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Abstract. To endow models with greater understanding of physics and
motion, it is useful to enable them to perceive how solid surfaces move
and deform in real scenes. This can be formalized as Tracking-Any-Point
(TAP), which requires the algorithm to track any point on solid surfaces
in a video, potentially densely in space and time. Large-scale ground-
truth training data for TAP is only available in simulation, which cur-
rently has a limited variety of objects and motion. In this work, we
demonstrate how large-scale, unlabeled, uncurated real-world data can
improve a TAP model with minimal architectural changes, using a self-
supervised student-teacher setup. We demonstrate state-of-the-art per-
formance on the TAP-Vid benchmark surpassing previous results by a
wide margin: for example, TAP-Vid-DAVIS performance improves from
61.3% to 67.4%, and TAP-Vid-Kinetics from 57.2% to 62.5%. For visu-
alizations, see our project webpage at https://bootstap.github.io/
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1 Introduction

Despite impressive achievements in the vision and language capability of gen-
eralist AI systems, physical and spatial reasoning remain notable weaknesses
of state-of-the art vision models [46, 59]. This limits their application in many
domains like robotics, video generation, and 3D asset creation – all of which
require an understanding of the complex motions and physical interactions in
a scene. Tracking-Any-Point (TAP) [12] is a promising approach to represent
precise motions in videos, and recent work has demonstrated compelling usage
of TAP in robotics [2, 62, 69, 73], 3D reconstruction [64], video generation [13],
video editing [71], zoology [48], and medicine [53]. In TAP, algorithms are fed a
video and a set of query points—potentially densely across the video—and must
output the tracked location of these query points in the video’s other frames.
If the point is not visible in a frame, the point is marked as occluded in that
frame. This approach has many advantages: it is a highly general task, as cor-
respondences for surface points are well-defined for opaque, solid surfaces, and
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The content of this paper is identical to the content of the officially published ACCV 2024

LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/accv
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Fig. 1: Bootstrapped training for tracking-any-point. After initializing a TAPIR
model with standard supervised training, we bootstrap the model on real data by
adding an additional self-supervised loss. We apply a teacher model (a simple EMA
of the student model) to get pseudo-ground-truth labels for a video. We then apply
spatial transformations and corruptions to the video to make the task harder for the
student, and train the student to reproduce the teacher’s predictions from any query
point along the teacher’s trajectory.

it provides rich information about the deformation and motion of objects across
long time periods.

The main challenge for building TAP models, however, is the lack of training
data: in the real world, we must rely on manual labeling, which is arduous and
imprecise [12], or on 3D sensing [1], which is only available in limited scenarios
and quantity. Thus, state-of-the-art methods have relied on synthetic data [19,
75]. In this work, however, we overcome this limitation and demonstrate that
unlabeled real-world videos can be used to improve point tracking, using self-
consistency as a supervisory signal. In particular, we know that when tracks
are correct for a given video, then 1) spatial transformations of the video should
result in an equivalent spatial transformation of the trajectories, 2) that different
query points along the same trajectory should produce the same track, and 3)
that non-spatial data augmentation (e.g. image compression) should not affect
results. Deviations from this can be treated as an error signal for learning.

Our architecture is outlined in Figure 1. We begin with a strong “teacher”
model pre-trained using supervised learning on synthetic data (in our case, a
TAPIR [13] model) which serves as initialization for both a “teacher” and a
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“student” model. Given an unlabeled input video, we make a prediction using
the teacher model, which serves as pseudo-ground-truth for the student. We then
generate a second “view” of the video by applying affine transformations that vary
smoothly in time, re-sampling frames to a lower resolution, and adding JPEG
corruption, and padding back to the original size. We input the second view to the
“student” network and use a query point sampled from the teacher’s prediction
(transformed consistently with the transformation applied to the video). The
student’s prediction is then transformed back into the original coordinate space.
We then use a self-supervised loss (SSL) to update the student’s weights: that
is, we apply TAPIR’s original loss function to the student predictions, using the
teacher’s predictions as pseudo-ground-truth. The teacher’s weights are updated
by using an exponential moving average (EMA) of the student’s weights. We take
steps to ensure that the teacher’s predictions used for training are more likely to
be accurate than the student’s: (i) the corruptions that degrade and downsample
the video are only applied to the student’s inputs, (ii) we use an EMA of the
student’s weights as the teacher’s weights, a common trick for stabilizing student-
teacher learning [20,58]. Co-training using this formulation on real-world videos,
in addition to training on synthetic data, provides a substantial boost over prior
state-of-the-art across the entire TAP-Vid benchmark.
In summary, our contributions are as follows:

1. We demonstrate the first large-scale pipeline for improving video point track-
ing using a large dataset of unannotated videos, based on straightforward
properties of real trajectories: (i) predictions should vary consistently with
spatial transformations of the video, and (ii) predictions should be invariant
to the choice of query point along a given trajectory.

2. We analyze the importance of varying model components, and show that a
surprisingly simple formulation is sufficient to achieve good results.

3. We show that the resulting formulation achieves new SOTA results on point
tracking benchmarks, while requiring minimal architectural changes.

4. We have released a model and checkpoint on GitHub, including model im-
plementations in both JAX and PyTorch for the community to use.

