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Abstract. Exemplar-based video colorization is a challenging task that involves
the consistent propagation of colors across frames and the reasonable inference
of colors from grayscale within frames. This paper proposes a novel video col-
orization method called OmniFusion, which iteratively completes the video col-
orization through two following steps. In the inter-frame propagation step, Om-
niMotion establishes correspondences between pixels across video frames. Any
grayscale pixel can be queried whether a corresponding pixel and color are avail-
able from the exemplar according to such correspondences. Consequently, the
processed images may still contain regions lacking color. In the intra-frame in-
painting step, diffusion model provides these grayscale regions in a frame with
plausible colors. The colorized frame is then fed into the first step as an exemplar,
accepting queries from all uncolored pixels. This iterative process continues until
all pixels are colorized. Evaluations indicate that OmniFusion achieves excellent
performance in video colorization, surpassing existing methods in terms of color
fidelity and visual quality.
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1 Introduction

Due to the immaturity of the photography technology in the last century, a large num-
ber of excellent films could only be captured in black and white, gradually fading out of
modern society’s consciousness. Video colorization revitalizes these grayscale works
by imbuing them with realistic colors, enhancing their visual appeal and facilitating
their dissemination in contemporary society.

Traditional methods of video colorization[36] depend on the collaborative efforts of
an interdisciplinary team comprised of skilled colorists, rotoscoping animators, artists
and historians. Achieving a satisfying and coherent result necessitates a substantial in-
vestment of hours and efforts. Consequently, automation of the video colorization is
highly desired.

The simplest approach for automation of the video colorization [23,62,26] is to em-
ploy an image-based colorization model to process each grayscale frame independently
with no temporal modeling. In recent years, a large number of single-frame coloriza-
tion methods [66,13,62,14,15,19,49] propose have achieved significant progress. Su et
al. [41] proposed to leverage an off-the-shelf object detector to obtain cropped object
images and combine object features with complete features to realize the colorization
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of the entire image. However, these works are often short of temporal consistence con-
straints, resulting in colorized videos accompanied by severe color flickering, even
artifacts and discontinuities. Therefore, generating high-quality color videos imposes
higher demands on the colorization task: it not only requires reasonable colorization for
each frame but also necessitates maintaining color consistency between frames during
the colorization process.

To enable the model to perceive and focus on temporal correlations, various methods
[35,5] stack features of each video frame along the time dimension, feeding them into
the network to maintain temporal consistence. This approach significantly improves
colorization performance. However, such temporal features are sparse and contain sub-
stantial redundancy, making it challenging to efficiently utilize the spatiotemporal priors
between frames through simple stacking. More importantly, stacking redundant features
imposes a significant burden on GPU memory when processing longer video tasks.

Exemplar-based video colorization[57,52,68] is a crucial sub-task in the field of auto-
mated video colorization. The objective is to accurately propagate chromatic informa-
tion from a reference image to other grayscale video frames. These systems[8,58,62]
often consist of two sub-nets: the similarity sub-net obtains the coarse chromaticity
map via matching the basic feature statistics of the input pairs; the colorization sub-net
refines the generated chromaticity map to produce the final colorful result. However,
these methods lack the understanding of the image content, resulting in coloring parts
that do not appear in the instance into unreasonable colors.

Generative models[9,37] continue to evolve and demonstrate remarkable performance
in image restoration, but they have yet to provide a robust solution for the challenge of
temporary consistency in video colorization. Subsequent researches utilize pre-trained
GANs[71,11,44,18] or diffusion models[24,4,45,50] with stronger representation capa-
bilities to enhance model representation ability and improved coloring effect. However,
such models, especially those based on Stable Diffusion[37,25,48], often experience
color flickering of the same object across frames due to the lack of temporal consis-
tency modeling.

In this paper, we explore leveraging the superior pixel-level tracking capabilities of
OmniMotion for inter-frame color propagation, and employing the powerful generative
abilities of Stable Diffusion to achieve comprehensive image colorization. By organi-
cally integrating these two works, we aim to address the challenge of exemplar-based
video colorization effectively, minimizing the color inconsistency and flickering and
producing a harmonious and visually appealing result.

