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Abstract. Multi-view clustering exhibits advantages over single-view
clustering due to its ability to fully utilize complementary information
between multiple views. However, most mainstream methods have the
following two drawbacks: 1) Ignoring structural conflicts between views
leads to a deterioration in clustering performance, because merging a
certain view actually worsens the clustering results; 2) Rather than glob-
ally extracting the maximum correlation between views, their approaches
center on individual instances, consequently making models more suscep-
tible to interference from local noise points. To address these issues, this
paper proposes a novel framework, entitled Contrastive Max-correlation
for Multi-view Clustering (CMMC) for robust multi-view clustering. In
particular, the network framework incorporates two e!ective methods.
The first method, maximum structure correlation learning, enhances
the downstream task representations by incorporating complementary
structural information. Additionally, the framework achieves simultane-
ous mining of view correlations and alignment of views through the global
max-correlation contrastive learning method. As the above methods op-
erate globally, CMMC can e!ectively reduce the impact of noise informa-
tion. Experiments on various types of multi-view datasets demonstrate
that CMMC outperforms existing methods in terms of clustering accu-
racy and robustness.

Keywords: Deep multi-view clustering · Contrastive learning · Canon-
ical correlation analysis · Unsupervised learning.

1 Introduction

In recent years, the significance of multi-view clustering has been steadily grow-
ing. In modern society, data gathered for real-world applications typically origi-
nates from diverse domains, sensors, or feature extractors [12]. Multi-view clus-
tering excels precisely because it can extract and leverage the complementary and
consistent information inherent within such multi-source data, thereby demon-
strating superior performance in downstream tasks. Additionally, multi-view
clustering falls under the category of unsupervised learning, o!ering the no-
table advantage of functioning without the need for labeling information during
the training process. This circumvents the challenge of acquiring costly labeled
data, ultimately leading to significant cost savings.

This ACCV 2024 paper, provided here by the Computer Vision Foundation, is the author-created version.
The content of this paper is identical to the content of the officially published ACCV 2024

LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/accv
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Traditional multi-view clustering methods, based on how they combine the
multi-view information [3], can be categorized into five classes: 1) common eigen-
vector matrix, 2) common coe"cient matrix, 3) common indicator matrix, 4)
direct view combination, 5) view combination after projection. Compared with
these traditional shallow methods, the deep neural network is a more promising
approach because of its excellent nonlinear mapping capability and its flexibil-
ity in di!erent scenarios [20]. In order to fully utilize the complementary and
consistent information of multi-view data, many prominent methods have been
proposed. Although these methods have made some progress in multi-view tasks,
the following open problems still exist: 1) Many methods [27, 28, 30] focus too
much on aligning or not aligning local points when introducing contrastive learn-
ing methods for alignment task, which often weakens the robustness of models
due to the presence of individual noisy data points; 2) Some methods [12,33], in
their pursuit of achieving consistent representation, overlook structural conflicts
among di!erent viewpoints. They forcefully merge these viewpoints, thereby
compromising the complementary information inherent in diverse views. There-
fore, after integrating a particular view, there may be a decrease in model per-
formance, which contradicts the concept of multi-view clustering where more
views lead to more information and higher performance.

Based on the above observations, we propose a novel multi-view representa-
tion learning framework for clustering to address the aforementioned issues, en-
titled Contrastive Max-correlation for Multi-view Clustering (CMMC). Overall,
CMMC aims to globally align views and maximize structural complementary in-
formation across views. In detail, we first introduce the variational autoencoder
to obtain the view-specific representations by reconstructing the origin data.
Then, the novel method, entitled maximum structure correlation learning, is
proposed to reshape new representations with structural information and utilize
the reshaped representation to guide the representation of other views to learn
structural complementary information of the view. Furthermore, we introduce
Deep Canonical Correlation Analysis (DCCA) [2] into contrastive learning for
the first time to align multi-view data and maximize correlation across views
globally. Compared with previous work, our contributions are listed as follows:

– We design a flexible framework, entitled Contrastive Max-correlation for
Multi-view Clustering (CMMC), which is able to maximize structural com-
plementary information across views.

