which bring absolute improvements of 3.55, 2.86 and 6.63
percentage points respectively over the previous best performance of the anchor-
based one-stage framework RefCLIP [15]. For the RefCOCO+ dataset, our model
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achieve accuracies of 41.82%, 42.05% and 40.37% on the val, testA and testB
splits, corresponding to absolute improvements of 1.43, 1.60 and 1.51 percent-
age points. Our model’s superior performance extends beyond RefCOCO and
RefCOCO+ to include RefCOCOg and ReferItGame datasets, establishing it as
the current top-performing method. The visualizations in Fig 6 demonstrate the
e"ectivity of our approaches. Specifically, the visualizations highlight the im-
provements in bounding boxes accuracy by comparing our model’s predictions
with the ground truth and with predictions from baseline model.

Table 2: Evaluation of each proposed module on RefCOCO and RefCOCOg.

Method RefCOCO RefCOCOg
val testA testB val-g

Baseline 60.36 58.58 57.13 47.87

C 62.27 59.95 60.07 48.12
C + E 63.16 60.80 62.66 48.06
C + E + F 63.91 61.44 63.76 48.38

Table 3: Evaluation of each proposed module on RefCOCO+ and ReferItGame.

Method RefCOCO+ ReferItGame
val testA testB test

Baseline 40.39 40.45 38.86 39.58

C 41.02 41.58 39.65 38.70
C + E 41.35 41.82 40.02 38.74
C + E + F 41.82 42.05 40.37 38.83

4.4 Ablation Study

In Table 2 and Table 3, specific symbols represent the modules: C denotes the
use of the cross-modality attention module, E signifies similarity regularization,
and F indicates false negative suppression. These table allow us to analyze and
understand the impact of each module on the performance of accuracy IoU@0.5
on our proposed model. In Table 2, the addition of each module to the model
results in an average 0.9% improvement in accuracy scores across all splits of the
RefCOCO dataset, highlighting the e"ectiveness of each component. In Table 3,
our proposed modules show consistent improvements across the RefCOCO+
dataset, with noticeable gains in each splits. However, these enhancements are
not observed in the ReferItGame dataset, this can be attributed to its unique
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Fig. 6: The visualization results of our model compared to the baseline model Ref-
CLIP [15]. The yellow bounding boxes represent the predicted results, while the green
bounding boxes denote the ground truth. Sub-figure 1 to 4 demonstrate that our pro-
posed cross-modality attention module help the model get more accurate bounding
boxes. Sub-figure 5 to 8 illustrate that our proposed similarity regularization and false
negative suppression approaches enhance the model’s ability to generate more precise
bounding boxes.

characteristics. Unlike other datsets, ReferItGame’s images primarily consist of
natural landscapes, which lack easily recognizable features, making object de-
tection more di!cult. By individually incorporating di"erent modules into our
model, we can observe that each module we proposed contributes to an overall
improvement in the model’s performance.

5 Conclusion

In conclusion, our study addresses the critical challenge of aligning image and
text features in weakly supervised REC. By introducing the cross-modality at-
tention module, we e"ectively bridge the gap between visual and textual modal-
ities, mitigating the discrepancies that often lead to incorrect bounding box pre-
dictions. Our incorporation of equivariant regularization based on similarity fur-
ther enhances cross-modal alignment by accurately reflecting semantic changes.
Additionally, we introduce the mechanism for false negative suppression tackles
the noise in weakly supervised contrastive learning, improving the robustness
of the model without requiring additional ground truth supervision. The ex-
tensive experiments conducted on the RefCOCO, RefCOCO+, RefCOCOg, and
ReferItGame datasets validate the e"ectiveness of our approaches. Our results
consistently outperform state-of-the-art methods, demonstrating superior accu-
racy and generalizability. This work not only advances the REC field but also
provides a strong foundation for future research in cross-modal understanding
and weakly supervised learning.
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