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Fig. 1: Comparison of real-world image super-resolution (RISR) outcomes from
existing methods and our Real-SRGD, both without and with classifier-free guid-
ance (CFG) [14]. CFG is a technique for scaling the output of a conditional
generative model towards a desired objective, in this case, RISR. The Elo [10]
rating scores from a human subject study are displayed in the right-hand table.
(Best view in zoom)

Abstract. Real-world image super-resolution (RISR) aims to recon-
struct high-resolution (HR) images from degraded low-resolution (LR)
inputs, addressing challenges such as blurring, noise, and compression
artifacts. Unlike conventional super-resolution (SR) approaches that typ-
ically generate LR images through synthetic downsampling, RISR con-
fronts the complexity of real-world degradation. To effectively handle the
intricate challenges of RISR, we adapt classifier-free guidance (CFG),
a technique initially developed for multi-class image generation. Our
proposed method, Real-SRGD (Real-world image Super-Resolution with
classifier-free Guided Diffusion), decomposes RISR challenges into three
distinct sub-tasks: Blind image restoration (BIR), conventional SR, and
RISR itself. We then train class-conditional SR diffusion models tailored
to these sub-tasks and use CFG to enhance the super-resolution per-
formance in real-world settings. Our empirical results demonstrate that
Real-SRGD surpasses existing state-of-the-art methods in both quantita-
tive metrics and qualitative evaluations, as demonstrated by user studies.
Moreover, our method demonstrates exceptional generalizability across
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a range of conventional SR benchmark datasets. The code can be found
at https://github.com/yahoojapan/srgd.

Keywords: Super-resolution · Diffusion model · Classifier-free guidance

1 Introduction

Single image super-resolution (SISR) is a fundamental and widely studied field
in low-level computer vision, focusing on restoring high-resolution (HR) images
from low-resolution (LR) inputs. Significant progress has been made in SISR [22],
which focuses on precise image upsampling. However, real-world image super-
resolution (RISR) remains challenging due to hurdles such as image degradation,
including but not limited to blurring, noise, and compression artifacts.

Conventional super-resolution (SR) methods typically use pairs of LR images
synthetically downsampled using methods such as bicubic downsampling, and
their corresponding HR ones for training datasets. However, these datasets do
not capture the complex degradation patterns found in real-world scenarios [26].

A primary obstacle in advancing RISR techniques is the need to address this
compound degradation process. Notably, Real-ESRGAN [42] uses self-supervised
learning and a data augmentation pipeline with multiple types of degradations,
including image blurring, noise addition, JPEG compression, and downsam-
pling. This method introduces high-order degradations by repeating sequences
of degradation types, an approach that has been shown to significantly affect
out-of-distribution (OOD) generalization [42].

Our work contributes to the further advancement of RISR by adapting classifier-
free guidance (CFG) [14], which is one of the key techniques behind the success
of diffusion models. CFG was initially developed for multi-class image genera-
tion to enable class-conditioning control [14]. However, as a bonus additional to
the controllability, it has a pleasant side effect of suppressing the diversity in
generation and consequently enhancing its adherence to generative conditions.
This nature of CFG operates advantageously, particularly in super-resolution
tasks where consistency is given precedence over diversity. We design our model
to perform super-resolution processes based on multiple class conditions, and we
ensure that these conditions include RISR. As depicted in Table 1, we decompose
the RISR challenges into three sub-tasks: Blind Image Restoration (BIR), con-
ventional SR, and RISR itself. Our novel method, Real-SRGD, leverages class-
conditional SR diffusion models, each tailored to these sub-tasks, and uses CFG
to enhance performance in real-world settings. Empirical results affirm that Real-
SRGD outperforms current state-of-the-art methods in quantitative evaluation
and user studies, additionally exhibiting remarkable generalizability across var-
ious conventional SR benchmarks.

Fig. 1 shows the comparison of existing methods and our Real-SRGD, both
without and with CFG. As CFG scale increases, Real-SRGD enhances image
resolution and often appears superior to other methods. Despite the simple ap-
proach, Real-SRGD results demonstrate a level of resolution that is comparable
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to, if not better than, the ground truth image. The results of the human subject
study suggest participants perceived both Real-SRGD and ground truth images
as high-resolution, often favoring Real-SRGD for appearing more realistic.

Our contributions are summarized as follows:
1) We have devised a framework for applying CFG to super-resolution tasks

for the first time, based on task decomposition. Implementing CFG for image
processing tasks poses challenges due to the absence of readily available guidance
information such as class labels and prompt texts. 2) We establish our Real-
SRGD as the new state-of-the-art through comprehensive benchmarking across
diverse datasets, outperforming existing methods and corroborating superior
perceptual image quality via studies involving human participants. 3) While
our primary focus is on RISR, our method outperforms existing RISR methods
in generalizing conventional SR benchmarks, owing to the task decomposition
implemented during training. This demonstrates that our method can serve as
a versatile tool for image upsampling.