2 Related Work

Tracking-Any-Point. The ability to track densely-sampled points over long
video sequences is a generic visual capability [51, 52]. Because this visual task
provides a rich output that is well-defined independent of semantic or linguisitic
categories (unlike classification, detection, and semantic segmentation), it is more
generically useful and can support other visual capabilities like video editing [71],
3D estimation [65], object segmentation [45, 49], camera tracking [8] and even
robotics [62,69]. Point tracking has recently experienced a flurry of recent works
including new datasets [1,12,75] and algorithms [3,13,22,29,42,43,65]. Current
state-of-the-art works mainly train in a supervised manner, relying heavily on
synthetic data [19,75] which has a large domain gap with the real world.
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Self-supervised correspondence via photometric loss. Tracking has long
been a target of self-supervised learning due to the lack of reliable supervised
data, especially at the point level. A wide variety of proxy supervisory signals
have been proposed, all with their own limitations. Photometric losses use recon-
struction, and are particularly popular in optical flow, but occlusions, lighting
changes, and repeated (or constant) textures, typically result in multiple or false
appearance matches. To compensate for this, these methods typically rely on
complicated priors such as multi-frame estimation [26], explicit occlusion han-
dling [56,68], improved data augmentation [35], additional loss terms [36,37,41],
and robust loss functions to avoid degenerate solutions [39,50,72]. Methods com-
bining feature learning with appearance reconstruction, such as [31,32,63], have
demonstrated long-range tracking. Matches based on local appearance are more
likely to correspond to motion in high resolution videos because they are able to
resolve detailed textures [27]; we make use of this observation in our work.
Temporal continuity and cycle-consistency. Other works use images or
videos to perform more general feature learning, with the aim that features
in correspondence should be more similar than those which are not. Temporal
continuity in videos has long been used to obtain such correspondences [15,16,25,
66,70], resulting in features which have proven to be effective for object tracking
[10, 17]. Temporal cycle-consistency [4, 67] can also result in features useful for
tracking; however this learning method fails to provide useful supervision in
challenging situations such as occlusions.
Semi-supervised correspondence. A final self-supervised approach is to cre-
ate pseudo-ground-truth correspondences for semi-supervised training [23, 54].
Such approaches have a long history in optical flow [24,36,37,44], although with
mixed results, typically requiring complex training setups such as GANs [30] or
connecting the student to the teacher [38] to prevent trivial solutions. They have
only been applied to longer-term point tracking more recently [57,65]. OmniMo-
tion computes initial point tracks using RAFT [60] or TAP-Net [12] and infers
a full pseudo-3D interpretation of the scene in the form of a neural network.
Although this method improves point tracks compared to their initialization, it
never retrains a general TAP model on the self-labeled data. Li et al. [33], pro-
poses a self-supervised loss based on reconstruction, in addition to supervised
point tracking loss and an adversarial domain adaptation loss. The final algo-
rithm is complex, and performs far below our work (59.8 on TAP-Vid-DAVIS
< δ

x
avg, versus 78.1 for our work), with the self-supervised providing a relatively

small boost. Perhaps most related is work performed concurrently with ours [57],
which saves a dataset of point tracks and retrains the underlying TAP model on
them, using data augmentations similar to ours. We discuss the differences in
detail in the following section, after presenting our approach.

3 Method

When developing a self-supervised training method for TAP, it is worth noting
that TAP has a precise answer for almost every query point. This is different from
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Fig. 2: Bootstrapped training for Tracking-Any-Point. The teacher TAPIR pro-
duces a pseudo-label trajectory from query point q1 at time t1. Video frames undergo
affine transformations Φ that vary smoothly in time and are augmented with JPEG
artifacts, then fed to the student TAPIR, which predicts a trajectory from query point
Φ(q2) at time t2. The student trajectory is transformed back, and loss is computed
against the teacher’s trajectory. To maximize the chances that we train on accurate
trajectories, we remove trajectories where the student’s prediction at time t1 is too far
from the teacher query point q1 (i.e. not cycle-consistent; light-orange disk).

typical visual self-supervised learning, where the representation can be arbitrary,
as long as semantically similar images have similar representations. Supervised
learning on synthetic data provides a strong initial guess in many situations, but
care must be taken to ensure that the self-supervised algorithm does not find
“trivial shortcuts” [11] that become self-reinforcing and harm the initialization.

Our formulation relies on two facts about point tracks that are true for
points on any solid, opaque surface. First, spatial transformations (e.g. affine
transformations) which are applied to the video will result in equivalent spatial
transformations of the point tracks (i.e. the tracks are “equivariant” under spatial
transformation), while the tracks are invariant to many other factors of variation
that do not move the image content (e.g. color changes, noise). Second, the
algorithm should output the same track regardless of which point along the
track is used as a query; mathematically, this means that each trajectory forms
an equivalence class. To capture these intuitions, we propose a student-teacher
pipeline, loosely based on BYOL [20] and Mean Teachers [58], where the student
must reproduce the teacher’s prediction under different data augmentations and
different query points. Figure 2 shows the overall pipeline.
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Architecture. Our model closely follows TAPIR [13]. This model applies a Con-
vNet backbone to the video, extracts a feature for each query point with bilinear
interpolation, and then compares this feature to features on all other frames (dot
products) to get a per-frame heatmap, followed by a soft argmax to get an initial
point for each frame. From there, the model applies multiple refinement steps,
where each refinement step takes local comparisons between the query point
and a neighborhood of features around the current track estimate (dot prod-
ucts), and passes these to a ConvNet operating across time, which produces an
update. We start with a pretrained TAPIR model [13]. After pre-training, we
add extra capacity to the model to absorb the extra training data: 5 layers of
2D conv-residual layers to the backbone with a channel multiplier of 4, which
roughly doubles the number of parameters in the backbone (see supplementary
for details). These are initialized to the identity following “zero init” [18]. Oth-
erwise the architecture is unchanged.

