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Abstract. Transformer-based methods have demonstrated impressive
performance in 4D light field (LF) super-resolution by effectively mod-
eling long-range spatial-angular correlations, but their quadratic com-
plexity hinders the efficient processing of high resolution 4D inputs, re-
sulting in slow inference speed and high memory cost. As a compromise,
most prior work adopts a patch-based strategy, which fails to leverage
the full information from the entire input LFs. The recently proposed
selective state-space model, Mamba, has gained popularity for its effi-
cient long-range sequence modeling. In this paper, we propose a Mamba-
based Light Field Super-Resolution method, named MLFSR, by design-
ing an efficient subspace scanning strategy. Specifically, we tokenize 4D
LFs into subspace sequences and conduct bi-directional scanning on each
subspace. Based on our scanning strategy, we then design the Mamba-
based Global Interaction module to capture global information and the
Spatial-Angular Modulator to complement local details. Additionally,
we introduce a Transformer-to-Mamba loss to further enhance over-
all performance. Extensive experiments on public benchmarks demon-
strate that MLFSR surpasses CNN-based models and rivals Transformer-
based methods in performance while maintaining higher efficiency. With
quicker inference speed and reduced memory demand, MLFSR facilitates
full-image processing of high-resolution 4D LFs with enhanced perfor-
mance. Our code is available at https://github.com/RSGao/MLFSR.
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1 Introduction

Light field (LF) imaging technique enables the capture of both intensity and
direction of light rays, therefore finding wide applications in virtual reality and
computational photography. However, the design of commercialized LF cameras
(e.g., Lytro) is mainly based on the micro-lens array. This design divides the
main lens into sub-apertures, introducing a trade-off between the spatial and
angular resolution of LFs. Therefore, LF Super-Resolution (LFSR) has become
an important research topic to address these challenges.

The spatial-angular redundancy in the 4D LF structure is vital for LFSR
methods to exploit, compensating for missing high-frequency details in each
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2 Gao et al.

view. Deep learning techniques, including CNNs and Transformer-based archi-
tectures, have been widely adopted and proven effective for modeling 4D cor-
relations within LFs. Directly processing entire 4D LF representations, such as
Sub-Aperture Images (SAI) or Macro-Pixel Images (MacPI), poses optimization
challenges during the training stage [25]. Consequently, prior methods extract
features from 2D slices, including spatial slices, angular slices, and Epipolar Plane
Images (EPIs) [35,34,5,31,32,20,21,8,37,39]. However, CNN-based methods, with
their limited receptive fields, struggle to capture long-range spatial-angular corre-
spondences, leading to inferior performance. Although Transformer-based meth-
ods effectively model non-local information, their attention mechanisms incur
high memory costs and slow inference time.

Another critical aspect is the inference scheme. The drawbacks mentioned
earlier have led prior works to adopt a patch-inference scheme, where input
low-resolution (LR) LFs are divided into patches for individual processing, and
the outputs are merged to form the final super-resolved result. This approach
has two main issues: (1) For full-resolution LFs, the number of patches increases,
requiring multiple forward passes through the network. (2) Each LF patch carries
limited information, preventing the network from fully leveraging the entire input
LF [7]. Therefore, there is an urgent need for efficient architectures that consume
less memory and offer faster inference speeds to process full-resolution input LFs,
thereby fully utilizing the whole input 4D LF structure.

The currently trending state space models (SSMs)[11,29,10] have proven ef-
fective in modeling long-range information with theoretically linear complex-
ity. Among these, Mamba [10] introduces a selective mechanism for initializing
structural parameters, enabling context-aware sequence modeling and boosting
performance. Inspired by Mamba’s efficient long-range modeling capability, we
explore its potential in handling the complex 4D structure of LFs.

In this paper, we attempt to leverage the efficient merits of Mamba to over-
come the limitations of CNNs and Transformer-based methods. Specifically, we
consider the inherent redundancy in the 4D LF structure and propose an efficient
bi-directional subspace scanning scheme to effectively capture long-term spatial-
angular correspondences. Based on the above scanning scheme, we propose a
Mamba-based Global Interaction (MGI) module for the spatial-angular sub-
spaces (SA-Mamba) and EPI subspaces (EPI-Mamba). Additionally, we propose
a Spatial-Angular Modulator (SAM) to preserve the local structure of processed
features. Combining the above designs, we devise a Mamba-based LFSR network
termed MLFSR, which comprises interleaved MGI and SAM to efficiently model
the 4D LF structure. In practice, there’s still some performance gap between
MLFSR and Transformer-based methods due to the lossy state compression in
SSMs. We therefore propose a Transformer-to-Mamba (T2M) distillation loss
to align the non-local modelling ability between the attention mechanism and
SSMs to improve the overall performance. As demonstrated in Figure 1, experi-
mental results show that MLFSR outperforms CNN-based methods and benefits
from less runtime and memory cost compared to Transformer-based counterparts
while achieving competitive performance.
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Fig. 1. Runtime (ms) and PSNR (dB) comparison. The runtime is calculated on an
input LF of size 5×5×32×32. * denotes full-resolution inference. MLFSR outperforms
state-of-the-art CNN-based methods and has competitive performance compared to
Transformer-based methods with less runtime and parameters. Full-resolution inference
gives a further performance boost on available methods. Comparisons are performed
for 4× SR on the EPFL dataset.