2 Related Work

2.1 Perceptual Quality in Super-Resolution

Benchmarks for assessing these SR methodologies have included metrics for both
pixel-level accuracy and perceptual quality. While pixel-wise metrics, such as
PSNR and SSIM [44], evaluate fidelity, perceptual metrics such as NIQE [31]
provide insights into visual quality as perceived by humans. GAN-based mod-
els have improved perceptual quality at the expense of pixel-based metrics such
as PSNR and SSIM. This phenomenon is known as the Perception-Distortion
Trade-off [2], which highlights the inability to simultaneously achieve high pixel-
based quality and perceptual quality. This necessitates the use of perceptual
metrics such as NIQE over distortion-based metrics in RISR. Additionally, per-
ceptual metrics like CLIP-IQA [40] and MUSIQ [19] are being utilized. CLIP-
IQA takes advantage of the visual and linguistic understanding inherent in CLIP
[32] to assess image quality. MUSIQ employs a Vision Transformer [9] to capture
features at multiple scales within an image and understands their relationships
to conduct quality assessment.

2.2 Background on Diffusion Models

Inspired by non-equilibrium thermodynamics, diffusion models are generative
models that show state-of-the-art performance in density estimation and sample
quality [20,8]. The central idea of the diffusion model is to define a diffusion
process that gradually adds random noise to data (referred to as the forward
diffusion process), and then learns to reverse this diffusion process to generate
desired data samples from noise (referred to as the reverse process). In practice,
given data x0 sampled from a real (possibly conditional) distribution q(x, c), a
small level of Gaussian noise is added to the sample during the T steps of the
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forward diffusion process, generating a series of noisy samples x1, ...,xT . Each
step size, denoted by β1, ..., βT , follows the variance schedule.

q (xt | xt−1) := N
(√

1− βtxt−1, βtI
)
. (1)

Training is performed by optimizing the variational upper bound on negative
log-likelihood, where the step size βt can be learned through reparameterization
[21] or held fixed as a hyperparameter. If you can sample data from q(xt−1|xt, c)
by reversing the above process, the true sample can be re-generated from the
Gaussian noise xT ∼ N (0, I). If βt is sufficiently small, it is well-established that
q(xt−1|xt, c) approximates a Gaussian distribution.

The reverse diffusion process is defined as a Markov chain with learned Gaus-
sian transitions starting from p(xT ) = N (xT ;0, I) as follows:

pθ (xt−1 | xt, c) := N (µθ (xt, c, t) , Σθ (xt, c, t)) . (2)

For super-resolution, we used a conditional diffusion model. The data dis-
tribution q(x, c) consists of HR images x and their corresponding LR images
c. In our method, we employ a class-conditional diffusion model that considers
conditions from task classes that segment the larger RISR task into multiple
sub-categories, in addition to the condition of the LR image.

2.3 Diffusion Model-Based Super-Resolution

The effectiveness of diffusion models for super-resolution tasks has been sub-
stantiated through various studies [36,35,6,18,43]. SR3 [36] and SR3+ [35] are
indicative of the significant strides made by applying diffusion models to SR and
RISR. Building on these foundational works, our Real-SRGD innovates further.

Recently, RISR techniques that involve foundation models like Stable Dif-
fusion [33] have emerged. StableSR [41] exploits the features of LR images in
conjunction with Stable Diffusion’s intermediate features to steer the genera-
tive process, and DiffBIR [25] employs a two-stage pipeline, first incorporating
a restoration module to address degradation and subsequently utilizes the gen-
erative capabilities of diffusion models.

In methods incorporating diffusion models like Stable Diffusion, the focus is
on leveraging the generative capabilities of pre-trained diffusion models, utiliz-
ing classifier-free guidance or classifier guidance to control the balance between
fidelity and realism of the generated images. However, our proposed method im-
proves quality by using classifier-free guidance with models trained with different
characteristics under class conditions.
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3 Methodology

Table 1: RISR task decomposition.

Task class Blurring Resolution
change

Noise
addition

Compression
(JPEG)

RISR ✓ ✓ ✓ ✓
SR ✓ ✓
BIR ✓ ✓

Fig. 2 shows an overview
of our proposed method. To
demonstrate the superiority
of our method through a fair
comparison, we repurposed
the data degradations used in
Real-ESRGAN [42] as seen in
prior RISR work. However, as
depicted in Table 1, we de-
compose real-world degradations into the four categories and define the RISR
task that includes all of them, along with conventional SR and Blind image
restoration (BIR) tasks, which incorporate subsets of these degradations. While
BIR potentially includes degradations such as blur and resolution change, we
have chosen to distinguish the three tasks in this study. Thus, we define BIR as
a degradation that consists solely of noise and JPEG compression degradations.