Loss functions. Let ŷ = {p̂, ô, û} be the predictions: p̂ ∈ RT×2 is the position,
ô ∈ RT is an occlusion logit, and û ∈ RT is an uncertainty logit, where T is the
number of frames. Calling p[t] and o[t] the ground truth targets for frame t,
recall that the standard TAPIR loss for a single trajectory is defined as:

Ltapir(p̂[t], ô[t], û[t]) = Huber(p̂[t], p[t])(1 − o[t]) Position loss
+ BCE(ô[t], o[t]) Occlusion loss (1)
+ BCE(û[t], u[t])(1 − o[t]) Uncertainty loss

where Huber is the Huber loss and BCE is the sigmoid binary cross-entropy. The
target for the uncertainty logit is defined as u[t] = 1(d(p[t], p̂[t]) > δ), where
d the L2 distance and δ is a threshold on the distance, set to 6 pixels, and 1 is
an indicator function. That is, the uncertainty loss trains the model to predict
whether its own prediction is likely to be within a threshold of the ground truth.

Let ŷS = {p̂S , ôS , ûS} now refer to the student predictions. We derive pseudo-
labels yT = {pT , oT , uT } from the teacher’s predictions ŷT = {p̂T , ôT , ûT } as
follows:

pT [t] = p̂T [t] ; oT [t] = 1(ôT [t] > 0); uT [t] = 1(d(p̂T [t], p̂S[t]) > δ)
(2)

where t indexes time. The loss ℓssl(p̂S[t], ôS[t], ûS[t]) for a given video frame t
is derived from the TAPIR loss, treating the pseudo-labels as ground-truth, and
defined as:

ℓssl(p̂S[t], ôS[t], ûS[t]) = Huber(p̂S[t], pT [t])(1 − oT [t])
+ BCE(ôS[t], oT [t]) (3)
+ BCE(ûS[t], uT [t])(1 − oT [t])
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Note that TAPIR’s loss uses multiple refinement iterations, but we always use
the teacher’s final prediction to derive pseudo-ground-truth; therefore, refined
predictions serve as supervision for unrefined ones, encouraging stronger features
that enable faster convergence.

Video degradations. While the above formulation is well-defined, if the student
and teacher both receive the same video and query point, we expect the loss to
be trivially close to zero; therefore, we apply transformations and corruptions to
the student’s view of the video. Given an input video, we create a second view by
resizing each frame to a smaller resolution r and superimposing it onto a black
background at a random position (h,w) within this background. r varies linearly
over time, meaning that the frames gradually become larger or smaller within
the fixed-size black background. Overall, the decreased resolution degrades the
student view, and this increases task difficulty for the student. The location of
these frames also move with time, and (h,w) follows a linear trajectory within
the black background. Formally, this is a frame-wise axis-aligned affine transfor-
mation Φ on coordinates, applied to the pixels. We also apply Φ to the student
query coordinates. We further degrade this view by applying a random JPEG
degradation to make the task more difficult, before pasting it onto the black
background. Both operations lose texture information; therefore, the network
must learn higher-level—and possibly semantic—cues (e.g. the tip of the top left
ear of the cat), rather than lower-level texture matching in order to track points
correctly. We apply the inverse affine transformation Φ

−1 to map the student’s
predictions back to the original input coordinate space before feeding these to
the loss. We describe these transformations in more detail in supplementary.

Choosing the sample point. We enforce that each trajectory forms an equivalence
class by training the model to produce the same track regardless of which point is
used as a query. While we do not have access to the ground-truth trajectories to
sample different query points from, we can use the teacher model’s predictions to
form pairs of query points. First, we sample a query point Q1 = (q1, t1), where
q1 is an (x, y) coordinate, and t1 is a frame index, both sampled uniformly.
Then the student’s query is sampled randomly from the teacher’s trajectory, i.e.
Q2 = (q2, t2) ∈ {(pT [t], t); t s.t. oT [t] = 0}.

Note, however, that if the teacher has not tracked the point correctly, the
student’s query might be a different real-world point than the teacher’s, leading
to an erroneous training signal. To prevent this, we use cycle-consistency of the
student and teacher trajectories, and ignore the loss for trajectories that don’t
form a valid cycle, as depicted by the orange circle in Figure 2. Formally, we
implement this as a mask defined as:

mcycle = 1 (d(p̂S[t1], q1) < δcycle) ∗ 1 (ôS[t1] ≤ 0) (4)

Here, δcycle is a distance threshold hyperparameter, which we set to 4 pixels.
Note that there is a special case when the student and teacher have the same

query point: there is no longer any uncertainty regarding whether the point is on

3263
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the same trajectory. These points are reliable while also being less challenging.
We compromise between extremes, and sample Q1 = Q2 with probability 0.5,
and sample with equal probabilities from the remaining visible points in the
teacher prediction. The final self-supervised loss for a single trajectory is then:

LSSL = ∑
t

m
t
cycle ∗ ℓ

t
ssl (5)

In practice, we sample 128 query points per input video and average the loss
for all of them. We provide pseudocode for the algorithm in supplementary.