The main contributions of this paper can be summarized as follows:

– We propose an exemplar-based video colorization method, which iteratively achieve
the coloriztion of long videos without training a general network.

– We apply OmniMotion to establish correspondences between pixels across frames,
enabling accurate pixel-level color propagation between frames.

– We propose a novel conditional image inpainting method with the modified Stable
Diffusion, capable of providing rational colors for where color information from
the reference frame is unavailable.

Experiments show that our proposed method achieves excellent results in both tem-
poral consistency and accuracy.
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Fig. 1: Overview of our iterative colorization method. In the inter-frame propagation
step (blue), we employ OmniMotion to establish correspondences between pixels across
video frames. Any gray pixel in the video will be queried whether color is available in
the exemplar and then be updated. Therefore, the image colored by propagation may
still contain uncolored regions. In the intra-frame inpainting step (yellow), we utilize
the diffusion prior to achieve complete colorization of the next frame which will be fed
into inter-frame propagation step as an exemplar in the next iteration. The above two
steps are iteratively repeated until the entire video is fully colorized.

2 Related Work

2.1 Video Colorization

Video colorization[59,43,71,25,26,23] requires to take color performance and tem-
poral consistency in account. In order to suppress the color flicker of each frame, a
general temporal filter[3,20] is used to introduce correlation in the temporal dimension,
leading to color distortion. FAVC[21] proposed by Lei et al. is comprised of a coloriza-
tion network for video frame colorization and a refinement network for spatiotemporal
color refinement. TCVC [27] jointly considered colorization and temporal consistency
in an unified framework optimized by a self-regularization learning scheme.

Exemplar-based video colorization[58,57,62,8,48] is an important sub-task in the
field of automatic video colorization, which aims to get command of the color style
of the other grayscale frames with a reference frame. Iizuka et al. [12] proposed a fully
3D convolution method that introduced a source-reference attention layer to colorize
long videos while maintaining temporal consistency. Xu et al.[52] consists of two sub-
networks: the similarity sub-net obtains the coarse chromaticity map via matching the
basic feature statistics of the input pairs; the colorization sub-net refines the generated
chromaticity map to produce the final colorful result. Liu et al.[25] explored an ap-
proach based on pre-trained diffusion model where adds designed Color Propagation
Attention, but the consistency constraints across video frames were insufficient.

2.2 Neural Video Representation

Neural Radiation Field (NeRF)[29] synthesizes novel views of 3D complex scenes
by a neural network to remember the 3D space to implicitly represent the 3D model
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and calculating the pixel color along a single perspective according to volume ren-
dering. Some methods apply such latent representation idea to video representation.
CoDeF[32] compresses the video into a canonical image with optical flow informa-
tion constraints. Some dynamic reconstruction methods [51,53,54] are also capable of
generating 2D motion, but they typically center around objects, focusing primarily on
articulated objects. Additionally, there are representations based on video decomposi-
tion, such as Layered Neural Atlases [16] and Deformable Sprites [60], which primarily
concentrate on the mapping between each frame and a global texture atlas. Some other
methods[22,34] including OmniMotion [46] make use of the reversible flow network
Real-NVP[7] to map video coordinates to the canonical space with excellent proper-
ties for action estimation and tracking. To extend image editing methods to videos,
NVEdit[56] employs video implicit neural representation embedded within diffusion
model to enhance temporal consistency. This work employs such a scheme to propa-
gate colors between frames.