3.1 Class-Conditional Training Pipeline

In our proposed method, we implement class-conditional training based on these
sub-tasks. Thus, we generate low-resolution (LR) images by applying only a
subset of the degradations in the pipeline, depending on the randomly selected
task. In the case depicted in the Fig. 2, the SR task is chosen and only blur and
resolution change degradations are used.

The conditions of an LR image are concatenated with input noise along the
channel axis before being fed into the model. Simultaneously, the task class con-
dition is encoded as a vector embedding with the same dimension as the timestep
embedding, and it is added to the timestep embedding before being integrated
into the residual blocks of the model. During inference, the LR condition remains
unchanged, whereas the noisy image (xt) is iteratively denoised. Furthermore,
during the training of our models, the task class condition is dropped with a
certain probability to enable classifier-free guidance during inference.

After training, the model is utilized as an RISR model during inference by
consistently specifying the RISR task class. Therefore, no additional labeling or
annotation is required for the input LR images.

3.2 Classifier-Free Guidance for SR Diffusion Model

Our model is trained in a class-conditional manner, with the classes randomly
selected from the previously mentioned three tasks. Furthermore, during train-
ing, at a given probability (for instance, 10%), we drop the class conditions,
thereby co-training both class-conditioned and class-unconditioned models. The
model without class conditions tends to be conservative, aiming to accommo-
date any of the randomly chosen tasks. Conversely, the class-conditioned model
morphs into a version specialized towards the selected task. When using CFG
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Denoising U-Net

timestep t

LR Condition

xt

task class c

Embed

Repeat T times

Embed Add task class embeddings
to timestep embeddings

RISR ✔ ✔ ✔ ✔

SR ✔ ✔

BIR ✔ ✔

(a) RISR data augmentation pipeline ×2

(b) Training Denoising U-Net with task class condition
Denoised

Image

L2 Loss

Target Image

Real Image

BlurringResolution
change

Noise
addition

Compression
(JPEG)

add
Gaussian

Noise

LR Image

Fig. 2: Overview of our Real-SRGD. (a) RISR data augmentation pipeline:
Degradation is applied twice to real images according to the randomly selected
task class, following the sequence indicated in this figure. (b) Training the
Denoising U-Net with task class condition: LR images are superimposed
with noise and then fed into our model along with task-class conditions—either
RISR, SR, or BIR—converted into embeddings and merged with timestep em-
beddings. To utilize classifier-free guidance, during the training, the task class
condition is dropped with a certain probability.

for a RISR task, we compute the discrepancy between the predictions of the
RISR-specialized model and the conservative model without class conditions.
The difference between these predictions is considered to be the key factor that
specializes our method towards RISR. Scaling the predictions of the model con-
ditioned on RISR in this direction allows us to further specialize the model’s
predictions for the RISR task.

In terms of a specific implementation, we include task conditions to equation
2. It can be re-written as follows, with cLR denoting the LR image condition
and cT the task class conditions:

pθ(xt−1 | xt, cLR, cT ) := N (µθ (xt, cLR, cT , t) , Σθ (xt, cLR, cT , t)) . (3)

Then, we integrate CFG into our super-resolution diffusion model. Given
a model ϵθ(x, cT , t) that executes class-conditional generation, CFG is accom-
plished by correcting the denoising process at each timestep as follows: (the LR
condition, cLR, is constantly supplied as an input to the model, so we omit it
from the function to streamline notation.)
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ϵ̂θ(xt, cT , t) = ϵθ (xt, cT , t)− s (ϵθ (xt,∅, t)− ϵθ (xt, cT , t)) (4)
= (1 + s)ϵθ (xt, cT , t)− sϵθ (xt,∅, t) . (5)

In the equation above, ∅ represents the absence of the class condition in the
model input, and s, short for scale, is a hyperparameter used to modulate the
strength of the CFG. When s = 0, the model operates devoid of any form of
guidance.

3.3 Comparison wtih Classifier Guidance

Classifier guidance (CG) is a technique that guides the generation results of a
diffusion model towards a specific class by using an extra trained classifier [8].

We also compared the performance of our method when using CG instead of
CFG. For a detailed discussion on the experimental settings, see Section 4.10.
As per the results in Table 7, the guidance provided by CG did not reach the
performance of CFG. Moreover, combining CFG and CG resulted in poorer
performance than using CFG alone. Based on these results, we decided to adopt
CFG in our proposed method.