To avoid catastrophic forgetting, we continue training on the pretraining
dataset with the regular supervised TAPIR loss. Our training setup follows prior
work on multi-task self-supervised learning [14]: we maintain separate Adam
optimizer parameters to compute separate updates for both tasks, and then
apply the gradients with their own learning rates. As the self-supervised task is
more expensive due to the extra forward pass, we use half the batch size for self-
supervised updates, and therefore we halve the learning rate for these updates.
See supplementary for more details.
Differences between our approach and PIPs+Refine [57]. PIPs+Refine,
performed concurrently with ours, operates on a similar intuition, of retraining a
base model using its own predictions after applying data augmentation, although
this method performs non-trivially worse. They train on affine-transformed ver-
sions of the model’s original predictions use cycle-consistency as a method of
filtering. However, there are a few key differences. First, rather than a student-
teacher setup, they compute trajectories only once and freeze the training data,
meaning that the model is permanently trained to reproduce errors in the orig-
inal labeling. They do not attempt to retrain on the results of the refined net-
work; without any updates, the paper finds that the model rapidly overfits to
the original predictions and performance degrades. Our work resolves this lim-
itation by a student-teacher formulation, and overall we find that we can train
for very long training schedules without degradation. Furthermore, PIPS+Refine
fine-tunes on the target dataset, meaning that transfer to a new domain may
require a large training set in that domain on which to fine-tune; in contrast, our
work demonstrates that it’s possible to train on a single large dataset that cov-
ers many domains, meaning that we can achieve SOTA results out-of-the-box.
Overall, their performance is far worse (59.8 on TAP-Vid-DAVIS < δ

x
avg, versus

78.1 for our work), both due to these limitations and also due to building on a
lower-performing baseline algorithm.

4 Experiments

We train our model on over 15 million 24-frame clips from publicly-available
online videos, in conjunction with standard training on Kubric. The resulting
model is essentially a drop-in replacement for TAPIR (albeit with slightly larger
computational requirements due to the extra layers). We evaluate on the TAP-
Vid benchmark using the standard protocol.
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4.1 Training datasets

Our models are pretrained on the Kubric dataset following [13]. For the boot-
strapping stage we propose, we collected a video dataset from publicly accessible
videos selected from categories that typically contain high-quality and realistic
motion (such as lifestyle and one-shot videos). Conversely, we omitted videos
from categories with low visual complexity or unrealistic motions, such as tuto-
rial videos, lyrics videos, and animations. To maintain consistency, we exclusively
obtained videos shot at 60 fps. Additionally, we applied a quality metric by only
considering videos with over 200 views. We removed the first and last 2 sec-
onds of each video, as these often contain intros and outros with text or other
overlays. From each video, we randomly sampled five clips, excluding those with
overlay/watermarked frames, which were identified by checking the horizontal
and vertical gradients and computing the pixel-wise median (similar to [9]).
Furthermore, we expect the teacher signal will be more reliable on continuous
shots due to temporal continuity; therefore, clips with shot boundary changes
are detected and removed based on [5, 40, 61, 74] with additional accuracy im-
provements based on full-frame geometric alignment. In total, we generated 15
million clips for training.

4.2 Evaluation datasets

We rely on the TAP-Vid [12] and RoboTAP [62] benchmarks for quantitative
evaluation; in all cases, we evaluate zero-shot on the entire benchmark, resizing
to 256 × 256 before evaluating according to the standard procedure [12]. This
consists of five datasets: TAP-Vid-Kinetics contains online videos of human
actions and may include cuts [7]; TAP-Vid-DAVIS is based on the DAVIS
object tracking benchmark [47]; TAP-Vid-RGB-Stacking contains synthetic
tracks for videos of robotic manipulation which have little texture; and Robo-
TAP contains real-world robotic manipulation videos [62], all of which include
ground truth. Evaluation is performed by measuring occlusion accuracy (OA),
< δ

x
avg which measures the fraction of point estimates within a specified distance

to the ground truth location, averaged across 5 thresholds, and Average Jaccard
(AJ) which measures a combination of these two. There are two dataset querying
“modes”: query first (q_first) uses the first visible point on each trajectory as
a query, while strided uses every fifth point along the trajectory as a separate
query. We also include qualitative evaluations on two robotics datasets without
ground truth: RoboCAT-NIST, a subset of the data collected for RoboCat [6],
and Libero [34], a dataset where point tracking has already proven useful for
robotic manipulation [69]. See supplementary for details on these datasets and
metrics.

