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Abstract. This paper introduces a novel and robust approach for the
performance capture of multiple humans engaged in direct physical in-
teractions with very sparse RGB camera setups. Unlike existing meth-
ods that only perform well under specific conditions, such as when hu-
mans are relatively distant from each other, when a scene is surrounded
by a large array of cameras, or when precise segmentation is available,
our method operates without any of these requirements. We introduce a
novel layered network architecture to represent the foreground and back-
ground together, as well as a tailored compositional volumetric rendering
technique and objective functions, along with a new sampling method.
These innovations enable the accurate reconstruction of humans engaged
in direct physical interactions using only images and roughly estimated
SMPL models. Our work demonstrates that our method is able not only
to extract high-quality geometry of interacting people but also to provide
segmentation and free viewpoint video, outperforming competitors that
work in similar setups. Also we show the ability to improve the quality
of the roughly estimated SMPL models. We have conducted experiments
on a variety of scenes using the HI4D and CMU Panoptic datasets. The
code and examples are available at https://github.com/mv2mp/MV2MP.

Keywords: Performance capture · Compositional Volumetric Render-
ing · Layered Network Architecture · Segmentation

1 Introduction

Human performance capture has gained a lot of attention in both academic
and industry communities. Many content creators are especially interested in
systems capable of capturing the performance of multiple people in close in-
teractions. For example, the reconstruction of sports scenes demands accurate
capture of humans performing actions not only in close proximity but in di-
rect physical contact. Unlike static scenes, reconstructing high-fidelity dynamic
human models faces inevitable challenges such as nonrigid motion, severe occlu-
sions, deformations due to direct physical contact, and complicated appearance
variations.

This ACCV 2024 paper, provided here by the Computer Vision Foundation, is the author-created version.
The content of this paper is identical to the content of the officially published ACCV 2024

LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/accv
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2 S.Eliseev et al.

As a solution, emerging systems [8,17,23] leverage volumetric rendering [21],
while others [13, 24, 37] use 3D Gaussians [14] as a color and volume barrier.
Human priors like [19] can be used and achieve good results even on monocular
setups [8,13,24]. Despite the impressive results, none of the mentioned methods
is capable of reconstructing multiple persons in a scene.

Approaches presented in [25,31,35] achieve good results in performance cap-
ture and free view point video generation of humans in close interactions, but
either only work with dense camera setups [31] or are limited to the setups with
relatively distant performers [25] Sec. 4 or demand precise instance segmenta-
tion [35].

Concurrent work MultiPly [11] presents an approach targeting single-camera
multi-human reconstruction, modeling geometry in canonical space, utilizing ad-
ditional supervision signal from segmentation, which is obtained by repeatedly
prompting SAM [15]. It demonstrates impressive results in model reconstruction,
however novel-view synthesis is inherently limited by the single training camera
and seen sides of the subject. We illustrate this limitation in the supplementary.

In our paper, we introduce a novel framework designed to capture the per-
formance of multiple individuals engaged in close interactions. This framework
excels in environments with sparse camera setups and eliminating the need for
segmentation. Remarkably, it can accurately capture fine geometric details, even
in scenarios where individuals are in direct physical contact, relying solely on
images and roughly estimated SMPL models.

We solve the tasks of human separation and performance reconstruction di-
rectly in 3D. To achieve this, we use layered scene representation where each
layer is represented by geometry and appearance neural fields. The key chal-
lenge is to separate the geometry of humans in direct physical contact without
relying on segmentation. To address this problem, the following concepts were
used as the basis of our approach:

i) We define a layered representation where each human has a single temporally
consistent representation of shape and texture in canonical space and lever-
age the inverse mapping of a parametric body model to learn from deformed
observations.

ii) A novel composite volume rendering technique allowing to perform rendering
of multiple dense-color fields along the ray after importance sampling applied
separately for each human.

iii) A quasi-background camera bounded network that allows work without ex-
ternal segmentation modules.

iv) Specific objective functions and SMPL-based sampling allow for faster con-
vergence and clearer separation of the layers.