3.4 Architecture

Our U-Net-based [34] architecture, inspired by the DDPM [13] model, incor-
porates LR conditions into the noise input by enlarging the size of the input
channels. To embed the LR image within our system, we upscale it to the target
resolution using bicubic interpolation. We then align it to the channel axis with
the noise input, while consistently producing a 3-channel output. The network’s
residual blocks incorporate timestep embeddings, which are translated into sinu-
soidal positional embeddings used in Transformers [39], and the task conditions
are transformed into vector embeddings with the same dimensionality as the
timestep embeddings.

4 Experiments

4.1 Training and Testing Datasets

For training, we utilized the DIV2K [24], DIV8K [11], Flickr2K [37] and Out-
doorSceneTraining (OST) [48] datasets.

Our method was evaluated on synthetic and real-world datasets. The syn-
thetic dataset utilized was the DIV2K Realistic-Wild dataset [38] (hereafter
DIV2K-Wild), while the real-world datasets include DPED-iPhone [16], Re-
alSRv3 [3], and DRealSR [45]. DIV2K-Wild, part of the NTIRE 2018 Super-
Resolution Challenge (Track 4) [38], comprises DIV2K images subjected to vari-
ous real-world degradations that differ across images. The DPED-iPhone dataset
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includes 100 LR images captured by smartphone cameras. The RealSRv3 and
DRealSR datasets are designed for RISR, and are composed of images taken
with several cameras at different settings. We test our models with an upscaling
factor of 4, which is the standard in this field.

4.2 Evaluation Metrics

We evaluate the quality of generated images using various perceptual metrics in-
cluding LPIPS [51], NIQE [31], CLIP-IQA [40], and MUSIQ [19] over traditional
pixel-based metrics due to the perceptual distortion trade-offs [2] inherent in
realistic enhancements. Additionally, we report PSNR and SSIM scores for ref-
erence. Furthermore, we used the Fréchet Inception Distance (FID) [12] score to
evaluate the RealSRv3 and DRealSR datasets. Considering the necessity for a
large set of images in the FID calculation, we cropped 10,000 non-overlapping
patches (sized 256 × 256 pixels) from the training sets of these datasets and
calculated the FID scores—referred to as FID10K [12]. This approach follows
the precedent set by the SR3+ evaluation strategy [35].

4.3 Diffusion Model Selection for RISR

To determine the best diffusion models for our proposed method, we experi-
mented with various models, timesteps, and noise schedules. Following extensive
trials, we selected two models: the continuous timestep DDPM [13] model with
a linear noise schedule, hereafter referred to as CDM, as the model prioritiz-
ing perceptual image quality, and the EDM [17] model, chosen for prioritizing
processing speed.

4.4 Training and Inference Details

Real-SRGD models were trained using the AdamW optimizer and L2 loss as the
optimization criterion, with the task class condtion being dropped at a proba-
bility of 10% during training. For the appropriate selection of the drop proba-
bility, refer to section 4.10. During inference, we discerned that 250 generation
timesteps yielded an optimal balance between quality and efficiency in our CDM
model. The EDM model used a 32-step setting for both training and generation,
serving as a lightweight and efficient alternative. The EDM’s generation speed
is increased through the use of the DPM++ sampler [27], enabling a twofold
increase in generation speed over the standard setting.

4.5 Comparison with Baseline, EDM and CDM Models

We compared the performance of our proposed methods (EDM and CDM) with
a baseline model— without class-conditional learning on the DIV2K-Wild and
DPED-iPhone datasets. Table 2 shows the results. CFG was found to enhance the
perceived quality when applied (i.e., when s ≥ 1.0), as indicated by the improved
NIQE, CLIP-IQA and MUSIQ scores, despite a marginal drop in PSNR and
SSIM in line with perception-distortion trade-off principles.
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Table 2: Comparison of baseline, EDM (efficiency-oriented) and CDM (quality-
oriented) on DIV2K-Wild and DPED-iPhone datasets. (Bold and underline
number are best and second best performance in all tables.)

Methods DIV2K-Wild DPED-iPhone

PSNR ↑ SSIM ↑ LPIPS ↓ NIQE ↓ CLIP-IQA ↑ MUSIQ ↑ NIQE ↓ CLIP-IQA ↑ MUSIQ ↑

baseline 17.55 0.4554 0.4035 3.269 0.5881 55.40 3.918 0.3831 45.58

EDM (s = 0) 16.98 0.3454 0.5630 3.389 0.5080 46.68 3.993 0.2697 34.61
EDM (s = 1) 16.47 0.3381 0.5092 2.928 0.6373 55.55 3.495 0.3672 46.99
EDM (s = 2) 15.96 0.3265 0.4951 2.729 0.6844 59.19 3.213 0.4322 52.00

CDM (s = 0) 17.73 0.4600 0.4367 3.732 0.4707 47.51 4.148 0.3273 39.81
CDM (s = 1) 17.00 0.4275 0.4000 2.866 0.7125 62.24 3.522 0.4887 53.13
CDM (s = 2) 16.34 0.3984 0.4183 2.722 0.7711 65.85 3.365 0.5757 57.75

Table 3: RISR results on DIV2K-Wild and DPED-iPhone datasets.