4.3 Results

Our results are shown in Table 1. Note that all of our numbers come from a
single checkpoint, which has not seen the relevant datasets. Relative to our base

3265



10 C. Doersch et al.

Table 1: Comparison of performance on the TAP-Vid datasets. AJ (Average Jac-
card; higher is better) measures both occlusion and position accuracy. < δ

x
avg (higher is

better) measures only localization performance, ignoring occlusion accuracy. OA (Oc-
clusion Accuracy; higher is better) measures only accuracy in predicting occlusion. Best
method is written bold and the second best method is underlined.

Kinetics DAVIS RGB-Stacking
Method AJ ↑ < δ

x
avg ↑ OA ↑ AJ ↑ < δ

x
avg ↑ OA ↑ AJ ↑ < δ

x
avg ↑ OA ↑

COTR [28] 19.0 38.8 57.4 35.4 51.3 80.2 6.8 13.5 79.1
Kubric-VFS-Like [19] 40.5 59.0 80.0 33.1 48.5 79.4 57.9 72.6 91.9
RAFT [60] 34.5 52.5 79.7 30.0 46.3 79.6 44.0 58.6 90.4
TAP-Net [12] 46.6 60.9 85.0 38.4 53.1 82.3 59.9 72.8 90.4
TAP-Net (tuned) 50.7 64.9 85.7 43.9 59.2 83.9 66.5 77.9 90.2
PIPs [22] 35.3 54.8 77.4 42.0 59.4 82.1 37.3 51.0 91.6
PIPs+Refinement [57] - - - 42.5 60.0 - - - -
TAPIR [13] 57.2 70.1 87.8 61.3 73.6 88.8 62.7 74.6 91.6
CoTracker [29] 57.3 70.6 87.5 64.8 79.1 88.7 65.9 80.6 85.0

BootsTAP-Net 51.7 65.3 85.1 44.3 59.0 82.7 64.9 76.4 89.1
BootsTAPIR 61.4 74.2 89.7 66.2 78.1 91.0 72.4 83.1 91.2

Table 2: Comparison of performance under query-first metrics for Kinetics, TAP-Vid
DAVIS, and RoboTAP (standard for this dataset).

Kinetics DAVIS RoboTAP
Method AJ ↑ < δ

x
avg ↑ OA ↑ AJ ↑ < δ

x
avg ↑ OA ↑ AJ ↑ < δ

x
avg ↑ OA ↑

TAP-Net [12] 38.5 54.4 80.6 33.0 48.6 78.8 45.1 62.1 82.9
TAP-Net (tuned) 42.0 57.2 80.5 38.4 53.8 80.5 59.2 72.2 87.8
TAPIR [13] 49.6 64.2 85.0 56.2 70.0 86.5 59.6 73.4 87.0
CoTracker [29] 48.7 64.3 86.5 60.6 75.4 89.3 54.0 65.5 78.8

BootsTAP-Net 42.6 57.5 79.4 39.1 53.9 79.8 60.7 73.3 86.9
BootsTAPIR 54.6 68.4 86.5 61.4 73.6 88.7 64.9 80.1 86.3

architecture, our bootstrapping approach provides a substantial gain across all
metrics. We also outperform CoTracker on DAVIS, though this is due more to im-
provements in occlusion accuracy than position accuracy. This is despite TAPIR
having a simpler architecture than CoTracker, which requires cross attention
to other points which must be chosen with a hand-tuned distribution, whereas
TAPIR tracks points independently. CoTracker results are also obtained by up-
sampling videos to 384 × 512, which further increases compute time, whereas
ours are computed directly on 256 × 256 videos.

Table 2 shows performance under q_first mode. Here, we see that boot-
strapping outperforms prior works by a wide margin on Kinetics; this is likely
because TAPIR’s global search is more robust to large occlusions and cuts, which
are more prominent in Kinetics. This search might harm performance in datasets
like DAVIS with a stronger temporal continuity bias. Perhaps most impressive
is the strong improvement in RoboTAP–over 5% absolute performance–despite
RoboTAP looking very different from typical online videos. We see similar re-
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Fig. 3: Comparison between TAPIR (■), Cotracker (◆) and BootsTAPIR (●), and
the ground-truth points (+) on TAP-Vid-DAVIS and RoboTAP benchmarks. We show
the initial query frame, and a closeup of four later frames.

sults for RGB-Stacking in Table 1. These two datasets have large textureless
regions; such regions are challenging to track without object-aware priors, which
are difficult to obtain from synthetic datasets. We further improve performance
by 1-4% extra percentage points by training on high resolution and longer clips;
see our project webpage for these results. To demonstrate the generality of our
approach, we also applied an identical training regimen to TAP-Net. Again we
find that a longer training schedule matching ours improves performance (TAP-
Net (tuned)), but applying BootsTAP on top shows an improvement in 5 of 6
settings, although not as large as for TAPIR, perhaps due to the lower perfor-
mance ceiling due to the coarser features. The degradation on RGB-Stacking
may be due to the fact that it is synthetic, may real-world data may not im-
prove feature matching unless the algorithm can better use temporal context, as
in TAPIR.