More specifically, we leverage a surface-guided approach to attain densities
via the conversion method proposed in [30]. Similarly to [8], [11], we warp all sam-
pled points into canonical space and update the human shape field dynamically.
To do this, we first perform importance sampling individually for each person,
similar to [30]. Then, we merge and sort the obtained points. To obtain sharp
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MV2MP 3

boundaries between closely interacting humans, we individually sample density
and colors from each human using the merged points obtained after importance
sampling among all persons. This approach intentionally introduces ambiguities.
Contrary to previous methods [17, 33], we do not predetermine which neural
representation of a human is tasked with defining color and density; instead, we
delegate this task to the optimization process. We also apply a novel composite
rendering technique where the colors from different humans are combined in a
specific way, described in 3.2. We penalize interpenetration between the different
humans. Finally, we densely sample area near the humans using pre-estimated
SMPL from of the shelf methods.

We show that our approach leads to clean decomposition and high-quality
3D reconstructions of human subjects even in direct physical contact. In detailed
ablations we shed light on the key components of our method. Furthermore, we
compare our method to existing methods operating in similar setups in geometry
reconstruction tasks and in novel view synthesis task. We show on par perfor-
mance with state of the art human segmentation framework and prove that our
method is able to improve initially roughly estimated SMPL parameters.

To summarize our contributions:

– Approach for representing scenes with humans in close interactions
– Sampling technique and composite volume rendering.
– Combination of objectives for precise geometry reconstruction in direct phys-

ical contact without external segmentation.

2 Related work

2.1 Articulated body models

Articulated body models like [1, 19, 22] are widely used for human modeling
in computer vision and computer graphics. Because of their low-dimensional
parameter space and fixed topology of the underlying 3D mesh, they are well
suited for learning tasks like fitting to RGB, RGBD or sparse point clouds im-
ages [2, 5, 16, 18, 20, 32]. Recent pose estimators [26] can perform really well
in complicated environments with multiple humans in close interactions. Main
disadvantage of this models is that they do not allow to capture clothing and
sophisticated deformations.

2.2 Neural representation based methods

Seminal work [21] represents scenes with implicit fields of density and color,
which are well-suited for the differentiable rendering and achieve photo-realistic
view synthesis result. Another work [30] introduce SDF based volumetric ren-
dering and novel importance sampling technique.

Neuralbody [23] anchors a set of latent codes to the vertices of the SMPL
model, a deformable human body model. These latent codes are designed to
capture local geometry and appearance information of the human body. For any
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given frame, the method transforms the locations of the latent codes based on
the human pose and uses a neural network to regress the density and color for
any 3D point in space. This method enables effective integration of observations
across video frames, addressing the challenge of learning from sparse views.

Faster version [7] of neuralbody significantly accelerates the optimization pro-
cess for creating neural volumetric representations of dynamic humans, achieving
a 100x speedup by efficient distribution of the network’s representational power
across different human body parts and models the 3D human deformation in a
2D domain by projecting near-surface points to neighboring regions on a para-
metric human model (e.g . SMPL).

Vid2avatar [8] parameterizes the 3D geometry and texture of the human as
a pose-conditioned implicit signed-distance field and texture field in canonical
pose. SMPL is used as a transport between points in canonical space and de-
formed space. Good results are demonstrated on monocular in the wild video
scenes.

SNARF [3] represents an object by its shape and skinning weights in a canon-
ical space. It uses a neural network to predict the occupancy probability for any
3D point in this space, incorporating pose information to capture pose-dependent
local deformations. The core innovation of SNARF is its method for finding the
canonical correspondences of deformed points in space. This is achieved through
an iterative root-finding algorithm that solves for the points in canonical space
that correspond to a given deformed point. This method deeds an adaptation to
work in images setup, such us MVS preprocessing and pose estimation.

Regression-based methods that directly regress 3D surfaces from images have
demonstrated compelling results [9, 29, 36]. However, they require high-quality
3D data for supervision and cannot maintain the space-time coherence of the
reconstruction over the whole sequence [8].