– As far as we know, global max-correlation contrastive learning could be the
first attempts which introduce DCCA into contrastive learning to build a
novel contrastive loss with the ability to align multi-view data and maximize
correlation across views simultaneously.

– All of our operations are from a global perspective. As a result, the influence
of noise points is e!ectively reduced and the robustness of the model is
improved. Experiments show that the proposed method outperforms several
state-of-the-art methods on five public datasets.

500



Contrastive Max-correlation for Multi-view Clustering 3

2 Related Works

2.1 Deep Multi-view Clustering

Although traditional multi-view clustering algorithms have achieved promising
results in some tasks, multi-view clustering algorithms based on deep learning
have emerged as the mainstream research direction due to their superior repre-
sentation learning ability. Similar to traditional methods, deep multi-view clus-
tering also mines complementarity and consistency information between multi-
ple views to enhance model performance. For example, the algorithms proposed
by [16] and [31] learn a consistent representation by mining mutual informa-
tion between multi-view representations. Conversely, [4, 10, 11] exploit the deep
spectral clustering algorithm proposed by [21] to mine consistency information
of non-convex and more complex datasets. However, many existing deep multi-
view clustering algorithms struggle to handle datasets with more than two views,
and even exhibit a phenomenon where the results deteriorate as the number of
dataset views increases [28]. This may be attributed to the conflicting structures
among views during the process of mining more view complementarity and con-
sistency information, leading to a dip in model performance.

In contrast to the above methods, our algorithm CMMC neutralizes struc-
tural conflicts between two views and establishes structural robustness among
multiple views. To achieve this goal, CMMC first reconstructs the representation
of a view using its structural information, and then utilize the reconstructed rep-
resentation to guide the learning of other views’ representations. In Table 2, we
verify that this approach can e!ectively eliminate the phenomenon of conflicting
view structures.

2.2 Contrastive Learning

Contrastive learning has recently made significant strides in self-supervised rep-
resentation learning. These methods rely heavily on numerous distinct pairwise
representation comparisons. Specifically, they aim to maximize the similarities
among positive pairs while simultaneously minimizing those among negative
pairs in a latent feature space. [32] combined information theory with contrastive
learning to alleviate cross-view discrepancies and learn consensus semantics. [19]
employed intra- and inter-view contrastive learning in di!erent instead of the
same space, thus being in favor of the intra-view information and cross-view con-
sistency. [15] proposed a framework for contrastive learning at both the cluster-
level and instance-level, respectively conducted in the row and column space, by
maximizing the similarities of positive pairs while minimizing those of negative
ones. [5] developed a contrastive learning framework solely at the cluster-level,
but did so by identifying a superior surrogate for the source data of positive and
negative sample pairs, ensuring that cluster allocation pairs in the same view
are drawn together while pushing cluster allocation pairs into another view.

Despite these methods’ adept utilization of the benefits of contrastive learn-
ing, they overlook the impact of view-specific local noise when constructing posi-
tive and negative sample pairs. These local noises disrupt model training, causing
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(a)

(b) (c)

Fig. 1: (a) The framework of CMMC. We employ a set of encoder networks to map
the input data X

(v) into the mean and variance within the latent space. Reparameteri-
zation trick is employed to sample a latent feature H

(v). Then, these latent features are
fused through the MCL and GCL methods to generate H

(fusion), which contains con-
sistent and complementary information from each view. Finally, the learned H

(fusion)

is utilized to generate the clustering outcomes for k-means clustering. (b) Maximum
Structure Correlation Learning (MCL) aims to learn complementary structural
information. (c) Global Max-Correlation Contrastive Learning (GCL) aligns
multi-view data and maximize correlation across views globally. Di!erent shapes rep-
resent di!erent views.

it to veer o! course and learn incorrect patterns or features, ultimately diminish-
ing the model’s accuracy on test data. Therefore, we propose integrating DCCA
into contrastive learning to globally construct positive and negative sample pairs
to mitigate the e!ects of local noise.