Figure 3 shows qualitative examples of some cases where BootsTAPIR im-
proves performance. We see improvements on examples where texture cues are
ambiguous (e.g. the dark jacket and trousers) where prior knowledge of common
object shape can improve performance, as well as points near object boundaries
(e.g. the dog’s ears) where a model trained on synthetic data with different ap-
pearance may struggle to estimate the correct segmentation. We also note that
BootsTAPIR improves on many cases where TAPIR marks a point as occluded
even when it is still visible, such as the person’s arm. On RoboTAP, the model
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12 C. Doersch et al.

improves on occlusion estimation for the textureless gripper. It also deals well
with shiny objects, both of which are less common in Kubric. Our supplemen-
tary and webpage have more qualitative results, including results on robotic gear
insertion, and also results in video format, which make the improvements more
obvious.

We also compare the inference time between TAPIR and BootsTAPIR. De-
spite the significant performance improvements achieved by BootsTAPIR, the
running time remains nearly unchanged. For instance, on an A100 GPU, pro-
cessing a 90-frame, 256 × 256 video with 100 points takes 0.25 seconds with
TAPIR and 0.28 seconds with BootsTAPIR. Similarly, for 1000 points, TAPIR
completes the task in 2.42 seconds, while BootsTAPIR requires 2.48 seconds.

4.4 Ablations

We focus on four main areas of ablation: data transformations, pseudo-
label filtering approaches, training setup, and training data. To arrive
at our final model, we performed ablations on a smaller-scale base setting
with our best guesses at the optimal hyperparameter settings. This setting in-
cludes two components that we found could be removed without harming per-
formance: It uses an additional mask on the occlusion loss, inspired by Fix-
Match [55], where any occlusion estimate that the teacher is uncertain about
max(σ(ôT [t]), 1 − σ(ôT [t])) < 0.6 is ignored in the loss. It uses a 3D-ConvNet
backbone, which we find provides a slight improvement on DAVIS while harm-
ing performance on Kinetics (see supplementary), so we remove it for future
compatibility with causal TAPIR models. Finally, base also halves the batch
sizes (and proportionally halves the learning rate), and also halves the number
of training steps. We report Average Jaccard on DAVIS using the strided mode
and on Kinetics using the q_first mode.

Data transformations. We first investigate the effect of the transformations we
apply on inputs and outputs in this setting. We respectively ablate: the use of
random JPEG augmentations to enforce invariance to various factors of variation
(denoted by base-no-augm); the use of framewise affine transformations on in-
puts and outputs to enforce equivariance with spatial transformations (denoted
by base-no-affine). We also investigate sampling the student queries: recall that
in our typical setup, we sample the student query from a distribution which
places probability 0.5 on the original teacher query point, and 0.5 on a uni-
form distribution across visible points. In base-same-queries, we always use the
teacher’s query for the student, and in base-uniform, we sample from a purely
uniform distribution. We report the results for each ablation in Table 3 (a).
We observe that removing JPEG somewhat harms metrics, especially on Kinet-
ics. In contrast, when ablating affine transformations, we find that performance
drops massively across metrics, suggesting overfitting. Finally, we find that using
different query points improves performance compared with base-same-queries,
leading to more accurate position predictions in particular (< δ

x
avg increases from

77.5 to 77.9 on DAVIS strided and from 66.8 to 67.7 on Kinetics q_first). Note,
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Table 3: Ablations of model hyperparameters, including (a) ablations of the data
transformations and query point strategies, (b) comparisons of the pseudo-label filtering
approaches, (c) ablations of the training setup, including the stop gradient, and (d)
ablations of the dataset. We report Average Jaccard (AJ) across all experiments.

(a) Data transformations.

DAVIS Kinetics
Method strided q_first

base 65.8 54.4

base-no-augm 65.7 53.5
base-no-affine 54.4 44.7

base-same-queries 65.6 53.2
base-uniform 65.6 54.3

(b) Pseudo-labels filtering. base filters occlu-
sion loss terms based on teacher confidence.

DAVIS Kinetics
Method strided q_first

base 65.8 54.4
base-no-filtering 65.9 54.1
base+cycle 66.1 54.3

(c) Training setup.

DAVIS Kinetics
Method strided q_first

Full model 66.2 54.6
full-kubric-only 65.0 52.7

base 65.8 54.4
siamese 49.8 29.6

(d) Training Data.

DAVIS Kinetics
Method strided q_first

base 65.8 54.4

2-frame clips 64.3 50.5
6-frame clips 63.7 50.9

1% of real data 66.2 54.0

however, on DAVIS in particular, this improvement depends on sampling the
original teacher query point more often than the others.

Pseudo-label filtering. We next consider the effectiveness of filtering possibly in-
correct teacher tracks and points, with results in Table 3 (b). base-no-filtering
removes the filtering that base uses on the occlusion confidence score, which
makes little difference in performance on DAVIS, but degrades performance on
Kinetics. base+cycle uses the cycle-consistency criterion from our full model
instead and performs slightly better on DAVIS. These results suggest that cor-
rectly removing bad teacher tracks remains an open problem.

Training setup. Table 3 (c) shows ablations of the overall training setup. In
particular, training for longer with a higher capacity model can improve results,
so full-kubric-only uses an identical training setup to our full model, but re-
moves self-supervised training, instead simply training on Kubric for longer. We
see competitive performance, although self-supervised training still improves by
1.2% on DAVIS and almost 2% on Kinetics. One could imagine enforcing the
desired equivariance and invariance properties using a simple Siamese-network
formulation [21], where a single network is trained to output consistent pre-
dictions on two different ‘views’ of the data (i.e., augmented and transformed
versions of the video and tracks). siamese shows the effect of removing the EMA
and stop-gradient and instead backpropping to both student and teacher models
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(in this case, using the base setting): we note that performance on real-world
datasets collapses as the model finds trivial shortcuts.