2.3 Diffusion Model

Diffusion models [9,40,6,31,17] is probabilistically generative models meant to fit
the data distribution p(x) by means of denoising the normally distributed variables
progressively. Latent diffusion models [48,42,38,61] or Stable Diffusion [37] use the
perceptual compression of the autoencoders E and D for efficient low-dimensional rep-
resentation features. To avoid the tremendous computational cost of retraining Stable
Diffusion[4,2], there are currently two main approaches for controlling generation of
diffusion models. One [10,63,33,69] is to design appropriate adapters as a conditional
entrance to the original denoiser and fine-tune these adapters with most network pa-
rameters fixed. The other training-free way [39,67,70,55,30] is to optimize the latent
variables with the designed losses related to the condition during the SD inference pro-
cess. Most of the existing colorization methods based on diffusion model[24,4,45,50]
use the former to introduce grayscale constraints. In these works [25,48], gray and color
reference features are fused through the color propagation attention proposed and fed
into the designed adapter similar to ControlNet[63].

3 Method

Our iterative video colorization strategy comprises two primary steps, as illustrated
in fig. 1. In the inter-frame propagation step, we employ OmniMotion to establish cor-
respondences between pixels across video frames, ensuring temporal consistency in the
generated video. Any grayscale pixel in the video will be queried whether color infor-
mation is available in the exemplar. Since this step can only colorize pixels that appear
in both the reference frame and gray frame, the intra-frame inpainting step applys ap-
propriate colors to the uncolored parts of a grayscale frame with diffusion priors. The
colorized frame from the second step becomes the exemplar for the first step in the next
iteration, and this process repeats until all frames are fully colorized.

To give a more convenient explanation, we describe the simplified exemplar-based
video colorization task as follows: Given an exemplar xlab

1 and a set of consistent video
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Fig. 2: Overview of the intra-frame inpainting step. To incorporate the colored region as
a conditioning factor, we modify the standard denoising process of the diffusion model.
At each denoising step, we sample the colored region from the noised input (top) and
the uncolored region from the denoised output (bottom). Then we optimize the latent
based on the grayscale loss.

frames X = {xlab
1 , xl

2, . . . , x
l
L} ∈ RL×H×W×3 where grayscale frames are expanded

to three channels. The goal is to generate a color video X̂ = {x̂lab
1 , x̂lab

2 , . . . , x̂lab
L } ∈

RL×H×W×3 where l and ab represent the luminance and chrominance in the CIELAB
color space, and L, H and W represent the frame length, height and width. Moreover,
M ∈ RL×H×W is the binary matrix indicating whether each pixel has been colorized
or not. Below, we provide a detailed description of both steps in section 3.1 and sec-
tion 3.2, respectively. Then we elucidate our complete iterative colorization algorithm
in section 3.3.

3.1 Inter-frame Propagation Step

We employ OmniMotion[46], which currently offers the best tracking performance,
to better achieve color information transfer between frames. This work introduces depth
into each video frame, treating each frame as a local volume. The OmniMotion rep-
resentation comprises a canonical 3D space and a set of bijections that map the 3D
coordinate of each frame’s local volume to the 3D canonical space. This approach also
involves a coordinate-based density network over the canonical space, which maps each
canonical 3D coordinate to a density, thereby indicating the locations of surfaces within
the frame volume. Once these bijections using Real-NVP [7] are optimized by noisy
optical flow estimates, the representation can be queried with any pixel from any frame
to produce a smooth and accurate motion trajectory throughout the entire video, as il-
lustrated in the blue section of the fig. 1.

Before colorizing a grayscale video, we first need to train this neural latent video
representation. We then query the 3D coordinate from every grayscale pixel in the ex-
emplar and determine whether the target coordinate is on the surface of the exemplar
volume (visible) based on these 3D coordinates (including depth). If it is visible, we
assign the color channels to the grayscale pixel, achieving pixel-level colorization. We
represent inter-frame propagation step with the following function:

X,M = InterFramePropagationStep(xlab
i , X,M, i) (1)
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Algorithm 1: Pseudocode of the Overall Algorithm
Input: A reference color image xlab

1 ∈ RH×W×3; The video frames
X = {xlab

1 , xl
2, . . . , x

l
L} ∈ RL×H×W×3

Output: The colored video X̂ = {xlab
1 , xlab

2 , . . . , xlab
L } ∈ RL×H×W×3.