The contributions of this paper are summarized below.

– We consider the spatial-angular redundancy that existed in 4D LFs and
propose a bi-directional subspace scanning scheme to efficiently enable global
information utilization.

– Based on the scanning scheme, we propose an MGI module and a local SAM
to model complex 4D correlations efficiently, forming the MLFSR. We then
introduce a T2M distillation loss to further boost the overall performance.

– Our proposed MLFSR outperforms CNN-based methods while comparable
with Transformer-based counterparts while enjoying lower memory cost and
less inference time, which enables full-resolution inference for further perfor-
mance improvement.

2 Related Work

2.1 Light Field Super-Resolution

Representative traditional LFSR methods attempt to utilize depth information
under optimization frameworks [3,2] or learning from dictionaries [6] to ensure
angular consistency. With the advancement of deep learning techniques, CNN-
based methods have gradually become the mainstream choice. The pioneer work
LFCNN [42] uses stacked convolutional layers to process vertical, horizontal, and
surrounding sub-aperture images. Following methods adopt 4D convolutions on
SAIs to extract spatial-angular features [25]. Yeung et al. [41] further ease the
computational burden by utilizing spatial-angular separable convolutions. To
well-exploit the entangled 4D information, later works disentangle the LF into 2D
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subspaces and design convolution variants tailored for each subspace [35,34,9].
HLFSR [31] further proposes to leverage multi-orientation epipolar informa-
tion to boost the performance. However, due to the limited receptive field of
CNN, non-local spatial-angular information cannot be well incorporated. Liu et.
al [24] design a selective matching mechanism to explicitly extract 4D informa-
tion in LFs with larger receptive fields. Recently, Transformer-based methods
have emerged and achieved superior performance. By tokenizing 2D slices into
sequences, the attention mechanism is adopted in spatial-angular [20] or EPI [21]
subspaces to learn non-local spatial-angular correlations. Instead of network de-
sign, Xiao et. al [38] improves the SR performance from a data augmentation
perspective. Different from prior works, we introduce the newly proposed Mamba
to overcome the drawback of limited receptive field in CNN-based methods and
the inferior efficiency of Transformer-based methods.

2.2 State Space Models

Originating from control theory, SSMs have garnered increasing attention due
to their efficacy in long-term language modeling [11,29,10]. Unlike self-attention-
based transformers, most SSMs capture long-range token interactions through
linear recurrent processes, entailing O(N) complexity theoretically. Mamba [10]
improves the expressiveness of SSMs by introducing a selective mechanism, with
its structural parameters adaptively learned from inputs. Motivated by its effec-
tiveness, researchers have endeavored to adapt Mamba to the domain of com-
puter vision. Vim [46] and VMamba [23] take pioneering efforts employing mul-
tidirectional scanning to overcome the causal nature of vanilla Mamba, inspiring
subsequent work in various vision domains [13,40,27,16,19]. In this paper, we
investigate the applicability of Mamba to LFs, to unlock its potential in efficient
LF processing.

3 Method

3.1 Preliminaries

SSMs are inspired by the continuous control systems, which map input sequence
x(t) ∈ Rd to output sequence y(t) ∈ Rd through hidden state h(t) ∈ Rn. Without
nonlinear transformation, SSMs set linear mappings A, B and C as transition
parameters to update the hidden state over time and obtain the output. The
mapping process is as follows,

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t).
(1)

To enable deep network training, recent SSM such as the Structure State Space
Sequence model (S4) [11] and Mamba [10] discretize the above process to a
discretized version through an extra timescale parameter ∆. Then, continuous
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Fig. 2. Overview of MLFSR. Initial features finit are first extracted by encoder NInit,
followed by alternate MGI modules and SAM to extract deep features fdeep. Finally,
we obtain super-resolved results ISR through the reconstruction module NRec.

parameters A and B are transformed into the discretized ones A and B via the
commonly used zero-order hold (ZOH) method,

A = exp(∆A),

B = (∆A)−1(exp(∆A)− I)∆B,
(2)

where I denotes the identity matrix and (·)−1 is the matrix inversion operation.
Therefore, we now derive the discretized version of E.q. 1,

ht = Aht−1 +Bxt,

yt = Cht.
(3)

The above recurrent form can be deviated into a convolutional form with global
kernel K, which enables fast parallel training,

K = (CB,CAB, ...,CA
L−1

B),

y = x ∗K,
(4)

where L denote the sequence length and ∗ represent the convolution operator.
Different from S4, Mamba introduces a selective mechanism on B and C

to enable context-aware information filtering. Although it breaks the available
convolutional form by introducing nonlinearity, a parallel scan algorithm [10] is
proposed to speed up the process in E.q. 3 for faster training. In this paper,
input LR LFs are tokenized as subspace sequences for efficient scanning.

3.2 Mamba-based Light Field Super-Resolution

Overview. Taking an input LR LF ILR ∈ RU×V×H×W , we aim to increase
its spatial resolution by scale s, resulting in a super-resolved output ISR ∈
RU×V×sH×sW , where U, V denotes the angular resolution and H,W denotes the
spatial resolution. As shown in Fig. 2, we first extract shallow features finit from
LR LF input ILR using a convolutional-based encoder NInit. Then the shallow
features are fed to alternate global-local 4D correspondence learning modules
including Mamba-based Global Interaction (MGI) module and Spatial-Angular
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Fig. 3. A toy example (U = V = 2, H = W = 2) on LF tokenization and scan-
ning directions. (a) Sub-aperture images. (b) Whole 4D sequence with quad-directional
scanning (SAI for example). (c) Subspace sequences with bi-directional scanning. Bi-
directional spatial (red arrows) and angular (green arrows) scanning are complemented
by bi-directional EPI (blue and purple arrows) scanning.