Training data. We ablate two questions regarding the dataset. Prior work has
argued that simple semi-supervised learning for optical flow performs poorly [30,
38]; we hypothesize that more temporal context may be the key ingredient to
change this story. To validate this, we reran our algorithm using 2- and 6-frame
clips from our full dataset. In Table 3 (d), we see that this indeed performs
poorly, possibly because the extra frames allow the teacher model to correct
more errors. Interestingly, we also tried training on a 1% subset of the data,
and found that this harms performance on Kinetics but actually improves it on
DAVIS. It’s possible that the algorithm begins overfitting to the data, but this
may be useful for clean data like DAVIS. Regardless, it suggests this algorithm
can be effective even in situations where less data is available.

5 Conclusion

In this work, we presented a simple and effective method for leveraging large-
scale, unlabeled data for improving TAP performance. We demonstrated that
a straightforward application of consistency principles, i.e. invariance to query
points and non-spatial corruptions, and equivariance to affine transformations,
enable the model to continue to improve on unlabeled data. Our formulation
avoids more complex priors such as spatial smoothness of motion or temporal
smoothness of tracks that are used in many prior works. In fact, our formulation
bears similarities to baselines for two-frame, self-supervised optical flow that are
considered too “unstable” to be effective (c.f. Fig. 2(a) in “Flow Supervisor” [24]).
Yet in our multi-frame approach, we ultimately surpass the state-of-the-art per-
formance by a large margin. We find little evidence of model ‘overfitting’ to its
own biases in ways that cause performance to degrade with long training like
in other work [57]. Instead, we find that performance continues to improve for
as long as we train the model. Our work does have some limitations: training
remains computationally expensive. Furthermore, our estimated correspondence
is a single point estimate throughout the entire video, which means we cannot
elegantly handle duplicated or rotationally symmetric objects where the actual
correspondence is ambiguous. Nevertheless, our approach demonstrates that it
is possible to better bridge the sim-to-real gap using self-supervised learning.

Acknowledgements: We thank Jon Scholz, Stannis Zhou, Mel Vecerik, Yusuf
Aytar, Viorica Patraucean, Mehdi Sajjadi, Daniel Zoran, and Nando de Freitas
for valuable discussions and support, and David Bridson, Lucas Smaira, and
Michael King for help on datasets.

3270



BootsTAP 15

References

1. Balasingam, A., Chandler, J., Li, C., Zhang, Z., Balakrishnan, H.: Drivetrack:
A benchmark for long-range point tracking in real-world videos. arXiv preprint
arXiv:2312.09523 (2023)

2. Bharadhwaj, H., Mottaghi, R., Gupta, A., Tulsiani, S.: Track2Act: Predicting point
tracks from internet videos enables diverse zero-shot robot manipulation. arXiv
preprint arXiv:2405.01527 (2024)

3. Bian, W., Huang, Z., Shi, X., Dong, Y., Li, Y., Li, H.: Context-pips: Persistent
independent particles demands context features. NeurIPS (2024)

4. Bian, Z., Jabri, A., Efros, A.A., Owens, A.: Learning pixel trajectories with mul-
tiscale contrastive random walks. In: Proc. CVPR (2022)

5. Boreczky, J.S., Rowe, L.A.: Comparison of video shot boundary detection tech-
niques. Journal of Electronic Imaging 5(2), 122–128 (1996)

6. Bousmalis, K., Vezzani, G., Rao, D., Devin, C., Lee, A.X., Bauza, M., Davchev,
T., Zhou, Y., Gupta, A., Raju, A., et al.: Robocat: A self-improving foundation
agent for robotic manipulation. arXiv preprint arXiv:2306.11706 (2023)

7. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the
kinetics dataset. In: Proc. CVPR. pp. 6299–6308 (2017)

8. Chen, W., Chen, L., Wang, R., Pollefeys, M.: Leap-vo: Long-term effective any
point tracking for visual odometry. arXiv preprint arXiv:2401.01887 (2024)

9. Dekel, T., Rubinstein, M., Liu, C., Freeman, W.T.: On the effectiveness of visible
watermarks. In: Proc. CVPR (2017)

10. Denil, M., Bazzani, L., Larochelle, H., de Freitas, N.: Learning where to attend
with deep architectures for image tracking. Neural computation 24(8), 2151–2184
(2012)

11. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning
by context prediction. In: Proc. ICCV (2015)

12. Doersch, C., Gupta, A., Markeeva, L., Recasens, A., Smaira, L., Aytar, Y., Carreira,
J., Zisserman, A., Yang, Y.: TAP-Vid: A benchmark for tracking any point in a
video. NeurIPS (2022)

13. Doersch, C., Yang, Y., Vecerik, M., Gokay, D., Gupta, A., Aytar, Y., Carreira,
J., Zisserman, A.: TAPIR: Tracking any point with per-frame initialization and
temporal refinement. arXiv preprint arXiv:2306.08637 (2023)