Train OmniMotion
Initial the mask M = {M1, ...,ML} ∈ RL×H×W

for i=1 to L do
X,M = InterFramePropagationStep(xlab

i , X,M, i)
if every frame is full colored then

break
xlab
i+1,Mi+1 = IntraFrameInpaintingStep(xl

i+1,Mi+1)

The colored video X̂ = X

where xlab
i denotes the exemplar in the current iteration, i indicates its index, X and

M represent the video and the binary matrix to be updated. It is important to note that
the video contains partially colored frames. For instance, in the first iteration, all pixels
in exemplar have color while the remaining frames do not. After processing, all frames
will be imbued with some color.

3.2 Intra-frame Inpainting Step

After the inter-frame propagation step, we obtain partially colorized frames. The sub-
sequent challenge lies in seamlessly blending the remaining grayscale portions of a
frame with the appropriate colors. To achieve this, we propose utilizing Stable Diffusion[37],
known for its robust generative capabilities, as a prior to guide the color inpainting pro-
cess, as illustrated in fig. 2. Our modifications to SD are primarily divided into the fol-
lowing two main points: 1) Integrate color conditions to keep the colors for boundary
regions harmoniously with the assigned areas; 2) Introduce grayscale latent optimiza-
tion to maintain the grayscale values of the generated colors consistent with the original
ones. Below, we provide a detailed explanation of our approach.
Color conditions. After inter-frame propagation step, we obtain the frame where some
regions contain color information. We need to infer the color for the uncolored parts
based on the already colorized regions, similar to the process of inpainting. Inspired by
RePaint [28], we modify the standard denoising process of the Stable Diffusion [37], as
illustrated in fig. 2. Since every reverse step depends solely on zt, we sample the col-
ored region from the noised input and the uncolored region from the denoised output,
where we keep the correct properties of the corresponding distribution.

This approach is formalized in the following equation:

ẑt−1 = m⊙Noise(z0, t) + (1−m)⊙Denoise(ẑt, t) (2)

where m represents the binary mask Mi interpolated to the size in the latent space, and
z0 represents the latent variable of the selected semi-colored image.
Grayscale latent optimization. In the inference stage of continuous denoising, the
color of the previously uncolored areas will be generated based on prior information
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Fig. 3: Comparison with existing colorization methods on the video in the Videvo
dataset [1]. They are corresponding colorization results generated by CIC[64], IDC[66],
VCGAN[71], Deep Remaster[12],Deep Exemplar[62] and the proposed method respec-
tively.

embedded within the model. To ensure that the generated color is constrained by the
original grayscale information, we draw inspiration from previous works[39,67,55] and
optimize latent variables during the inference stage using the following grayscale loss
function:

Lgray(ẑt) = ||(F (ẑt)− xi)⊙ (1−Mi)||1 (3)

where, xi denotes the frame to color. ⊙ signifies counter multiplication. The binary
mask Mi indicates whether each pixel in the frame has been colorized or not. The vari-
able ẑt represents the latent variable after the inpainting process. The process denoted
by F (·) encompasses the transformation of zt to z0, followed by the decoding of z0 into
pixel space, and ultimately degrading the resulting image to a grayscale representation.
In each iteration, ẑt is updated by taking one gradient descent step to minimize Lgray:

ẑt = ẑt − η · ∂Lgray(ẑt)

∂ẑt
(4)

where η is the learning rate for latent optimization.
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Fig. 4: Comparison with existing colorization methods on skate from videvo
dataset[1]. They are corresponding colorization results generated by CIC[64], IDC[66],
VCGAN[71], Deep Remaster[12],Deep Exemplar[62] and the proposed method.

This loss function quantifies the alignment between the generated colors in the grayscale
regions and the grayscale levels of the corresponding pixel positions in the original im-
age. By minimizing this loss through iterative optimization and denoising steps, we en-
sure that the generated image maintains a high degree of fidelity to the original grayscale
image in the uncolored regions.