2.3 Multi-person reconstruction

Some works dedicated specifically to multi-person reconstruction reconstruction
of people in close interactions.

StNERF [33] use MVS and SiamMask tracker [10] to get instance segmen-
tation and to assign and track bounding boxes for humans in the scene. Ex-
cept color and density each layer has deformation network for mapping between
canonical and current scene. The core of their volumetric rendering technique
is an object-aware volume rendering scheme which involves rendering each dy-
namic entity (or layer) separately and then compositing them together based on
their spatial relationships.

Other work [25] represents each person as a separate layer similar to StNERF.
But also utilise the [23] approach and register features in SMPL nodes. They
layered rendering uniformly sample from axis-aligned bounding boxes of each
person, then query layers separately and finally apply standard formulation for
rendering [21]. Method shows good results but work in relatively distant persons.

Deep multicapture approach presented in [35] applies the direct regression
for multi-person multi-camera setup. An attention-aware module is designed
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to obtain the fine-grained geometry from mutli-view images. Additionally, the
paper proposes a temporal fusion method to enhance the consistency of moving
character reconstructions across video frames. We will show that we outperform
this method in case of direct physical contact and close interactions even without
segmentation and on a roughly estimated SMPL.

HI4D [31] introduces a novel approach and dataset for analyzing close human-
human interactions with prolonged contact. Firstly, they fit snarf to represent
each person separately. Secondly, they fit combined persons to point cloud ob-
tained from dense camera setup. Then method employs an iterative process that
alternates between optimizing pose and refining surface details. Method performs
well but requires dense camera setup.

3 Method

Fig. 1: We perform importance sampling separately for each human along the ray for
the inner volume and merge the sampled points with distance sorting. After that, we
query the geometry and color networks of each person with these points. When density
and colors are queried, we use our composite volumetric rendering approach to get the
foreground color and combine with learned background.

We present MV2MP, a novel framework for detailed geometry and appear-
ance reconstruction of multiple people from sparse camera setups. The overview
of our method is schematically illustrated in Figure 1. Reconstructing multiple
people from a short video without prior geometry knowledge is challenging due
to complex human movement and significant occlusions. To address these chal-
lenges, we first establish a unified, temporally consistent layered representation
of humans 3.1. This layered neural representation is learned from images through
our tailored composite volume rendering technique 3.2. Thirdly, we add quasi-
background layers for each camera, eliminating the need for any external tools

4176
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for segmentation 3.3. Finally, specific objective functions 3.4 and SMPL-based
sampling 3.2 allow us to achieve spatially coherent high-quality 3D reconstruc-
tions of people, as well as enhancements in SMPL models and segmentation.

3.1 Layered person representation

We represent each person p = 1, . . . , P , with specific layer which may interleave.
Similar to [8] we use canonical and deformed spaces for each person. To obtain
color and density values in deformed space we have to know those values in
canonical space as well as mapping from canonical to deformed space.

Canonical human representation Each individual in the scene is represented
by an implicit signed-distance field (SDF) for the 3D shape and a texture field
for the appearance, both defined in the canonical space. Specifically, we describe
the geometry and appearance of each person p in canonical space using a neural
network fp. This network predicts the signed distance sp and the color cp at the
query point xc as follows:

cp, sp = f(xp
c , θ

p), (1)

where θp represents the person pose parameters, which are concatenated with
xp
c to capture pose-dependent surface deformations. For ease of notation, we use

fp
c (·) and fp

s (·) to refer separately to the network outputs cp and sp, .