Modulator (SAM) to extract informative deep features fdeep. Finally, fdeep is
upsampled by the reconstruction module NRec to obtain the upsampled LF ISR.
Efficient Subspace Scanning. As a high-dimensional vision modality, 4D LF
has various representation forms such as SAIs, MacPIs, and subspace images.
Therefore, it’s vital to select an appropriate way for effective and efficient scan-
ning of specific representations. A straightforward way is to directly conduct 2D
quad-directional scanning on the whole 4D representation (SAI or MacPI), as
shown in Fig.3(b). In this way, the tokenized sequence has U×V ×H×W length
and the efficient merit of Mamba on long sequence inputs can be fully exploited.
Considering the causal nature of the original Mamba [10], quad-directional scan-
ning [23] thus is required to fully benefit each token from each view. However,
as it’s important in LFSR to well leverage the intra-view and inter-view corre-
spondences, the mixed intra-inter view information cannot be well distinguished
for each token. On the other hand, the compressed hidden state struggles to
preserve prior spatial-angular information when the sequence gets longer. The
trade-off between the long-range efficiency of Mamba and the limited state mem-
ory provides challenges to well adopting Mamba for LF inputs.

To overcome the above dilemma, we attempt to utilize the inherent structure
redundancy that exists in LFs. Specifically, we notice the role of EPI representa-
tion, which provides rich information across the spatial and angular dimensions.
When conducting bi-directional scanning on the EPI-H (or EPI-W) subspace, the
vertical (or horizontal) of spatial and angular information can be incorporated,
as can be seen in Fig.3(c). The quad-directional spatial (or angular) scanning
can therefore be decomposed into two bi-directional scanning on spatial (or an-
gular dimensions, marked by red and green arrows) and EPI dimensions (marked
by blue and purple arrows), respectively. In this way, by lowering the scanning
length, the long-term memory issues can be well handled without sacrificing the
complete 4D global information.
Mamba-based Global Interaction (MGI) Module. Based on the above
bi-directional subspace scanning, we design a Mamba-based Global Interaction
(MGI) module which consists of cascaded EPI-Mamba and SA-Mamba for ef-
fective non-local spatial-angular correspondence learning, as shown in Fig. 2.
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Fig. 4. (a) The detailed structure of SA-Mamba/EPI-Mamba. Each SA-Mamba/EPI-
Mamba includes two Bidirectional Subspace Scanning (BiSS) blocks. We omit the re-
shape operation for simplicity. (b) The BiSS block follows a typical Transformer-style
design, including bidirectional scanning for token interaction and channel attention for
channel mixing. (c) The details of bidirectional scanning. (d) The detailed structure of
Spatial-Angular Modulator (SAM).

We take EPI-Mamba for example to elaborate its details since the structures of
EPI-Mamba and SA-Mamba are the same except for the input form.

The detailed structures are illustrated in Fig. 4(a). Given an input feature
f i−1
l from the output of i-1-th SAM, we first flatten it into EPI-H token sequences
T i
h ∈ RBVW×UH×C , where C is the channel dimension and B is the batch

size. Then, two successive Bidirectional Subspace Scanning (BiSS) blocks and
convolution layers are set to enable non-local token interaction on the EPI-H
and EPI-W subspace, which can be formulated as follows,

T̂ i
h = Conv(BiSS(T i

h)) + T i
h,

T̂ i
w = Conv(BiSS(T i

w)) + T i
w,

(5)

where the EPI-W token sequences T i
w ∈ RBUH×VW×C is reshaped from T̂ i

h, T̂ i
h

and T̂ i
w are enhanced features. T̂ i

w is then reshaped to f i
g as the output of the i-th

MGI module. The design of the BiSS block follows a typical Transformer-style
structure, which is shown in Fig. 4(b). Input token sequences are first normalized
by a LayerNorm [1] and fed into a Bidirectional Scanning (Bi-scan) block which
is introduced in [46] (see Fig. 4(c)). Then, another LayerNorm and a Channel
Attention (CA) layer [44] is used for channel mixing. We also add shortcut
connections [14] to ease the optimization process. As for the SA-Mamba, we
can simply replace EPI token sequences T i

h and T i
w with spatial and angular

sequences T i
s ∈ RBUV×HW×C and T i

a ∈ RBHW×UV×C . In practice, we share
the weights of two BiSS and convolutional layers in EPI-Mamba to share the
intrinsic information along the epipolar line of LFs [21], which also leads to more
efficient network architecture.

By combining the EPI-Mamba and SA-Mamba, complementary information
between two directions of spatial-angular information and EPI information can
be well incorporated, achieving efficient global 4D correspondence learning. The
experimental results in Section 4.3 validate the effectiveness of each component.
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8 Gao et al.