3 Method

Let X =
{
X

1,X2, . . . ,X(nv)
}

be a multi-view dataset with nv di!erent views.
For the v-th view, X(v) → Rn→dv (1 ↑ v ↑ nv), where n is the number of data
points and dv denotes the dimension. The latent representations obtained from
Variational Auto-Encoding (VAE), corresponding negative pairs representations,
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and fusion representation are denoted by
{
H

(v),H
(v)

,H(fusion)
}
→ Rn→k respec-

tively. The whole framework of CMMC is shown in Figure 1(a).

3.1 Variational Representation Learning

In multi-view clustering tasks, autoencoders have been widely employed to ex-
tract representations from raw features. In our study, we introduce the VAE to
enhance robustness of model when confronted with noise and variations.

The VAE consists primarily of two processes: encoding qω(H | X) and decod-
ing pε(X | H). Generally, assuming the data follows a Gaussian distribution, the
encoder network qω(H | X) takes the original data as input and produces two
outputs, µ and ω, representing the mean and variance of the Gaussian distri-
bution, respectively. Then, using the reparameterization trick, a latent variable
H is generated. Finally, the latent variable X is used by the decoder network
pε(X | H) to reconstruct the original data, where ε and ϑ represent the param-
eters of the encoder and decoder networks, respectively.

The aim of VAE is to obtain the true posterior probability distribution pε(H |
X) by performing an approximate estimation through finding the distribution
qω(H | X) that is closest to it, which can be realized by optimizing the constraint
parameters ϑ and ε [13]:

log pε(X) = DKL (qω(H | X)↓pε(H | X)) + LELBO(ϑ,ε;X), (1)

where log pε(X) is the logarithm of the probability of occurrence of the sample
data. The second term is called Evidence Lower Bound (ELBO). In the context
where the constant term on the left-hand side remains unchanged, maximizing
the ELBO minimizes the Kullback-Leibler (KL) divergence term. The final ob-
jective function of a VAE aims to minimize the sum of the reconstruction loss
and the KL divergence. After transformation and derivation, it can be expressed
as:

L = Eqω(H|X) [log pε(X | H)]↔DKL (qω(H | X)↓pε(H)) . (2)

As shown in Figure 1(a), there are a total of nv VAEs, so the basic VAE loss
of our model is the sum of the VAE losses of the nv views

Lvae =
nv∑

i=1

(
E

qω(H(i)|X(i))

[
log pε

(
X

(i) | H(i)
)]

↔

ϖ DKL

(
qω

(
H

(i) | X(i)
)
↓pε

(
H

(i)
)))

,

(3)

where ϖ is a trade-o! parameter, and is fixed to 5e-7.

3.2 Maximum Structure Correlation Learning

The structural information across di!erent views is a crucial aspect to consider
for ensuring complementarity and consistency in multi-view learning. When inte-
grating multi-view information, significant disparities in structural information
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among views can lead to conflicts and subsequent performance degradation. To
address this challenge, we propose the Maximum Structure Correlation Learn-
ing (MCL) method. The detailed implementation of the method is illustrated in
Figure 1(b).

After the latent presentations H(v) extracted by VAEs, our goal is to enhance
the representations of di!erent views by incorporating complementary structural
information from other views. A new embedding space is reshaped and utilized
to guide other views to learn the structural complementary information from the
view. In details, we apply the k-NN graph to construct the non-negative a"nity
matrix W

(v) → Rn→n as the structural information. The matrix is defined as

W
v

ij
=





exp

(
↔↓hv

i ↑h
v
j↓2

2
2ϑ2

)
, if hv

i
, hv

j
are connected.

0, otherwise.
(4)

To be exact, the similarity between hv

i
and hv

j
is computed by a Gaussian kernel

with a scale ω > 0 if hv

j
falls into the k neighborhood of hv

i
and the selection of

k is fixed at 40. Using the similarity matrix, we can reshape the new represen-
tation HS

(v) with structural information through a combination of its k nearest
neighbors:

HS
(v) = RN

(
W

(v)
)
H

(v). (5)

RN means that the matrix W
(v) is normalized by rows, i.e., the elements of

each row of the matrix W
(v) are divided by the sum of that row.