Mapping to deformed space During volumetric rendering we are interested
in obtaining color and signed distance in deformed space, i.e. person specific
pose at the specific time. SMPL-based Linear Blend Skinning (LBS) is used
to obtain the mapping from canonical space to deformed space. Consider the
transformation matrix Bi associated with joint ji within the set (1, . . . , nb),
which is formulated based on the pose θ of the body. Here nb is the total count
of bone elements involved in the deformation process. We map a point xc in the
canonical form to a transformed point xd as a linear combination:

xd =

nb∑
i=1

wiBix
c. (2)

To obtain the original canonical position xc from a transformed point xd, we
employ the inverse operation of the equation above:

xc =

(
nb∑
i=1

wiBi

)−1

xd. (3)

The function w(·) = w1, . . . , wnb
is indicative of the weight distribution across

the skinning process for x(·). It should be noted that the transformed locations xd

are correlated with the posture θ of the body. This relationship is determined by
averaging the skinning weights of the closest SMPL model vertices like in [8,28]
which are in turn modulated by the distances between points in deformed space.
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3.2 Compositional volume rendering

Our compositional volume rendering differs from standard one in several aspects
described below.

Ray Sampling Our architecture does not require full background reconstruc-
tion; instead, we reconstruct only the quasi-background and benefit from the
contrast between the foreground and background. We project the pre-estimated
SMPL model onto the canvas and dilate it. Consequently, we cast rays only in
the areas of interest, specifically targeting people. By that we do not spend rays
to train background, which is especially useful when dealing with scenes where
humans are far from each other.

Point Sampling Firstly we perform importance sampling separately for each
human p for each ray r following [30] and obtain xp

d,1, . . . , x
p
d,N , where N is

the number of the sampled points in each ray r. Then we merge these points
and sort according to the distance from camera and obtain set of points M =
xm,1 . . . xm,N∗P . These points serve as hard samples preventing the density leak-
age from the other persons and used as a domain for the interpenetration loss
described further.

Rendering Each point from M is converted to the person p canonical space,
followed by the extraction of colors cpi and densities σp

i :

σp
i = σ

(
fp
s

(
T−1

SMPL (xm,i, θ
p) , θp

))
(4)

cpi = fp
c

(
T−1

SMPL (xm,i, θ
p) , θp, . . .

)
(5)

where σ(·) is the scaled Laplace distribution’s Cumulative Distribution Function
defined in [30] and T−1

SMPL is defined in Equation 3.
Standard volume is not feasible rendering because there are several density

and color signals per point xm,1 and TSMPL. We merge colors and densities
from different human bodies and obtain a final persons color on the ray r using
following batch of formulations:

Cr =

P∑
p=1

N∗P∑
i=1

wp
i · c

p
i + bgr (6)

wp
i = (1− exp (∆xiσ

p
i )) · exp

−
i∑

j=1

∆xi ·
P∑

k=1

σk
i

 (7)

where, ∆xi is the length of the i-th segment between two adjacent sampled points
in M and bgr is the color of background described in Section 3.3.
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The main idea behind equations is that we sum the densities of different
individuals for calculating transparency in front of the point xm,i. We calculate
the alphas for the given human using only the density of segment of specific
human ignoring others.

3.3 Background Description and Structure

In seminal work [8] the background is represented using method similar to
NeRF++ [34]. This approach is resource demanding and may struggle with
modeling of the dynamic background.

Instead, we use image plane coordinates (ui, vi) of the casted ray r and
camera index to query a background color Cr,kp from designated network based
on K-planes [6]. The final background color bgr is obtained multiplying by the
remaining alpha value bgr = αr · Cr,kp, where αr =

(
1−

∑P
p=1

∑N∗P
i=1 wp

i

)
.

This method ensures that during training, it is not beneficial for k-planes to
learn foreground colors, as the person movements would degrade the reconstruc-
tion of background. Similarly, it is not advantageous for the human networks to
learn the background, as this is penalized by the adjacent frames and camera
views.

3.4 Loss Functions

The most common objective for neural rendering models is the pixel-wise pho-
tometric loss: Lrgb [8] that forces renderings to reconstruct input images. For
SDF-based rendering, a regularizer Leikonal [27] is usually used to constrain the
implicit geometry to satisfy the Eikonal equation: ||∇sdf||2 = 1.