Spatial-Angular Modulator (SAM). Although MGI enables the global re-
ceptive field to enable the network to utilize non-local spatial-angular infor-
mation, the importance of locality in SR [4] is overlooked. To compensate for
local spatial-angular information, we design a convolution-based Spatial-Angular
Modulator (SAM) to learn input-adaptive weights for modulating the output of
MGI. Inspired by pixel attention [45], we adopt a lightweight design of SAM
with only two convolutional layers with kernel size 1, as shown in Fig 4(d).

The output feature f i
g ∈ RB×U×V×H×W×C from last MGI module is first

reshaped to the spatial subspace and go through a single convolutional layer,
followed by a sigmoid operation to generate the spatial attention map Attns.
Then, f i

g is modulated using Attns by element-wise multiplication,

Attns = Sigmoid(Conv(f i
g)),

f̃ i
g = f i

g ·Attns + f i
g,

(6)

where f̃ i
g represents spatially-modulated features. A similar process is conducted

on the angular subspace to obtain the corresponding angular attention map
Attna and we can obtain the output f i

l ,

f i
l = f̃ i

g ·Attna + f̃ i
g. (7)

3.3 Learning Objective

We use L1 distance to measure the reconstruction loss between the final output
and the ground-truth LF,

Lrec = ∥ISR − IHR∥1 . (8)

However, only using the reconstruction loss results in sub-optimal performance
compared to Transformer-based methods according to the experiment results.
Considering the difference between the attention mechanism and SSMs, we can
find that attention-based methods explicitly record relations between tokens into
the attention map, while SSMs implicitly compress non-local information in hid-
den memory. We therefore propose a Transformer-to-Mamba (T2M) distillation
loss to align the deep features of the Transformer and Mamba, which is formu-
lated as follows,

Ldist =
∥∥fdeep − fTrans

deep

∥∥
1
. (9)

In this work, we utilize EPIT [21] as the teacher network. The total loss function
is the combination of the above two loss functions, adjusted by λ,

Ltotal = Lrec + λLdist. (10)

4 Experiments

4.1 Experiment Settings

Datasets. Aligning with prior works, we use the BasicLFSR benchmark [33] for
the training and evaluation of all methods on 2× and 4× scale. The benchmark
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comprises five LF datasets (HCI-new [15], HCI-old [36], EPFL [28], INRIA [18]
and STFGantry [30]) which include 144 training scenes and 23 test scenes with
diverse contents and varying disparities. We extract the central 5×5 SAIs from
each LF for training and testing.

Implementation Details. We implement our method using Pytorch [26] frame-
work with four NVIDIA 3090 GPUs. The result of baseline methods is obtained
from open-source codes. The number of MGI and SAM used in MLFSR is set
to 3 and the state dimension is 8. The hyperparamter in Ltotal is set to 0.1. The
MLFSR is trained using the Adam optimizer with β1 = 0.9 and β2 = 0.999 with
batch size 4 on each card. The initial learning rate is set to 4e-4 and decreases
by a factor of 0.5 for every 15 epochs. Data augmentation including random
flipping and rotation is applied in the training stage. The network is trained
for 90 epochs with L1 loss only and finetuned for another 30 epochs with a
combination of L1 loss and T2M distillation loss. We use widely adopted Peak
Signal-to-Noise Ratio (PSNR) and Structure Similarity (SSIM) to evaluate the
fidelity of the super-resolved results.

4.2 Comparison with State-of-the-Arts

We compare our method with 13 baseline methods, including 9 CNN-based meth-
ods [17,22,44,43,41,35,34,5,31] and 4 Transformer-based methods [20,32,8,21].
Quantitative Results. The quantitative results are shown in Table 1. We
can notice that MLFSR outperforms CNN-based methods at both 2× and 4×
scale. For example, MLFSR has a 0.33dB gain compared to DistgSSR [34] and
HLFSR[31] on the EPFL testset at 2× scale. Compared to Transformer-based
methods, MLFSR shows competitive performance on most testsets. When in-
ference with full-resolution input, the performance further improves on most
testsets at both 2× and 4× scale. Specifically, the 4× results even outperform
all Transformer-based methods while maintaining lower number of parameters
and less runtime.
Efficiency Comparison. We provide an in depth efficiency comparison respect
to input resolution between MLFSR and current Transformer-based methods on
two metrics: runtime and peak memory use. Table 2 clearly shows that with the
increase of input resolution, the runtime of Transformer-based methods grows
significantly. The increase of peak memory use in Table 2 shows a similar trend.
Almost all baseline methods failed to infer at 384×384 resolution, and without
memory optimization (torch.nn.MultiheadAttention interface), LFT cannot
even handle 5×5×64×64 inputs. With optimized implementation, LFT enables
inference at 128×128 resolution, which is slower than our method inference at
384×384 resolution. Although EPIT with optimization consumes less memory,
the inference speed is still much slower compared to MLFSR. For example, at
256×256 and 384×384 resolution, EPIT is about 3.0× and 4.2× slower than our
method, respectively. On the other hand, when input asymmetric resolution such
as 216×312, optimized implementation fails to reduce the memory consumption
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Table 1. Quantitative results (PSNR / SSIM) on the five public benchmarks of LF
super-resolution with the input angular resolution of 5×5. We report the number of
parameters (Params.) and runtime for efficiency comparison. Note that the runtime is
calculated on an input LF of size 5×5×32×32. Method marked with * denotes full-
resolution inference results. We mark the best, second best results in bold and with
underline, respectively.