Ultimately, we use cross-entropy to guide the representations of other views to
learn complementary structural information from the current view, represented
as DKL

(
HS

(i)↓Hj

)
. Additionally, cross-entropy is employed to e!ectively re-

duce the variability of the structural space between di!erent views, which is
represented mathematically as DKL

(
W

(i)↓W(j)

, thereby ensuring a more con-

sistent and coherent representation across views. During the experiment, we
found that the loss function changes too dramatically, and using an exponential
function as the basis for MCL can increase the smoothness of the loss function,
which is beneficial for the stability and smoothness of the algorithm. Therefore,
the Lmcl objective is defined by

Lmcl = exp
(
↔

nv∑

i=1

nv∑

j=1

HS
(i)logH(j) ↔

nv↑1∑

i=1

nv∑

j=i+1

W
(i)logW(j)

)
. (6)

3.3 Global Max-correlation Contrastive Learning

In order to explore the maximum correlation across views as well as reduce noise
information globally, we introduce DCCA into contrastive learning and revised
the selection method for positive and negative samples to create a new unsu-
pervised loss function. This novel loss function ignores the influence of noisy
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samples at the instance-level and maintains consistency across views. The de-
tailed implementation of the method is illustrated in Figure 1 (c).

According to [2], the correlation of pairs, corr
(
H

(1),H(2)

, is computed by

corr
(
H

(1),H(2)
)
= ↓T↓tr = tr (T ↓T )

1/2

T = ϱ̂↑1/2
11 ϱ̂12ϱ̂

↑1/2
22 ,

(7)

where
(
ϱ̂11, ϱ̂22

)
represents covariance and ϱ̂12 is cross-covariance.

This method for measuring data correlation can better handle nonlinear and
complex data. Moreover, by considering a batch of data from di!erent views of
the dataset rather than individual sample points from each view, it e!ectively
mitigates the impact of local noise points and enhances the maximum correlation
between views. Therefore,

d
(
H

(1),H(2)
)
=

1

corr
(
H(1),H(2)

 (8)

can be regarded as an innovative distance measure, capable of replacing the
Euclidean and Cosine distances. The validity experiments are presented in Table
4.

We take the paired view data as positive samples, and the randomly selected
samples from the corresponding view and fused view, respectively, as negative
samples. As a result, the positive loss function and negative loss function are

Lpos =
nv↑1∑

i=1

nv∑

j=i+1

d2
(
H

(i),H(j)
)
+

nv∑

i=1

d2
(
H

(i),H(fusion)
)

(9)

and

Lneg =
nv∑

i=1

max
(
m↔ d

(
H

(i),H
(i)
)
, 0
)2

+max
(
m↔ d

(
H

(fusion),H
(i)
)
, 0
)2

,

(10)

where m is a margin which enforces the distance of negatives to be moderately
large. To avoid laboriously parameter selection, we suggest automatically deter-
mining the appropriate m for each dataset during its initial stages [29]. This
process can be expressed mathematically as

m =
1

Np

nv↑1∑

i=1

nv∑

j=i+1

d
(
H

(i),H(j)
)
+

1

Nn

nv∑

i=1

d
(
H

(i),H
(i)
)
, (11)

where Np and Nn denote the number of positive and negative pairs, respectively.
By Eq. 11, we can calculate Np = nv(nv ↔ 1)/2 and Nn = nv.
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Consequently, our max-correlation contrastive learning loss function is

Lgcl =
1

2N
(Lneg + ςLpos) , (12)

where N = Np + Nn denotes the number of contrastive pairs and ς is a pre-
defined hyper-parameter whose values we fix at 130.

Overall, the loss of our method consists of the above three parts:

L = Lmcl + Lgcl + Lvae. (13)

4 Experiments

4.1 Implementation Details

We implement our model using PyTorch 1.12.1 and conduct all evaluations on
an NVIDIA 3070 GPU. The Adam optimizer is employed with an initial learning
rate of 0.001, without a scheduler or weight decay. For the experiments presented
in Table 1, we train the model for 150 epochs across all datasets, with a batch
size of 1024. For the experiments in Table 2, we pre-train the models for 200
epochs to minimize the reconstruction loss and then fine-tune the model for 100
epochs using mini-batches of size 256. The evaluation metrics include four mea-
sures: accuracy (ACC), normalized mutual information (NMI), adjusted Rand
index (ARI), and purity (PUR).