Additionally, we apply binary cross-entropy loss on obtained per-pixel opac-
ities, this forces opacity to be either zero or one:

LBCE = − (αr · log(αr) + (1− αr) · log(1− αr)) (8)

In the context of multi-person setups, we introduce two additional losses
alongside the BCE loss: the global opacity sparseness regularization and the
in-shape loss following the [8]. These loss functions are designed to refine the
volumetric representation by imposing constraints on the opacity values corre-
sponding to regions both outside and inside the human shapes.

The precise loss formulation and scheduling can be obtained in provided
source code.

Interpenetration Penalty We consider the scenario where P individuals are
represented by their signed distance functions spi = fp

s

(
T−1

smpl (xm,i, θ
p) , θp

)
. We

formulate a loss to minimize intersection between modeled bodies. For each pair
of individuals we find points where both SDF values are negative, indicating an
overlap:
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LSDF =
1(
N
2

) P∑
p=1

P∑
k=p+1

N∗P∑
i=1

1{ski ,s
p
i |ski <0,spi <0}(s

k
i , s

p
i )s

k
i · spi (9)

where
(
N
2

)
represents the total number of unique pairs in a scene with N in-

dividuals. This loss effectively minimizes the physical overlap between any two
individuals, encouraging a more realistic and physically plausible rendering of
multiple human models by penalizing intersections in their volumetric represen-
tations.

4 Experiments

We conducted our experiments on two widely-used datasets: the HI4D [31] and
the CMU Panoptic [12]. The presented results provide empirical evidence that
the proposed method outperforms concurrent work and consistently operates
without relying on ground truth segmentation or high-quality SMPL pose esti-
mations. Additional results for instance segmentation quality and SMPL pose
refinement can be found in the in supplementary material.

4.1 Datasets and metrics

The HI4D dataset [31] provides high-resolution sequences of human interactions
in various scenarios. Each timestamp within a sequence contains ground-truth
textured meshes, SMPL parameters, 8 RGB images, and instance segmentation
masks. We selected scenes involving close physical interactions to test the ro-
bustness of our approach. HI4D ground-truth SMPL data and instance masks
are of high quality, because they were obtained using large number of cameras
and depth sensors. We decided that using only these may potentially lead to
overly optimistic results. Therefore, to ensure realistic evaluation, we also esti-
mate SMPL parameters using the widely-used open-source tool [25] and generate
instance segmentation masks using nearly state of the art the Mask2Former [4]
model. We fit models and report metrics using both ground truth HI4D and
estimated input data.

The CMU Panoptic dataset [12] contains sequences captured from multiple
synchronized cameras. Although the provided sequences do not include close
physical interactions, they feature scenes with multiple individuals, which allows
us to assess our method’s performance in multi-person scenarios. The CMU
Panoptic dataset does not provide ground truth data for SMPL parameters and
instance masks, so we use the same estimation tools as for the HI4D dataset.
We use CMU-P dataset for qualitative comparison.

To ensure comprehensive comparison, we train models on setups with 3, 5,
or 7 cameras and use from 1 to 3 cameras for testing. The train/test splits are
listed in the supplementary material.

We evaluate our method using Chamfer Distance (CD) and Peak Signal-to-
Noise Ratio (PSNR). Metric values are averaged across all validation cameras.
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10 S.Eliseev et al.

Table 1: Comparative Analysis of Mesh Reconstruction Quality. For rows marked with
GT we use groundtruth SMPL and masks data from the dataset for model fitting and
estimated data otherwise.

Dataset, scene # views DeepMultiCap MultiNB Ours
CD CD PSNR CD PSNR

HI4D, hug21, GT 7 1.76 2.25 22.02 - -
HI4D, hug21 7 2.60 2.66 20.98 1.48 23.97
HI4D, hug21 5 2.72 2.95 20.35 1.41 23.64
HI4D, hug21 3 2.86 - - 1.37 22.59

HI4D, yoga00, GT 7 1.95 2.08 20.43 - -
HI4D, yoga00 7 2.94 2.07 19.29 1.48 18.13
HI4D, yoga00 5 3.11 2.46 17.95 1.51 18.35
HI4D, yoga00 3 3.39 - - 1.63 17.56

HI4D, sidehug32 7 2.85 2.54 20.66 1.79 22.89
HI4D, sidehug32 5 2.84 2.81 19.28 1.93 21.68
HI4D, sidehug32 3 3.07 - - 2.27 19.77

4.2 Comparisons on mesh reconstruction and novel view synthesis

We make a comparison between the proposed method and two established meth-
ods which use similar sparse multi-camera setup:

1. Method [25] which we refer as MultiNB is based on a layered neural scene
representation. Originally designed for novel view synthesis and instance
mask generation in multi person scenario, it allows to extract an individual
mesh from the underlying neural field.