Method Scale Params.(M) Time (ms) HCI-new HCI-old EPFL INRIA STFGantry

Bicubic 2× - - 31.89/.9356 37.69/.9785 29.74/.9376 31.33/.9577 31.06/.9498

VDSR [17] 2× 0.66 29.50 34.37/.9561 40.61/.9867 32.50/.9598 34.43/,9741 35.54/.9789
EDSR [22] 2× 38.62 137.25 34.83/.9592 41.01/.9874 33.09/.9629 34.97/.9764 36.29/.9818
RCAN [44] 2× 15.31 1586.50 34.98/.9603 41.05/.9875 33.16/.9634 35.01/.9769 36.33/.9831
resLF [43] 2× 7.98 101.89 36.69/.9739 43.42/.9932 33.62/.9706 35.39/.9804 38.36/.9904
LFSSR [41] 2× 0.89 3.98 36.81/.9749 43.81/.9938 33.68/.9744 35.28/.9832 37.95/.9898
LF-InterNet [35] 2× 5.04 18.08 37.28/.9763 44.45/.9946 34.14/.9760 35.80/.9843 38.72/.9909
DistgSSR [34] 2× 3.53 24.76 37.96/.9796 44.94/.9949 34.81/.9787 36.59/.9859 40.40/.9942
LFSAV [5] 2× 1.22 10.57 37.43/.9776 44.22/.9942 34.62/.9772 36.36/.9849 38.69/.9914
HLFSR [31] 2× 3.45 54.29 38.03/.9798 44.86/.9949 34.71/.9779 36.59/.9856 40.49/.9943

LFT [20] 2× 1.11 132.37 37.84/.9791 44.52/.9945 34.80/.9781 36.59/.9855 40.51/.9941
DPT [32] 2× 3.73 117.97 37.35/.9771 44.31/.9943 34.48/.9758 36.40/.9843 39.52/.9926
LF-DET [8] 2× 1.59 73.97 38.31/.9807 44.99/.9950 35.26/.9797 36.95/.9864 41.76/.9955
EPIT [21] 2× 1.42 51.58 38.23/.9810 45.08/.9949 34.83/.9775 36.67/.9853 42.17/.9957

MLFSR (Ours) 2× 1.36 27.81 38.14/.9803 44.90/.9950 35.22/.9801 36.92/.9865 40.98/.9949
MLFSR* (Ours) 2× 1.36 27.81 38.15/.9802 44.97/.9950 36.01/.9798 38.65/.9864 41.03/.9947

Bicubic 4× - - 27.61/.8517 32.42/.9344 25.14/.8324 26.82/.8867 25.93/.8452

VDSR [17] 4× 0.66 35.75 29.31/.8823 34.81/.9515 27.25/.8777 29.19/.9204 28.51/.9009
EDSR [22] 4× 38.89 147.00 29.60/.8869 35.18/.9536 27.84/.8854 29.66/.9257 28.70/.9072
RCAN [44] 4× 15.36 1716.05 29.63/.8886 35.20/.9548 27.88/.8863 29.76/.9276 28.90/.9131
resLF [43] 4× 8.65 104.23 30.73/.9107 36.71/.9682 28.27/.9035 30.34/.9412 30.19/.9372
LFSSR [41] 4× 1.77 22.37 30.72/.9145 36.70/.9696 28.27/.9118 30.31/.9467 30.15/.9426
LF-InterNet [35] 4× 5.48 19.65 30.98/.9161 37.11/.9716 28.67/.9162 30.64/.9491 30.53/.9409
DistgSSR [34] 4× 3.58 25.40 31.38/.9217 37.56/.9732 28.99/.9195 30.99/.9519 31.65/.9535
LFSAV [5] 4× 1.54 36.36 31.45/.9217 37.50/.9721 29.37/.9223 31.27/.9531 31.36/.9505
HLFSR [31] 4× 3.48 59.08 31.43/.9226 37.72/.9738 29.10/.9212 31.17/.9531 31.41/.9524

LFT [20] 4× 1.16 137.53 31.46/.9218 37.63/.9735 29.25/.9210 31.20/.9524 31.86/.9548
DPT [32] 4× 3.78 118.62 31.20/.9188 37.41/.9721 28.94/.9170 30.96/.9503 31.15/.9488
LF-DET [8] 4× 1.69 76.05 31.56/.9235 37.84/.9744 29.47/.9230 31.39/.9534 32.14/.9573
EPIT [21] 4× 1.47 52.75 31.51/.9231 37.68/.9737 29.34/.9197 31.37/.9526 32.18/.9571

MLFSR (Ours) 4× 1.41 28.94 31.56/.9235 37.83/.9745 29.28/.9218 31.24/.9531 32.03/.9567
MLFSR* (Ours) 4× 1.41 28.94 31.59/.9237 37.92/.9747 30.04/.9221 32.21/.9534 32.21/.9575

Table 2. Efficiency comparison against state-of-the-art Transformer-based methods
on 2× scale. We take runtime (ms) and peak memory use (GB) on different input
spatial resolutions to evaluate the efficiency. † denotes methods without optimized
implementation and OOM denotes out of memory on a single RTX 3090 GPU. Blanked
entries correspond to results unable to be reported.