4.2 Datasets

Four widely-used multi-view datasets, including three handcraft-feature-based
(Scene15 [8], Reuters [1], Caltech101 [7]) and the NoisyMNIST [25] datasets,
are chosen to evaluate the e!ectiveness of CMMC. One five-view dataset (Cal-
tech [6]) is used to test whether CMMC can fully utilize the complementary
information of multiple views to improve the performance of model in the face
of increased views.

4.3 Comparison Methods

For these four two-view datasets, we compare CMMC with 6 multi-view clus-
tering baselines including CCA [24], DCCA [2], DAIMC [9], EERIMVC [18],
SURE [29], and ProImp [14]. For the five-view dataset, the comparison meth-
ods include 6 state-of-the-art methods, including EAMC [33], CDIMC-net [26],
COMPLETER [17], SiMVC [23], CoMVC [23], MFLVC [27], and GCFAgg [28].

4.4 Result Analysis

Table 1 presents the clustering results of four widely-used multi-view datasets
which are used to evaluate the e!ectiveness of CMMC. As shown in this table,
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Contrastive Max-correlation for Multi-view Clustering 9

Table 1: Multi-view clustering comparisons on four widely-used multi-view datasets.
The best result in each row is shown in bold and the second-best is underlined. The
average clustering performance is reported.

Evaluation metrics Datasets ACC NMI ARI

CCA

Scene-15 36.37 36.91 19.82
Caltech-101 20.25 45.41 16.34

Reuters 44.31 20.34 14.52
NoisyMNIST 71.31 52.60 48.46

DCCA

Scene-15 36.61 39.20 21.03
Caltech-101 27.60 47.84 30.86

Reuters 47.95 26.57 12.71
NoisyMNIST 89.64 88.33 83.95

DAIMC

Scene-15 32.09 33.55 17.42
Caltech-101 26.40 49.18 19.00

Reuters 40.78 21.15 15.98
NoisyMNIST 38.40 34.66 22.98

EERIMVC

Scene-15 39.60 38.99 22.06
Caltech-101 23.98 45.61 17.19

Reuters 33.21 14.28 3.9
NoisyMNIST 65.66 57.60 51.34

SURE

Scene-15 40.95 43.19 25.01
Caltech-101 34.59 48.30 48.79

Reuters 49.06 29.91 23.56
NoisyMNIST 98.36 95.38 96.43

ProImp

Scene-15 43.61 45.02 26.84
Caltech-101 → → →

Reuters 56.54 39.35 32.77
NoisyMNIST 99.17 97.48 98.18

CMMC(Ours)

Scene-15 47.33 46.05 29.42
Caltech-101 36.33 51.84 54.38

Reuters 60.57 41.89 35.42
NoisyMNIST 99.05 97.12 97.92

although our method is slightly inferior to the ProImp on the NoisyMNIST
dataset, we get the best results on all other datasets. Especially, CMMC achieves
an ACC improvement of 8.53% and 7.13% on the Scene and Reuters dataset,
respectively. Table 2 presents the clustering results on Caltech with di!erent
views. Overall, our proposed CMMC outperforms all the competitors on all the
metrics and datasets. In addition, unlike GCFAgg, it can be observed that our
method improves all the metrics as the views increases. These results illustrate
that our method can fully utilize the complementary information of multiple
views to improve the performance of model in the face of increased views.

4.5 Ablation Study

According to the overall multi-view clustering loss in Eq. 13, three distinct loss
components are involved. To ascertain the significance of each component in
CMMC, we conducted ablation studies under identical experimental conditions
to isolate the necessity of each component. As depicted in Table 3, we observe
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Table 2: Results of all methods on Caltech with di!erent views. “-XV” represents that
there are X views.