2. DeepMultiCap [35] employs a space attention-aware network to capture fine-
grained body details and reconstructs each individual independently. Deep-
MultiCap was specifically designed for close interactions and has exhibited
generalization to unseen scenes.

For our evaluations, we used the implementations as provided by the original
authors. For brevity, we present the averaged numbers here; additional details
can be found in the supplementary section.

The process of training for our method takes approximately 15 hours to
converge on a sequence consisting of 100 frames and 8 cameras, when executed
on a single A100 GPU.

Results in mesh reconstruction. Referring to Table 1, we report the per-
formance of MultiNB, DeepMultiCap, and our method on three scenes from the
HI4D dataset, featuring diverse interactions. All results were obtained using the
same sets of cameras and frames. Both MultiNB and our model were trained
on sequences of 100 frames. The DeepMultiCap model was used in its provided
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pretrained form, with only the necessary data preparation conducted as outlined
in the official instructions.

When applied to the estimated input data on the given camera setup, the
performance of both MultiNB and DeepMultiCap degrades, while our method’s
performance remains nearly the same and outperforms competitive methods
even without instance masks and high-quality SMPL models. We attribute this
stability to our SMPL mesh optimization and learned background.

Figure 2 shows qualitative comparison and more examples are available in
the supplementary material.

(a) DMC (b) MultiNB (c) Ours (d) GT

Fig. 2: Comparison of Mesh Outputs for Different Methods.

(a) MultiNB (b) Ours (c) GT

Fig. 3: Visual comparison of novel views produced by MultiNB and our methods on
HI4D datset.

Results in novel view synthesis. In the novel view synthesis experiment, we
compared the performance of our method with the MultiNB model. We used
the average PSNR over validation cameras and the entire sequence as a metric,
specifically reporting PSNR for areas covered by people. The results, detailed
in Table 1, show that our models have comparable capabilities in novel view
synthesis. The lower PSNR observed on the yoga00 scene may be due to the
striped pattern on the actor’s T-shirt, which could result from undertraining.
Qualitative comparisons are shown in Figure 3 and in Figure 4.
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12 S.Eliseev et al.

(a) MultiNB (b) Ours (c) GT

Fig. 4: Visual comparison of novel views produced by MultiNB and our method in
multi person setup on CMU-P dataset.

5 Ablation Study

In order to check contribution of different details of our method we check different
aspects of performance using restricted versions of our approach:

1. we check how our method performs if we do not model quasi-background,
i.e. we use segmentation masks from off-the-shelf segmentator and train the
model to reconstruct only the foreground, we substitute mesh-based labels in
In-Shape loss and in Opacity Sparse loss with ones provided by off-the-shelf
segmentation mask.

2. as we find, that our method can tune objects’ shapes and poses, we check if
this has any importance in terms of final metrics.

3. one of our novelties is compositional rendering: we first find query points
from objects on the scene, and query each object’s SDF to find each object’s
density contributions to integrate them all into final color. Here we switch
off querying foreign SDFs on points obtained for object i. i.e. we query only
i′th SDFs for those points.

We perform our ablation on HI4D since it provides accurate meshes, seg-
mentation mask, humans skeletons so we can compute PSNRs, IOUs, Chamfer
Distances, Skeleton Per Joint Distances.

Contribution of qausi-background modeling.
We took our 7 train cameras setups from HI4D scene and stripped the back-

ground modeling capability, in Table 2 one can see, that we get comparable CD
and IOU metrics, while improving on masked PSNR by around 1 point. See also
Fig. 5 for visual comparison.