14. Doersch, C., Zisserman, A.: Multi-task self-supervised visual learning. In: Proc.
ICCV (2017)

15. Földiák, P.: Learning invariance from transformation sequences. Neural computa-
tion 3(2), 194–200 (1991)

16. Goroshin, R., Bruna, J., Tompson, J., Eigen, D., LeCun, Y.: Unsupervised learning
of spatiotemporally coherent metrics. In: Proc. ICCV (2015)

17. Goroshin, R., Mathieu, M.F., LeCun, Y.: Learning to linearize under uncertainty.
NeurIPS (2015)

18. Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tul-
loch, A., Jia, Y., He, K.: Accurate, large minibatch SGD: Training imagenet in 1
hour. arXiv preprint arXiv:1706.02677 (2017)

19. Greff, K., Belletti, F., Beyer, L., Doersch, C., Du, Y., Duckworth, D., Fleet, D.J.,
Gnanapragasam, D., Golemo, F., Herrmann, C., et al.: Kubric: A scalable dataset
generator. In: Proc. CVPR (2022)

20. Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Do-
ersch, C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al.: Bootstrap your own
latent - a new approach to self-supervised learning. In: NeurIPS (2020)

3271



16 C. Doersch et al.

21. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an in-
variant mapping. In: Proc. CVPR (2006)

22. Harley, A.W., Fang, Z., Fragkiadaki, K.: Particle video revisited: Tracking through
occlusions using point trajectories. In: Proc. ECCV (2022)

23. Huang, H.P., Herrmann, C., Hur, J., Lu, E., Sargent, K., Stone, A., Yang, M.H.,
Sun, D.: Self-supervised autoflow. In: Proc. CVPR (2023)

24. Im, W., Lee, S., Yoon, S.E.: Semi-supervised learning of optical flow by flow su-
pervisor. In: Proc. ECCV (2022)

25. Jabri, A., Owens, A., Efros, A.: Space-time correspondence as a contrastive random
walk. NeurIPS 33, 19545–19560 (2020)

26. Janai, J., Guney, F., Ranjan, A., Black, M., Geiger, A.: Unsupervised learning of
multi-frame optical flow with occlusions. In: Proc. ECCV (2018)

27. Janai, J., Guney, F., Wulff, J., Black, M.J., Geiger, A.: Slow flow: Exploiting high-
speed cameras for accurate and diverse optical flow reference data. In: Proc. CVPR
(2017)

28. Jiang, W., Trulls, E., Hosang, J., Tagliasacchi, A., Yi, K.M.: COTR: Correspon-
dence transformer for matching across images. In: Proc. ICCV (2021)

29. Karaev, N., Rocco, I., Graham, B., Neverova, N., Vedaldi, A., Rupprecht, C.:
CoTracker: It is better to track together. arXiv preprint arXiv:2307.07635 (2023)

30. Lai, W.S., Huang, J.B., Yang, M.H.: Semi-supervised learning for optical flow with
generative adversarial networks (2017)

31. Lai, Z., Lu, E., Xie, W.: MAST: A memory-augmented self-supervised tracker. In:
Proc. CVPR (2020)

32. Lai, Z., Xie, W.: Self-supervised learning for video correspondence flow. arXiv
preprint arXiv:1905.00875 (2019)

33. Li, R., Zhou, S., Liu, D.: Learning fine-grained features for pixel-wise video corre-
spondences. In: Proc. ICCV (2023)

34. Liu, B., Zhu, Y., Gao, C., Feng, Y., Liu, Q., Zhu, Y., Stone, P.: Libero: Bench-
marking knowledge transfer for lifelong robot learning. NeurIPS 36 (2024)

35. Liu, L., Zhang, J., He, R., Liu, Y., Wang, Y., Tai, Y., Luo, D., Wang, C., Li,
J., Huang, F.: Learning by analogy: Reliable supervision from transformations for
unsupervised optical flow estimation. In: Proc. CVPR (2020)

36. Liu, P., King, I., Lyu, M.R., Xu, J.: Ddflow: Learning optical flow with unlabeled
data distillation. In: Proceedings of the AAAI conference on artificial intelligence.
vol. 33, pp. 8770–8777 (2019)

37. Liu, P., Lyu, M., King, I., Xu, J.: Selflow: Self-supervised learning of optical flow.
In: Proc. CVPR (2019)

38. Liu, P., Lyu, M.R., King, I., Xu, J.: Learning by distillation: a self-supervised learn-
ing framework for optical flow estimation. IEEE PAMI 44(9), 5026–5041 (2021)

39. Marsal, R., Chabot, F., Loesch, A., Sahbi, H.: Brightflow: Brightness-change-aware
unsupervised learning of optical flow. In: Proc. WACV (2023)

40. Mas, J., Fernandez, G.: Video shot boundary detection based on color histogram.
In: TRECVID (2003)

41. Meister, S., Hur, J., Roth, S.: Unflow: Unsupervised learning of optical flow with
a bidirectional census loss. In: Proceedings of the AAAI conference on artificial
intelligence. vol. 32 (2018)

42. Moing, G.L., Ponce, J., Schmid, C.: Dense optical tracking: Connecting the dots.
In: Proc. CVPR (2024)
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