Methods DIV2K-Wild DPED-iPhone

PSNR ↑ SSIM ↑ LPIPS ↓ NIQE ↓ CLIP-IQA ↑ MUSIQ ↑ NIQE ↓ CLIP-IQA ↑ MUSIQ ↑

Real-ESRGAN+ 17.50 0.4852 0.4047 4.365 0.6126 54.82 5.105 0.3008 43.89
SwinIR-GAN 17.23 0.4740 0.3858 3.813 0.6711 57.64 4.773 0.3248 42.10

FeMaSR 16.92 0.4045 0.3969 4.156 0.7694 62.7 5.117 0.4860 48.29
RealDAN 17.69 0.4806 0.4388 5.359 0.4813 47.96 6.349 0.2571 35.54
Swin2SR 17.80 0.5021 0.5017 7.574 0.4776 44.05 8.291 0.2999 33.00
StableSR 17.71 0.4853 0.4182 5.268 0.4890 48.20 5.708 0.3038 40.84
DiffBIR 17.88 0.4679 0.4173 5.352 0.6463 53.67 5.608 0.5167 43.63
DiffIR 17.69 0.4827 0.3586 4.853 0.6289 56.32 5.688 0.2082 38.64
SeeSR 17.33 0.4744 0.4203 5.044 0.7267 52.98 5.674 0.5459 41.44
SUPIR 17.19 0.4517 0.3860 3.520 0.8051 64.42 5.499 0.4200 43.41

OursCDM (s = 2) 16.34 0.3984 0.4183 2.722 0.7711 65.85 3.365 0.5757 57.75

4.6 Comparison with Existing Methods

We evaluated our proposed methods and ten representative RISR methods: Real-
ESRGAN+ [42], SwinIR-GAN [23], FeMaSR [4], RealDAN [28], Swin2SR [7],
StableSR [41], DiffBIR [25], DiffIR [47], SeeSR [46], and SUPIR [49].

RISR on DIV2K-Wild and DPED-iPhone Datasets We evaluate our
CDM (s = 2.0) and existing methods. Table 3 shows the scores for the RISR
results on DIV2K-Wild and DPED-iPhone datasets. Since the DPED-iPhone
dataset does not have ground truth data, PSNR, SSIM and LPIPS scores cannot
be used. Our method was inferior to existing methods in PSNR, SSIM and
LPIPS; however, it outperformed existing methods in the scores for NIQE, CLIP-
IQA, and MUSIQ. Fig. 3 shows comparison of RISR results on heavily degraded
sample from DIV2K-Wild dataset.

RISR on RealSRv3 and DRealSR Datasets We evaluate six variants of
our method (three patterns of classifier-free guidance (CFG) scale: s = 0, 1, 2, for
both EDM and CDM models) and existing methods on RealSRv3 and DRealSR
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Bicubic (×4) Real-ESRGAN+ SwinIR-GAN StableSR DiffBIR

Ground Truth FeMaSR Ours (s = 0) Ours (s = 1) Ours (s = 2)

Fig. 3: Comparison of RISR results on heavily degraded sample from DIV2K-Wild.

Table 4: RISR results on RealSRv3 and DRealSR datasets.

Methods RealSRv3 DRealSR

FID10K ↓ NIQE ↓ CLIP-IQA ↑ MUSIQ ↑ FID10K ↓ NIQE ↓ CLIP-IQA ↑ MUSIQ ↑

Real-ESRGAN+ 33.41 9.550 0.3643 45.82 28.92 9.652 0.3743 41.36
SwinIR-GAN 28.44 9.215 0.4422 44.84 27.21 9.282 0.4512 41.16

FeMaSR 35.30 8.898 0.4728 45.34 32.21 8.492 0.4686 42.83
RealDAN 54.07 9.918 0.3471 36.87 60.92 10.24 0.3092 33.24
Swin2SR 63.64 14.02 0.2904 38.09 72.93 14.29 0.2748 31.12
StableSR 24.28 9.249 0.5737 50.33 35.45 9.163 0.5252 46.04
DiffBIR 35.60 9.564 0.5723 52.80 53.32 9.523 0.5690 51.92
DiffIR 24.07 9.179 0.2728 41.43 20.56 9.025 0.2643 38.91
SeeSR 41.76 11.95 0.4879 48.21 49.09 12.64 0.5108 48.21
SUPIR 37.34 10.46 0.6398 41.74 41.68 10.61 0.5662 41.74