Method 32×32 64×64 128×128 256×256 216×312 384×384
DPT [32] 117.97/0.26 130.08/0.57 429.94/1.67 4539.51/8.60 4759.83/8.99 OOM

LF-DET [8] 73.97/0.35 387.88/3.58 OOM OOM OOM OOM
LFT† [20] 146.34/1.79 OOM OOM OOM OOM OOM
LFT [20] 132.37/0.22 778.57/0.69 8828.29/3.51 - - -

EPIT† [21] 53.21/0.38 164.94/2.51 1019.11/18.38 OOM OOM OOM
EPIT [21] 51.58/0.13 123.61/0.47 752.24/1.81 5518.96/7.19 OOM 17852.41/16.16

MLFSR(Ours) 27.81/0.18 105.19/0.67 455.30/2.63 1855.72/10.47 1935.71/10.77 4277.76/23.55

which largely limits its practical use. The above results indicate that our method
demonstrates significant efficiency advantages as the input resolution increases.
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Table 3. Full-resolution inference (denoted by *) quantitative results (PSNR / SSIM)
on the five public benchmarks of LF super-resolution with the input angular resolution
of 5×5. We mark the best, second best results in bold and with underline, respectively.
OOM denotes out of memory on a single RTX 3090 GPU.

Method Scale Params.(M) Time (ms) HCI-new HCI-old EPFL INRIA STFGantry

LFSAV* [5] 2× 1.22 10.57 37.44/.9777 44.32/.9942 35.65/.9773 38.16/.9850 38.74/.9914
HLFSR* [31] 2× 3.45 54.29 37.97/.9798 45.01/.9949 35.16/.9779 37.05/.9856 40.53/.9944

DPT* [32] 2× 3.73 117.97 37.29/.9770 OOM 34.48/.9758 36.19/.9843 39.38/.9928
EPIT* [21] 2× 1.42 51.58 38.25/.9810 45.12/.9949 OOM OOM 42.22/.9957

MLFSR* (Ours) 2× 1.36 27.81 38.15/.9802 44.97/.9950 36.01/.9798 38.65/.9864 41.03/.9947

LFSAV* [5] 4× 1.54 36.36 31.47/.9219 37.52/.9722 29.99/.9226 32.17/.9534 31.41/.9506
HLFSR* [31] 4× 3.48 59.08 31.46/.9229 37.77/.9739 29.94/.9217 32.20/.9534 31.53/.9529

DPT* [32] 4× 3.78 118.62 31.11/.9188 37.20/.9721 29.40/.9171 31.38/.9505 31.00/.9489
EPIT* [21] 4× 1.47 52.75 31.53/.9232 37.74/.9738 29.90/.9200 32.16/.9529 32.26/.9573

MLFSR* (Ours) 4× 1.41 28.94 31.59/.9237 37.92/.9747 30.04/.9221 32.21/.9534 32.21/.9575

Full-Resolution Inference Results. We also provide the full-resolution in-
ference results of available top-performing methods in Table 3 for a more com-
prehensive evaluation. With extra information from larger resolution inputs,
the performance of baseline method improves in most case. Our method still
achieves state-of-the-art performance under the full-resolution inference setting
with lower parameters and latency.
Qualitative Results. We provide visual results on 2× and 4× scale in Fig. 5
and Fig. 6, respectively. For example, in the ISO scene in Fig. 5, our results
manages to recover the horizontal line. Note that the result of DPT and LF-
DET contains vertical line artifacts due to the patch inference scheme, which
shows the superiority of whole-image inference. The details on the background
wall in the below scene are also recovered by our method. In Fig. 6, our method
successfully produces clear number 3 in the ISO scene while other baselines
tend to generate blurry results and artifacts. The letters in the tarot card scene
generated by our method have less distorted edges and are more close to the
ground truth.

4.3 Ablation Studies

In this section, we perform ablation studies on 4× SR to validate the effective-
ness of our designs including macro components and scanning methods.
Macro Design. We first consider the macro design of our method, i.e., the
effect of SA-Mamba, EPI-Mamba, SAM, and the T2M distillation loss. The
quantitative results are shown in Table 4. By removing either SA-Mamba or
EPI-Mamba in MLFSR, the performance dropped by 0.14dB and 0.18dB on the
average PSNR respectively, showing the importance of complementary informa-
tion between subspaces. On the other hand, without the locality introduced by
SAM, the performance also dropped by 0.11dB, indicating the important role
of local information in the SR task. Finally, the T2M loss further boosts the
performance by 0.06dB. We also use the Local Attribution Map (LAM) [12] to
explore the role of each component, as shown in Fig. 7. Without EPI-Mamba or
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Bicubic DPT EPIT LFT

LF-DET MLFSR MLFSR* Ground truth

Bicubic DPT EPIT LFT

LF-DET MLFSR MLFSR* Ground truth

Fig. 5. Visual comparisons of different methods on 2× SR (view coordinates: (2, 2)).
Please zoom in for better visualization and best viewing on screen.