Contribution of tuning of shapes and poses.
For ablation, we switch off SMPL tuning as well, to check if our model ben-

efits from more accurate coarse geometry, provided by body model. We check
Chamfer Distance w.r.t. ground-truth meshes, IOU with relation w.r.t semantic
masks, MPJPE w.r.t GT joints, PSNR. According to Table 3 we benefit hugely
from introducing SMPL shapes and poses finetuning. We hypothesize, that this
has to do with the fact, that our model relates on skinning abilities of SMPL
geometry, therefore providing more accurate coarse geometry leads to more fi-
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Table 2: Metric comparison for quasi background modeling ablation

dataset, method ↓ CD IOU PSNR

HI4D: yoga00, ours 1.480 0.934 18.138
HI4D: yoga00, ours w/o bg 1.462 0.940 17.225

HI4D: hug21, ours 1.483 0.937 23.974
HI4D: hug21, ours w/o bg 1.334 0.952 23.072

HI4D: sidehug32, ours 1.797 0.928 22.885
HI4D: sidehug32, ours w/o bg 1.704 0.940 21.722

Table 3: Metric comparison for body model fitting ablation. Our method benefits
hugely from SMPL fine-tuning, PSNR gains are in order of 1 point, Chamfer Distance
decreased by around 25% on each scene

dataset, method ↓ CD IOU MPJPE PSNR

HI4D: yoga00, ours 1.480 0.934 0.073 18.138
HI4D: yoga00, ours w/o SMPL Tuning 1.832 0.907 0.073 17.184

HI4D: hug21, ours 1.483 0.937 0.040 23.974
HI4D: hug21, ours w/o SMPL Tuning 2.079 0.898 0.045 21.768

HI4D: sidehug32, ours 1.797 0.928 0.050 22.885
HI4D: sidehug32, ours w/o SMPL Tuning 2.201 0.910 0.055 20.986

nal consistent geometry, resulting in less canonical geometry bumps and giving
better reconstruction results.

Compositional rendering contribution.
By introducing compositional rendering, i.e. using foreign points along the

ray to query each SDF to accumulate all densities, we observe slight increase in
masked PSNR, while maintaining both CD, MPJPE, IOU comparable to method
without compositional rendering. We as well trade off training speed, as we need
to query n times more SDF network passes (n - number of persons on the scene).
See Table 4 for details.

6 Conclusion

In this paper, we presented the approach suitable for novel view synthesis and
reconstruction of intricate multi-human interactions which relies on a sparse set
of calibrated cameras. Utilization of the canonical SDF enables us to effectively
extract the mesh of an individual under occlusions, provided they were visible
in some frames. We have conducted evaluation and show comparative perfor-
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14 S.Eliseev et al.

Table 4: Metric comparison for compositional rendering ablation

dataset, method ↓ PSNR

HI4D: yoga00, ours 18.138
HI4D: yoga00, ours w/o compositonal rendering 17.566

HI4D: hug21, ours 23.974
HI4D: hug21, ours w/o compositonal rendering 23.728

HI4D: sidehug32, ours 22.885
HI4D: sidehug32, ours w/o compositonal rendering 22.502

(a) Full (b) w/o background (c) Ground truth

Fig. 5: Visual comparison of novel views produced by base and no-quasi-background
methods. Notice slightly less detailed hands while using ablated method.

mance in terms of PSNR and outperform existing methods in terms of mesh
reconstruction accuracy.

Limitations and future work. At first, our method struggle with fine details,
e.g. nuanced elements such as individual fingers. The integration of advanced
parametric body models like SMPLX could potentially address this shortcom-
ings. Secondly, the reliance on SMPL models can be restrictive. Lastly, the cur-
rent scope of our method is limited to reconstructing human figures.

(a) Without tuning (b) With SMPL tuning (c) Ground truth

Fig. 6: Visual comparison of mesh renders with and without SMPL tuning. Notice how
hands are being put more accurately when using SMPL tuning.
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