Evaluation metrics Datasets ACC NMI PUR

EAMC

Caltech-2V 0.490 0.398 0.540
Caltech-3V 0.558 0.445 0.576
Caltech-4V 0.687 0.610 0.719
Caltech-5V 0.760 0.691 0.785

CDIMC-net

Caltech-2V 0.419 0.256 0.427
Caltech-3V 0.389 0.214 0.398
Caltech-4V 0.356 0.205 0.370
Caltech-5V 0.318 0.173 0.342

COMPLETER

Caltech-2V 0.437 0.391 0.552
Caltech-3V 0.489 0.446 0.594
Caltech-4V 0.391 0.355 0.516
Caltech-5V 0.431 0.431 0.597

SiMVC

Caltech-2V 0.508 0.471 0.557
Caltech-3V 0.569 0.495 0.591
Caltech-4V 0.619 0.536 0.630
Caltech-5V 0.719 0.677 0.729

CoMVC

Caltech-2V 0.466 0.426 0.527
Caltech-3V 0.541 0.504 0.584
Caltech-4V 0.568 0.569 0.646
Caltech-5V 0.700 0.687 0.746

MFLVC

Caltech-2V 0.606 0.528 0.616
Caltech-3V 0.631 0.566 0.639
Caltech-4V 0.733 0.652 0.734
Caltech-5V 0.804 0.703 0.804

GCFAgg

Caltech-2V 0.664 0.501 0.664
Caltech-3V 0.640 0.535 0.653
Caltech-4V 0.734 0.661 0.734
Caltech-5V 0.834 0.733 0.834

CMMC(Ours)

Caltech-2V 0.666 0.538 0.666
Caltech-3V 0.724 0.590 0.724
Caltech-4V 0.776 0.688 0.776
Caltech-5V 0.876 0.774 0.876

that the variational autoencoder loss Lvae alone produces only rudimentary re-
sults. Both Lmcl and Lgcl lead to corresponding improvements, but the optimal
result is achieved only when Lvae, Lmcl, and Lgcl are combined.

To assess the e!ectiveness of Eq. 8 as a distance metric, we conducted an
additional experiment on Scene-15 dataset for validation purposes. The result
is depicted in Table 4. In this experiment, we maintained all other conditions
constant while varying the distance metric used to calculate distances, including
Cosine distance, Euclidean distance, and our proposed Eq. 8. The experimental
results indicate that the performance using Cosine distance was the poorest,
followed by Euclidean distance, while our proposed Eq. 8 demonstrated the best
performance. This finding suggests that our distance metric is more adept at
handling complex datasets, thereby achieving superior performance by mitigat-
ing the influence of local noise.
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Table 3: Ablation study of three losses on Scene-15.

Lvae Lmcl Lgcl ACC NMI ARI
↭ 25.74 21.90 10.95
↭ ↭ 27.49 23.39 11.35
↭ ↭ 40.03 41.45 24.13
↭ ↭ ↭ 47.33 46.05 29.42

Table 4: Ablation study of three distance measures on Scene-15.

ACC NMI ARI
Cosine 19.33 15.54 4.89
Euclidean 45.04 45.18 27.47
Corr(Ours) 47.33 46.05 29.42

4.6 Parameter Sensitivity Analysis

As discussed above, our method incorporates two balancing parameters: the
variational representation learning trade-o! parameter ϖ and the contrastive
learning trade-o! parameter ς. While CMMC with fixed parameter values has
demonstrated promising performance, it is crucial to investigate the influence
of these parameters and fully realize the potential of our method. As shown in
Figure 2, in this experiment, we vary ϖ within the range of {5e-1, 5e-3, 5e-5, 5e-
7, 5e-9} and ς in the range of {100, 110, 120, 130}. Notably, we observe that our
method exhibits insensitivity to clustering results in a certain parameter range.
Specifically, we find that the maximum value is attained when ϖ = 5e ↔ 7 and
ς = 130, indicating the importance of fine-tuning these parameters for optimal
performance.

4.7 Visualizations

To validate the e!ectiveness of our latent feature H
fusion in integrating the

maximum correlation between views, we conduct t-SNE visualization on features
learned by CMMC on the NoisyMNIST dataset after convergence. As shown in
Figure 3, although the view-specific representation H can form relatively clear
cluster boundaries, some examples cannot be classified into the correct clusters.
In contrast, our Hfusion can significantly alleviate this issue, with clearer cluster
boundaries.