SA-Mamba, non-local spatial-angualr information is less utilized. On the other
hand, SAM focuses more on local information to complement more fine details.
The above results validate the effectiveness of our core designs.
Scanning Methods. We explore the scanning methods of LFs by altering the
LF tokenization way and the scanning directions. Specifically, we introduce three
variants: (a) 4D sequence with quad-directional scanning. (b) 4D sequence with
bi-directional scanning. (c) Subspace sequence with quad-directional scanning

542



MLFSR 13

Bicubic DPT EPIT LFT

LF-DET MLFSR MLFSR* Ground truth

Bicubic DPT EPIT LFT

LF-DET MLFSR MLFSR* Ground truth

Fig. 6. Visual comparisons of different methods on 4× SR (view coordinates: (2, 2)).
Please zoom in for better visualization and best viewing on screen.

to compare with our scanning method. The quantitative results are shown in
Table 5. When tokenizing the whole 4D representation (we use SAI here) for
scanning, the quantitative results are much lower than the subspace tokenization.
Even the scanning directions are increased to 4 (quad-scanning), there is no clear
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HR patch (a) (b) (c) (d)

Fig. 7. LAM visualization (Central view & EPI) of the macro-deisgn ablation study.
(a) w/o EPI-Mamba (b) w/o SA-Mamba (c) w/o SAM (d) Ours.

Table 4. Ablations on the macro design. The best results are marked in bold. All
methods are under full-resolution inference scheme.

EPI-Mamba SA-Mamba SAM T2M Loss Avg. PSNR/SSIM
32.65/.9457
32.60/.9454
32.68/.9456
32.73/.9460
32.79/.9463

Table 5. Ablations on the scanning methods. We explore the configuration of LF
tokenization and scanning directions. The runtime is calculated on an input LF of size
5×5×32×32. The best results are marked in bold. All methods are under full-resolution
inference scheme.

Tokenization Scanning Params.(M) Time(ms) Avg. PSNR/SSIM

Whole 4 1.5 40.76 31.85/.9354
2 1.4 31.58 31.72/.9343

Subspace 4 1.5 48.99 32.73/.9460
2 1.4 28.94 32.79/.9463

performance improvement compared to our scanning method, which shows the
redundancy of quad-directional scanning.

5 Conclusion

In this paper, we propose a Mamba-based LFSR method named MLFSR to
ease the high memory consumption and latency brought by Transformer-based
methods. Specifically, we utilize the inherent structure redundancy existing in
LFs and propose an efficient subspace scanning method. Based on it, we design
a Mamba-based Global Interaction module to model global spatial-angular cor-
relations. Furthermore, a Spatial-Angular Modulator is proposed to complement
local information. The overall performance is further boosted by a Transformer-
to-Mamba distillation loss. Extensive experiments show that MLFSR has a clear
advantage in efficiency while achieving state-of-art performance. With much less
memory use, MLFSR facilitates further performance improvement with full-
resolution inference.

Acknowledgments. We acknowledge funding from National Natural Science
Foundation of China under Grants 62131003 and 62021001.

544



MLFSR 15

References

1. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 (2016)

2. Bishop, T.E., Favaro, P.: The light field camera: Extended depth of field, aliasing,
and superresolution. IEEE transactions on pattern analysis and machine intelli-
gence 34(5), 972–986 (2011)

3. Bishop, T.E., Zanetti, S., Favaro, P.: Light field superresolution. In: 2009 IEEE
International Conference on Computational Photography (ICCP). pp. 1–9. IEEE
(2009)

4. Chen, Z., Zhang, Y., Gu, J., Kong, L., Yang, X., Yu, F.: Dual aggregation trans-
former for image super-resolution. In: Proceedings of the IEEE/CVF international
conference on computer vision. pp. 12312–12321 (2023)

5. Cheng, Z., Liu, Y., Xiong, Z.: Spatial-angular versatile convolution for light field
reconstruction. IEEE Transactions on Computational Imaging 8, 1131–1144 (2022)

6. Cho, D., Lee, M., Kim, S., Tai, Y.W.: Modeling the calibration pipeline of the
lytro camera for high quality light-field image reconstruction. In: Proceedings of
the IEEE International Conference on Computer Vision. pp. 3280–3287 (2013)

7. Chu, X., Chen, L., Chen, C., Lu, X.: Improving image restoration by revisiting
global information aggregation. In: European Conference on Computer Vision. pp.
53–71. Springer (2022)

8. Cong, R., Sheng, H., Yang, D., Cui, Z., Chen, R.: Exploiting spatial and angular
correlations with deep efficient transformers for light field image super-resolution.
IEEE Transactions on Multimedia (2023)

9. Gao, R., Liu, Y., Xiao, Z., Xiong, Z.: Diffusion-based light field synthesis. In:
ECCVW (2024)

10. Gu, A., Dao, T.: Mamba: Linear-time sequence modeling with selective state
spaces. arXiv preprint arXiv:2312.00752 (2023)

11. Gu, A., Goel, K., Re, C.: Efficiently modeling long sequences with structured state
spaces. In: The Tenth International Conference on Learning Representations (2022)

12. Gu, J., Dong, C.: Interpreting super-resolution networks with local attribution
maps. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 9199–9208 (2021)

13. Guo, H., Li, J., Dai, T., Ouyang, Z., Ren, X., Xia, S.T.: Mambair: A simple baseline
for image restoration with state-space model. In: ECCV (2024)

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

15. Honauer, K., Johannsen, O., Kondermann, D., Goldluecke, B.: A dataset and eval-
uation methodology for depth estimation on 4d light fields. In: Computer Vision–
ACCV 2016: 13th Asian Conference on Computer Vision, Taipei, Taiwan, Novem-
ber 20-24, 2016, Revised Selected Papers, Part III 13. pp. 19–34. Springer (2017)