OursEDM (s = 0) 33.71 7.207 0.2730 30.21 25.53 7.574 0.3043 33.10
OursEDM (s = 1) 25.34 7.298 0.3845 39.89 23.76 7.545 0.4325 41.49
OursEDM (s = 2) 25.63 7.650 0.4354 44.63 26.80 7.709 0.4877 44.94

OursCDM (s = 0) 23.72 9.541 0.4326 39.44 23.20 9.514 0.4216 35.75
OursCDM (s = 1) 27.27 9.473 0.6134 52.56 26.49 9.299 0.5884 47.57
OursCDM (s = 2) 33.72 9.800 0.6453 54.39 33.90 9.567 0.6342 50.64

datasets. Table 4 shows the results. Our methods achieved the highest scores
across all evaluation metrics, except for MUSIQ on the DRealSR dataset where
it ranked second, using the FID10K, NIQE, CLIP-IQA, and MUSIQ metrics. For
FID10K, the CDM model achieved the best score with no CFG, and when CFG
was applied, the score worsened. In the EDM model, the score improves with
CFG scale at s = 1.0, but after that, it gets worse. This could likely be attributed
to the fact that the FID metric focuses not on the perceptual quality of an image,
but on the “difference in distribution" between the ground truth data and the
data generated by our method. Considering these results, in Section 4.8, we will
conduct an evaluation of RISR quality through a human subject study.

Conventional SR on Classical Benchmarks We also tested our method
on four classical benchmark datasets: Set5 [1], Set14 [50], BSD100 [30], and Ur-
ban100 [15]. The results are shown in Table 5. Our model can specify tasks other
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Table 5: Conventional SR results on Set5, Set14, BSD100, and Urban100.
Methods Type Set5 Set14 BSD100 Urban100

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

SwinIR SR 30.89 0.8877 0.1663 27.01 0.7787 0.2664 26.60 0.7474 0.3533 25.87 0.8197 0.1840
HAT SR 30.98 0.8903 0.1598 27.13 0.7831 0.2587 26.68 0.7517 0.3464 26.73 0.8381 0.1668

Real-ESRGAN+ RISR 24.33 0.7322 0.1695 23.30 0.6505 0.2339 23.57 0.6277 0.2819 21.06 0.6574 0.2140
SwinIR-GAN RISR 24.84 0.7232 0.1659 23.26 0.6532 0.2267 23.51 0.6305 0.2598 21.02 0.6673 0.2014

FeMaSR RISR 23.25 0.7126 0.1507 21.82 0.6065 0.2162 21.81 0.5869 0.2517 20.22 0.6381 0.1983
RealDAN RISR 25.55 0.7772 0.1922 24.13 0.6955 0.2920 24.33 0.6827 0.3761 21.86 0.6844 0.2922
Swin2SR RISR 26.95 0.8006 0.2224 25.04 0.7119 0.3339 25.28 0.6882 0.4167 23.10 0.7324 0.2740
StableSR RISR 23.37 0.6966 0.1824 22.01 0.6036 0.2447 22.41 0.5955 0.2740 20.56 0.6326 0.2032
DiffBIR RISR 24.92 0.7299 0.1606 22.85 0.5896 0.2177 23.79 0.6043 0.2351 21.41 0.6282 0.2120

OursCDM (s = 2) SR 28.77 0.8452 0.1488 24.77 0.7070 0.1890 24.99 0.6867 0.2424 23.54 0.7482 0.1584

than RISR, such as BIR and SR; hence, we also investigated the performance of
CDM model when used as a conventional SR model. For evaluation metrics, we
used PSNR, SSIM, and LPIPS, which are reference-based metrics that consider
the Ground Truth images. We compared our model with SwinIR [23], a repre-
sentative in the field of conventional SR, HAT [5], the current state-of-the-art
method, and also the existing methods for RISR that we have been comparing
with. From the PSNR and SSIM scores, it is evident that SwinIR and HAT,
designed specifically for conventional SR tasks, performed best. However, our
model is also producing competitive scores, not inferior to these conventional
SR methods. It surpassed the existing methods designed specifically for RISR
in all cases except for the LPIPS score on the BSD100 dataset, where it ranked
second.

4.7 Generation Randomness in Diffusion-Based Super-Resolution

In this section, we evaluated the degree of randomness in RISR results gener-
ated by diffusion-based methods, specifically DiffBIR, StableSR, and our pro-
posed method, which includes the use of a CFG scheme. Generally, the use of
CFG is known to suppress the diversity in generation, thereby enhancing its
conformity with generative conditions. This works advantageously, especially in
super-resolution tasks where consistency is prioritized over diversity. This de-
crease in diversity does not hinder our method but instead improves the quality
of the generated images. For each method, we changed the random seed and
performed RISR processing five times for the DIV2K-Wild dataset (a total of
100 images). We analyzed the variations in NIQE scores for the resulting 500
images.