5 Conclusion

In this paper, we introduce a novel framework, Contrastive Max-correlation for
Multi-view Clustering (CMMC), which addresses the challenges of multi-view
clustering, particularly the structural conflicts and local noise interference often
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Fig. 2: The e!ects of ω and ε on Scene-15.

(a) X (b) H (c) H
fusion

Fig. 3: The t-SNE visualization results on the NoisyMNIST dataset of di!erent feature
representations on di!erent layers after convergence. (a) Illustrates the NoisyMNIST
dataset in its original state. (b) Represents the view-specific representation H refined
by VAEs. (c) Depicts the learned H

fusion used for downstream tasks.

encountered in existing methods. Our framework incorporates two key com-
ponents: Maximum Structure Correlation Learning (MCL) and Global Max-
correlation Contrastive Learning (GCL). MCL enhances representations by in-
corporating complementary structural information from other views, thereby
reducing conflicts and improving clustering performance. GCL introduces Deep
Canonical Correlation Analysis (DCCA) into contrastive learning to globally
align views and reduce noise information, enhancing robustness and perfor-
mance. Experiments on various multi-view datasets demonstrate the superiority
of CMMC over existing methods.

References

1. Amini, M.R., Usunier, N., Goutte, C.: Learning from multiple partially observed
views-an application to multilingual text categorization. Advances in Neural Infor-
mation Processing Systems pp. 28–36 (2009)

2. Andrew, G., Arora, R., Bilmes, J., Livescu, K.: Deep canonical correlation analysis.
In: Proceedings of the International Conference on Machine Learning. pp. 1247–
1255 (2013)

3. Chao, G., Sun, S., Bi, J.: A survey on multi-view clustering. arXiv preprint
arXiv:1712.06246 (2017)

4. Chen, J., Mao, H., Peng, D., Zhang, C., Peng, X.: Multiview clustering by consensus
spectral rotation fusion. IEEE Transactions on Image Processing 32, 5153–5166
(2023)

510



Contrastive Max-correlation for Multi-view Clustering 13

5. Chen, J., Mao, H., Woo, W.L., Peng, X.: Deep multiview clustering by contrasting
cluster assignments. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 16752–16761 (2023)

6. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few
training examples: An incremental bayesian approach tested on 101 object cat-
egories. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition workshop. pp. 178–178 (2004)

7. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE
Transactions on Pattern Analysis and Machine Intelligence 28(4), 594–611 (2006)

8. Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene
categories. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 524–531 (2005)

9. Hu, M., Chen, S.: Doubly aligned incomplete multi-view clustering. In: Proceed-
ings of the International Joint Conference on Artificial Intelligence. pp. 2262–2268
(2018)

10. Huang, Z., Zhou, J.T., Peng, X., Zhang, C., Zhu, H., Lv, J.: Multi-view spectral
clustering network. In: Proceedings of the International Conference on Interna-
tional Joint Conferences on Artificial Intelligence. p. 2563–2569 (2019)

11. Huang, Z., Zhou, J.T., Zhu, H., Zhang, C., Lv, J., Peng, X.: Deep spectral repre-
sentation learning from multi-view data. IEEE Transactions on Image Processing
30, 5352–5362 (2021)

12. Jin, J., Wang, S., Dong, Z., Liu, X., Zhu, E.: Deep incomplete multi-view clustering
with cross-view partial sample and prototype alignment. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11600–
11609 (2023)

13. Kingma, D.P.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114
(2013)

14. Li, H., Li, Y., Yang, M., Hu, P., Peng, D., Peng, X.: Incomplete multi-view clus-
tering via prototype-based imputation. arXiv preprint arXiv:2301.11045 (2023)

15. Li, Y., Hu, P., Liu, Z., Peng, D., Zhou, J.T., Peng, X.: Contrastive clustering. In:
Proceedings of the AAAI conference on artificial intelligence. pp. 8547–8555 (2021)