Similarly, we represent the intra-frame inpainting step with the following function:

xlab
i ,Mi = IntraFrameInpaintingStep(xi,Mi) (5)

where xi denotes the frame to colorize and the binary mask Mi to be updated indicates
whether each pixel in the frame has been colorized or not. This step outputs xlab

i with
complete color.

3.3 Iterative Color Refinement

The primary cause of flickering when using diffusion models for video colorization
is the repetitive, random coloring of the same objects. Our iterative algorithm addresses
this by anchoring the pixels that already acquire color, ensuring that each pixel can
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Fig. 5: Comparison with existing colorization methods on rollerblade from DAVIS
dataset[35]. They are corresponding colorization results generated by CIC[64],
IDC[66], VCGAN[71], Deep Remaster[12],Deep Exemplar[62] and our method.

be colorized only once. This prevents the color flickering that arises from repetitive
colorization.

As illustrated in algorithm 1, we train OmniMotion and initialize the input grayscale
video and the mask before iterating. Upon entering the iteration process, we leverage
the tracking properties of OmniMotion[46] to propagate the reference frame’s color to
all other frames in the inter-frame propagation step. In the intra-frame inpainting step,
we utilize Stable Diffusion[37] to colorize the next frame. The result is then used as
color example for the next iteration, accepting queries from all pixels without color.
Each colorization step updates the corresponding regions of the mask. This process
effectively minimizes color errors and flickering, particularly in the task of colorizing
long videos.

4 Experiment

In this section, we compare our methods with various existing video colorization
approaches in section 4.1 and display necessary ablation results in section 4.2. Finally,
in section 4.3 we present the colorization results on videos of different styles. Now, we
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Table 1: Quantitative comparisons of the proposed method against video colorization
methods on the DAVIS[35] and Videvo dataset[1]. Our method achieves the excellent
performance in terms of PSNR, SSIM[47], LPIPS[65] and CDC[27].

Method DAVIS Videvo
PSNR ↑ SSIM ↑ LPIPS ↓ CDC ↓ PSNR ↑ SSIM ↑ LPIPS ↓ CDC ↓

CIC[64] 23.19 0.901 0.176 0.006180 22.51 0.899 0.185 0.003595
IDC[66] 24.88 0.949 0.116 0.005017 25.35 0.952 0.095 0.002578
InsColor[41] 24.51 0.951 0.082 0.009574 24.80 0.953 0.079 0.008019
VCGAN[71] 23.77 0.920 0.142 0.006114 25.11 0.926 0.085 0.002998
ColorDiffuser[25] 23.73 0.939 0.213 0.004107 25.27 0.951 0.205 0.003591
FAVC[21] 24.38 0.906 0.191 0.004221 24.81 0.905 0.194 0.001880
TCVC[27] 25.50 0.955 0.175 0.003947 25.43 0.956 0.068 0.001649
DeepRemaster[12] 27.03 0.964 0.057 0.005098 32.25 0.964 0.054 0.003607

Ours-SDv1.5 27.32 0.968 0.077 0.004143 31.11 0.952 0.065 0.002176
Ours-SDv2.0 27.87 0.970 0.070 0.004026 32.89 0.967 0.058 0.002020

start by describing the datasets used in our experiments, performance evaluation metrics
and implementation details.
Datasets. To evaluate the actual performance of our proposed colorization method, we
compared it with existing methods on the same test set. We selected the DAVIS video
dataset[35] and the Videvo dataset [1] as our test sets. The DAVIS testset consists of 20
video clips of various scenes, each clip containing approximately 30 to 100 frames. The
Videvo testset [1] contains 20 videos, each with about 200 frames. In total, we evaluated
our models and baselines on 40 test videos.
Evaluation metrics. To evaluate the quality of the colorized videos comprehensively,
we use the peak signal-to-noise ratio (PSNR), the structural similarity index (SSIM)[47],
and the learned perceptual image patch similarity (LPIPS) [65] matrices. To assess the
temporal consistency of colored videos, we use the color distribution consistency index
(CDC)[27] .
Implementation details. We train all models using the PyTorch framework on a ma-
chine with the GeForce RTX 3090 GPUs. We adopt the CIE LAB color space for each
frame in our experiments. In the inter-frame propagation step of our method, we remove
the color MLP of Omnimotion for video representation. In the intra-frame inpainting
step, the diffusion model uses SDv1.5 or SDv2.0. While our method does not require
training or fine-tuning, during the optimization of intra-frame inpainting step, the learn-
ing rate η is set as 0.02, the number of denoising steps is set as 50 and each step is
optimized once.