The experimental results are shown in Fig. 4. Even without CFG, our pro-
posed method exhibited a lower average NIQE and less variability compared
with the existing models. Upon applying the CFG, both the average NIQE and
variability decreased further. This demonstrates that our proposed method not
only outperforms the existing ones in the absence of CFG but also improves the
quality and stability of RISR when CFG is applied.
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Fig. 4: Distributions of NIQE
scores obtained by methods
that include generation ran-
domness.

Table 6: Processing speed, along with DIV2K-
Wild results, sorted by Elo rating score.

Methods sec/
sample

DIV2K-Wild Rating
Score ↑NIQE ↓ CLIP-IQA ↑ MUSIQ ↑

OursCDM (s = 2) 437 2.722 0.7711 65.85 1751.91
Ground Truth - 3.072 0.7754 65.55 1703.17

OursCDM (s = 1) 437 2.866 0.7125 62.24 1673.21
OursEDM (s = 2) 105 2.729 0.6844 59.19 1641.61
Real-ESRGAN+ 0.52 4.365 0.6126 54.82 1566.90

SwinIR-GAN 2.10 3.813 0.6711 57.64 1553.26
OursEDM (s = 1) 105 2.928 0.6373 55.55 1531.84

FeMaSR 1.96 4.156 0.7694 62.77 1531.02
StableSR 268 5.268 0.4890 48.20 1505.90
DiffBIR 81.6 5.352 0.6463 53.67 1466.71

OursCDM (s = 0) 194 3.372 0.4707 47.51 1436.97
RealDAN 0.36 5.359 0.4813 47.96 1423.54

OursEDM (s = 0) 54.9 3.389 0.5080 46.68 1343.34
Swin2SR 12.9 7.574 0.4776 44.05 1302.02

Bicubic (4x) - 8.047 0.3583 21.72 1068.58

4.8 Human Subject Study

We conducted a human subject study to validate our method’s qualitative re-
sults. We evaluated six variants of our method and seven RISR methods, as
well as bicubic upsampled and ground truth (GT) images. DiffIR, SeeSR, and
SUPIR were not included as they were quantitatively evaluated after this study.
For the experiments, we utilized images from the RealSRv3, DRealSR, and the
DIV2K-Wild datasets.

In studies examining which assessment methods should be chosen for subjec-
tive image quality evaluation, it has been concluded that the forced-choice pair-
wise comparison method results in the smallest measurement variance, thereby
producing the most accurate results [29]. Based on this, we adopted this method
for our user study.

Participants were presented with image pairs and asked to select the one with
perceived better quality. To facilitate comparison, we used the top 2,000 images
with the largest variance after super-resolution from the 10,000 RealSRv3 and
DRealSR images. For the DIV2K-Wild dataset, we used a 256×256 crop with the
maximum variance between methods from each of the 100 samples after super-
resolution. A web-based system was developed for the random presentation of
image pairs, through which we collected 2,100 votes from 14 participants. To
calculate ratings from the forced-choice pairwise comparison results, we utilized
the Elo rating system [10], often used for evaluating players in paired competitive
games, due to the reliability of the ratings, and it is also employed in quality
evaluation of super-resolution models.

Final ratings are referred to in the Rating Score column of Table 6. As per
the rankings, our proposed method achieved higher rankings than the existing
methods. Particularly, the CDM model (with s = 2.0) significantly surpassed
the top-rated existing method, which is Real-ESRGAN+, with a considerable
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Table 7: Comparison of Classifier Guidance with Classifier-Free Guidance.
Methods RealSRv3 DRealSR

FID10K ↓ NIQE ↓ CLIP-IQA ↑ MUSIQ ↑ FID10K ↓ NIQE ↓ CLIP-IQA ↑ MUSIQ ↑

baseline 22.59 9.141 0.4935 45.05 22.32 9.133 0.4724 41.84
baseline + CG (s = 1) 22.56 8.797 0.5107 47.17 22.46 8.678 0.4962 44.83
baseline + CG (s = 8) 23.08 8.643 0.5261 48.63 23.91 8.525 0.5209 46.84
baseline + CG (s = 32) 26.52 9.122 0.5394 50.23 32.02 9.199 0.5415 48.87
baseline + CG (s = 64) 32.18 10.463 0.5351 50.46 42.71 11.140 0.5275 49.11

CDM + CFG (s = 2) + CG (s = 32) 40.30 14.299 0.6041 52.70 54.69 16.834 0.5830 50.35
CDM + CFG (s = 2) + CG (s = 64) 42.34 15.111 0.6028 52.78 59.31 15.111 0.5826 50.63
CDM + CFG (s = 2) 33.72 9.800 0.6453 54.39 33.90 9.567 0.6342 50.64

margin in the confidence interval. Moreover, an increase in the scale of the CFG
resulted in a corresponding rise in the rankings. Surprisingly, our CDM model
surpasses the ranking of the ground truth. While we only compared up to CFG
scale 2.0 for our method to limit the number of methods compared, the NIQE,
CLIP-IQA and MUSIQ scores rises for CFG scales larger than 2.0, indicating
the possibility of further improvements in human subjectivity-based evaluations.