16. Lin, Y., Gou, Y., Liu, X., Bai, J., Lv, J., Peng, X.: Dual contrastive prediction
for incomplete multi-view representation learning. IEEE Transactions on Pattern
Analysis and Machine Intelligence 45(4), 4447–4461 (2022)

17. Lin, Y., Gou, Y., Liu, Z., Li, B., Lv, J., Peng, X.: Completer: Incomplete multi-view
clustering via contrastive prediction. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 11174–11183 (2021)

18. Liu, X., Li, M., Tang, C., Xia, J., Xiong, J., Liu, L., Kloft, M., Zhu, E.: E"cient
and e!ective regularized incomplete multi-view clustering. IEEE Transactions on
Pattern Analysis and Machine Intelligence 43(8), 2634–2646 (2020)

19. Lu, Y., Lin, Y., Yang, M., Peng, D., Hu, P., Peng, X.: Decoupled contrastive
multi-view clustering with high-order random walks. In: Proceedings of the AAAI
conference on artificial intelligence. pp. 14193–14201 (2024)

20. Ren, Y., Pu, J., Yang, Z., Xu, J., Li, G., Pu, X., Philip, S.Y., He, L.: Deep cluster-
ing: A comprehensive survey. IEEE Transactions on Neural Networks and Learning
Systems (2024)

21. Shaham, U., Stanton, K., Li, H., Nadler, B., Basri, R., Kluger, Y.: Spectralnet:
Spectral clustering using deep neural networks. arXiv preprint arXiv:1801.01587
(2018)

22. Tang, H., Liu, Y.: Deep safe incomplete multi-view clustering: Theorem and algo-
rithm. In: International Conference on Machine Learning. pp. 21090–21110 (2022)

511



14 Y. Deng et al.

23. Trosten, D.J., Lokse, S., Jenssen, R., Kamp!meyer, M.: Reconsidering representa-
tion alignment for multi-view clustering. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 1255–1265 (2021)

24. Vinokourov, A., Cristianini, N., Shawe-Taylor, J.: Inferring a semantic representa-
tion of text via cross-language correlation analysis. Advances in Neural Information
Processing Systems p. 1497–1504 (2002)

25. Wang, W., Arora, R., Livescu, K., Bilmes, J.: On deep multi-view representation
learning. In: Proceedings of the International Conference on Machine Learning. pp.
1083–1092 (2015)

26. Wen, J., Zhang, Z., Xu, Y., Zhang, B., Fei, L., Xie, G.S.: Cdimc-net: Cognitive
deep incomplete multi-view clustering network. In: Proceedings of the International
Conference on International Joint Conferences on Artificial Intelligence. pp. 3230–
3236 (2020)

27. Xu, J., Tang, H., Ren, Y., Peng, L., Zhu, X., He, L.: Multi-level feature learning for
contrastive multi-view clustering. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 16051–16060 (2022)

28. Yan, W., Zhang, Y., Lv, C., Tang, C., Yue, G., Liao, L., Lin, W.: Gcfagg: Global
and cross-view feature aggregation for multi-view clustering. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 19863–
19872 (2023)

29. Yang, M., Li, Y., Hu, P., Bai, J., Lv, J., Peng, X.: Robust multi-view clustering
with incomplete information. IEEE Transactions on Pattern Analysis and Machine
Intelligence 45(1), 1055–1069 (2022)

30. Yang, M., Li, Y., Huang, Z., Liu, Z., Hu, P., Peng, X.: Partially view-aligned
representation learning with noise-robust contrastive loss. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1134–
1143 (2021)

31. Zeng, P., Li, Y., Hu, P., Peng, D., Lv, J., Peng, X.: Deep fair clustering via max-
imizing and minimizing mutual information: Theory, algorithm and metric. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 23986–23995 (2023)

32. Zeng, P., Yang, M., Lu, Y., Zhang, C., Hu, P., Peng, X.: Semantic invariant multi-
view clustering with fully incomplete information. IEEE Transactions on Pattern
Analysis and Machine Intelligence 46, 2139–2150 (2023)

33. Zhou, R., Shen, Y.D.: End-to-end adversarial-attention network for multi-modal
clustering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 14619–14628 (2020)

512


	Contrastive Max-correlation for Multi-view Clustering