4.1 Comparisons with Existing Methods

We compare our proposed method with existing state-of-the-art approaches includ-
ing both the automatic colorization ones[64,66,71,21,27] and several exemplar-based
video colorization ones[12,62,25]. Considering that exemplar-based methods require a
reference exemplar as guidance, we uniformly choose the first frame with the ground
truth color as the color reference for fair comparisons.
Quantitative comparison. table 1 exhibits the quantitative evaluation results of various
methods on the DAVIS[35] and Videvo dataset [1], among which the video colorization
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Fig. 6: Comparison with existing colorization methods. The first two rows are input
target-exemplar image pairs. The next rows are corresponding colorization results gen-
erated by CIC[64], IDC[66], VCGAN[71], Deep Remaster[12],Deep Exemplar[62] and
the proposed method.

approach proposed in this paper generates fair color results. In particular, the perfor-
mance in PSNR is better than the exemplar-based method DeepRemaster[12] by 0.84
dB. Compared with the generative model including VCGAN[71] and ColorDiffuser[25]
used for video colorization, our method also shows strong superiority in various in-
dexes. table 1 fully demonstrates that our algorithm proposed can generate color videos
with good temporal consistency and accuracy. Since Ours-SDv2 has better compre-
hensive index performance, Ours-SDv2 is used to represent our proposed method in
subsequent comparative experiments.
Qualitative comparison. Our method is primarily compared with several notable ap-
proaches: the single image colorization methods CIC[64], IDC[66], the automatic video
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Input

Ours w/o inpaint w/o Lgray w/o both

Ours w/o inpaint w/o Lgray w/o both

Fig. 7: Effectiveness of the proposed method. The left image illustrates the partially
colored input for the intra-frame inpainting step, with the exemplar positioned in the
top-left corner. The two rows of images on the right show the different colorization
details of the highlighted region in the left image. From left to right, they represent our
method, the method without color condition introduction, the method without grayscale
constraint, and the method without both.

colorization method VCGAN[71], and the exemplar-based colorization methods Deep
Remaster[12] and Deep Exemplar[62]. The exemplar-based methods take in account
color image hints for colorization.

In order to more intuitively show the consistency and coloring effect of videos gen-
erated by different methods, we selected relatively typical cases from both datasets
as illustrate in the figs. 3 to 5. Firstly, image colorization methods[64,66] exhibit sig-
nificant color inconsistency issues, primarily due to their failure to consider temporal
correlation. On the Videvo dataset [1], the results of VCGAN[71] appear overly gray
and lack vibrancy and in the fig. 5, VCGAN[71] causes background colors to bleed into
the foreground, resulting in poorly harmonized colorization. While Deep Remaster[12]
and Deep Exemplar[62] generally produce videos with rich and harmonious colors, they
still fail to achieve consistent colorization throughout the video. This is particularly evi-
dent in emphasized regions, such as the boy’s legs in the skateboarding example, where
color inconsistency is noticeable. In contrast, our method demonstrates superior perfor-
mance in these examples. As shown in the magnified region, the color of the boy’s legs
is largely consistent, and there is no color cast in the red region in the lower right corner.