4.9 RISR Quality vs. Computational Cost

Our proposed method comprises an efficiency-oriented EDM model and a quality-
oriented CDM model. We measured the processing time for processing 100 im-
ages from the DIV2K-Wild dataset, including existing methods, to investigate
the trade-off between RISR quality and computational cost.

Results are shown in Table 6. Considering that the adoption of CFG doubles
the inference cost to twice as much, the CDM model, which applied the CFG
that achieved the best performance, significantly outweighed the computational
cost of the pre-existing methods. On the flip side, while the EDM model, which
does not use CFG, was the least computationally hungry among our proposed
methods, if we consider the DIV2K-Wild’s quantitative performance scores and
the Elo Rating Score, it fell short of delivering performance proportional to its
computational cost. With a relatively high Elo rating score that stood second
in computational cost only to RealDAN, Real-ESRGAN+ can be called a well-
balanced method. To trim down the computational cost of our methods, future
research issues include using distillation methods for diffusion models considering
CFG or utilizing a faster sampler.

4.10 Ablation Studies

Comparison of Classifier Guidance with Classifier-Free Guidance We
evaluated our method with classifier guidance (CG) [8] instead of CFG. The
implementation of CG was based on the proposed paper [8], utilizing a U-Net-
based classifier that was trained to classify images with noise added according
to the timestep. We compared the results of CG with our proposed method that
employs CFG on RealSRv3 and DRealSR datasets. Table 7 shows the results.
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Table 8: Comparison of condition drop probability.

Methods drop
rate

RealSRv3 DRealSR

FID10K ↓ NIQE ↓ CLIP-IQA ↑ MUSIQ ↑ FID10K ↓ NIQE ↓ CLIP-IQA ↑ MUSIQ ↑

CDM (s = 0)
0.1

28.51 9.281 0.4926 44.05 29.07 9.275 0.4785 40.95
CDM (s = 1) 33.33 8.620 0.6012 49.57 36.78 8.557 0.5828 46.83
CDM (s = 2) 39.10 8.376 0.6365 52.34 46.23 8.434 0.6276 49.92

CDM (s = 0)
0.2

28.12 9.263 0.4720 43.08 28.60 9.053 0.4659 40.15
CDM (s = 1) 30.98 9.126 0.5758 48.18 33.13 8.846 0.5568 45.69
CDM (s = 2) 34.59 8.620 0.6130 50.76 40.52 8.529 0.5997 48.61

Similar to CFG, CG has a scale parameter that controls the degree of guidance.
Even after considerably increasing the scale, gradual improvements in the per-
ceptual metrics were observed, so we investigated the scale parameter up to the
range where no further improvements in scores were found. However, the results
did not match the performance achieved with CFG. Moreover, combining CFG
and CG led to poorer performance than using CFG alone.

Table 7 shows CFG s=2 improves CLIP-IQA and MUSIQ but degrades
FID10K and NIQE compared to CG (s=1 or 8). Strong CFG (s=2) may en-
hance perceptual quality but also deviate from real data distribution, impacting
FID10K and NIQE. This highlights the trade-offs of generative models and the
need for diverse evaluation metrics, including human perception, for comprehen-
sive image quality assessment.

Comparison of Condition Drop Probability We also examined the in-
fluence of the task class condition drop probability on super-resolution quality
during training. An ablation in the foundational CFG paper identified a 10%
drop probability as optimal, we evaluated this rate against 20% in our Real-
SRGD method on RealSRv3 and DRealSR datasets. Table 8 shows the results.
Based on the results, we adopted a 10% drop probability over 20% as it yielded
better outcomes when applying the CFG.

5 Conclusion and Discussion

This work introduces Real-SRGD, a novel approach for real-world image super-
resolution (RISR) using Classifier-Free Guidance within a diffusion framework.
Real-SRGD achieves state-of-the-art performance, outperforming existing meth-
ods on benchmarks and human evaluations. Our task-specific training, which de-
composes RISR into multiple components, enables the effective use of Classifier-
Free Guidance and can be easily integrated into other diffusion-based methods.
While we utilized a simple model and existing data augmentation techniques,
future work could explore more advanced models and degradations for further
improvement. Our findings suggest that the proposed approach of task decom-
position and reconstruction has the potential to benefit a wide range of image
processing tasks beyond RISR.
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