To provide a more comprehensive comparison with other video colorization methods
regarding their visual effects on standard video sequences, we also conducted extensive
tests on the DAVIS[35] dataset and Videvo dataset[1]. We selected several representa-
tive and challenging samples, which are illustrated in the fig. 6. For instance, the chal-
lenge in the camel and car turning examples lies in whether the newly appeared scene
on the right side can be colorized plausibly. Our method produced satisfactory results.
The experimental result demonstrates that both VCGAN[71] and Deep Remaster[12]
exhibit some color mismatches. For example, in the rollerblading girl sample, the girl’s
hair is incorrectly tinted blue. In contrast, both our method and Deep Exemplar [62]
generate relatively stable and consistent colorization results.
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Table 2: Quantitative evaluations of each pipeline on the DAVIS dataset[35]
denoising steps optimization times inpaint Lgray PSNR↑ SSIM↑ LPIPS↓

50 1 × × 24.78 0.892 0.155
50 1 ✓ × 26.24 0.904 0.127
50 1 × ✓ 25.37 0.922 0.111
50 3 ✓ ✓ 27.17 0.941 0.103

100 1 ✓ ✓ 27.99 0.965 0.075

50 1 ✓ ✓ 27.87 0.970 0.070

4.2 Ablation Study

In this section we conduct necessary ablation experiments to illustrate the effective-
ness of our method. We remove certain adjustments from the intra-frame inpainting step
and test on the DAVIS dataset[35]. table 2 presents various quantitative evaluation met-
rics for different pipelines. Additionally, we test these models on clips from the movie
Youth. fig. 7 shows the colorization details of these pipelines.
Grayscale latent optimization. We introduced a grayscale latent optimization during
the SD inference stage to maintain the grayscale value consistency. The experimental
results in the fig. 7 demonstrate that images lacking grayscale information exhibit sig-
nificant color deviations. For instance, the image without grayscale constraints shows
the girl’s blue short with incorrect colors, with noticeable red appearing at the edges.
Color conditions. In our method, the inter-frame propagation step generates partially
colored video frames based on the reference color image. To enable the diffusion model
in the intra-frame inpainting step to recognize the colors of the already colored regions
from the inter-frame propagation step, we need to incorporate these colored parts of
the video frames as conditions into the Stable Diffusion model through eq. (2). Ex-
perimental results shown in the fig. 7 demonstrate that the absence of color condition
incorporation leads to disharmonious edge areas in the generated images. For instance,
there is a noticeable boundary between gray and blue on the girl’s blue top, and the lack
of blue color hints on the girl’s clothes results in the clothes being rendered red. With
the incorporation of color hints, the overall effect becomes significantly more natural,
with smoother color transitions.
Optimization. We also conducted experiments on the number of denoising steps and
the number of optimizations per step. The experimental results in the table 2 demon-
strate that increasing the number of optimizations per denoising step will cause various
evaluation indicators to deteriorate and increasing the number of denoising steps can
slightly improve the colorization effect.

4.3 Evaluations on Real-World Grayscale Videos

Since our approach does not require training a generalized model on any trainset, we
tested our proposed method on other grayscale videos. We applied it to various videos,
including some from cartoons and others from real-world scenarios or movies. The
results, as illustrated in the fig. 8, demonstrate the effectiveness of our method across
different types of videos.
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Fig. 8: Effectiveness of the proposed method.The first column represents the input ex-
emplars, while the other columns display the outputs generated by our method.

5 Conclusion

This paper explores a novel video colorization approach utilizing Stable Diffusion
with strong image priors. Our method achieves consistent colorization of complete
videos through iterative processing through two step. Specifically, in the inter-frame
propagation step, we utilize OmniMotion to ensure the propagation of color informa-
tion from the reference frame to the grayscale frames. In the intra-frame inpainting
step, we leverage the existing large generative model, Stable Diffusion, to optimize
latent variables and introduce grayscale constraints, thereby inpainting in the color in-
formation within the image and generating a new reference frame with complete color.
Experimental results demonstrate the effectiveness of our approach, showing excellent
colorization performance.

However, there is still significant room for improvement in our method. Due to the
iterative generation in two steps, the expenditure of prediction time is relatively high.
Additionally, the generated results sometimes still exhibit inconsistencies due to the
lack of error correction and refinement mechanisms. In the future, we plan to intro-
duce more reasonable constraints to allow the two steps to mutually correct and adapt,
thereby producing more coherent and harmonious colorized images.
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