16. Huang, T., Pei, X., You, S., Wang, F., Qian, C., Xu, C.: Localmamba: Visual state
space model with windowed selective scan. arXiv preprint arXiv:2403.09338 (2024)

17. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep
convolutional networks. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 1646–1654 (2016)

18. Le Pendu, M., Jiang, X., Guillemot, C.: Light field inpainting propagation via low
rank matrix completion. IEEE Transactions on Image Processing 27(4), 1981–1993
(2018)

545



16 Gao et al.

19. Li, K., Li, X., Wang, Y., He, Y., Wang, Y., Wang, L., Qiao, Y.: Videomamba:
State space model for efficient video understanding. In: ECCV (2024)

20. Liang, Z., Wang, Y., Wang, L., Yang, J., Zhou, S.: Light field image super-resolution
with transformers. IEEE Signal Processing Letters 29, 563–567 (2022)

21. Liang, Z., Wang, Y., Wang, L., Yang, J., Zhou, S., Guo, Y.: Learning non-local
spatial-angular correlation for light field image super-resolution. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 12376–12386
(2023)

22. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for
single image super-resolution. In: Proceedings of the IEEE conference on computer
vision and pattern recognition workshops. pp. 136–144 (2017)

23. Liu, Y., Tian, Y., Zhao, Y., Yu, H., Xie, L., Wang, Y., Ye, Q., Liu, Y.: Vmamba:
Visual state space model. Advances in Neural Information Processing Systems
(2024)

24. Liu, Y., Cheng, Z., Xiao, Z., Xiong, Z.: Light field super-resolution using decou-
pled selective matching. IEEE Transactions on Circuits and Systems for Video
Technology (2023)

25. Meng, N., So, H.K.H., Sun, X., Lam, E.Y.: High-dimensional dense residual convo-
lutional neural network for light field reconstruction. IEEE transactions on pattern
analysis and machine intelligence 43(3), 873–886 (2019)

26. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing sys-
tems 32 (2019)

27. Peng, S., Zhu, X., Deng, H., Lei, Z., Deng, L.J.: Fusionmamba: Efficient image
fusion with state space model. arXiv preprint arXiv:2404.07932 (2024)

28. Rerabek, M., Ebrahimi, T.: New light field image dataset. In: 8th International
Conference on Quality of Multimedia Experience (QoMEX) (2016)

29. Smith, J.T., Warrington, A., Linderman, S.: Simplified state space layers for se-
quence modeling. In: The Eleventh International Conference on Learning Repre-
sentations (2023)

30. Vaish, V., Adams, A.: The (new) stanford light field archive. Computer Graphics
Laboratory, Stanford University 6(7) (2008)

31. Van Duong, V., Huu, T.N., Yim, J., Jeon, B.: Light field image super-resolution
network via joint spatial-angular and epipolar information. IEEE Transactions on
Computational Imaging 9, 350–366 (2023)

32. Wang, S., Zhou, T., Lu, Y., Di, H.: Detail-preserving transformer for light field
image super-resolution. In: Proceedings of the AAAI conference on artificial intel-
ligence. vol. 36, pp. 2522–2530 (2022)

33. Wang, Y., Wang, L., Liang, Z., Yang, J., Timofte, R., Guo, Y., Jin, K., Wei, Z.,
Yang, A., Guo, S., Gao, M., Zhou, X., Duong, V.V., Huu, T.N., Yim, J., Jeon, B.,
Liu, Y., Cheng, Z., Xiao, Z., Xu, R., Xiong, Z., Liu, G., Jin, M., Yue, H., Yang,
J., Gao, C., Zhang, S., Chang, S., Lin, Y., Chao, W., Wang, X., Wang, G., Duan,
F., Xia, W., Wang, Y., Xia, P., Wang, S., Lu, Y., Cong, R., Sheng, H., Yang, D.,
Chen, R., Wang, S., Cui, Z., Chen, Y., Lu, Y., Cai, D., An, P., Salem, A., Ibrahem,
H., Yagoub, B., Kang, H.S., Zeng, Z., Wu, H.: Ntire 2023 challenge on light field
image super-resolution: Dataset, methods and results. In: IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW) (2023)

34. Wang, Y., Wang, L., Wu, G., Yang, J., An, W., Yu, J., Guo, Y.: Disentangling light
fields for super-resolution and disparity estimation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 45(1), 425–443 (2022)

546



MLFSR 17

35. Wang, Y., Wang, L., Yang, J., An, W., Yu, J., Guo, Y.: Spatial-angular interaction
for light field image super-resolution. In: Computer Vision–ECCV 2020: 16th Eu-
ropean Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIII
16. pp. 290–308. Springer (2020)

36. Wanner, S., Meister, S., Goldluecke, B.: Datasets and benchmarks for densely
sampled 4d light fields. In: VMV. vol. 13, pp. 225–226 (2013)

37. Xiao, Z., Cheng, Z., Xiong, Z.: Space-time super-resolution for light field videos.
IEEE Transactions on Image Processing (2023)

38. Xiao, Z., Liu, Y., Gao, R., Xiong, Z.: Cutmib: Boosting light field super-resolution
via multi-view image blending. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 1672–1682 (2023)

39. Xiao, Z., Xiong, Z.: Incorporating degradation estimation in light field spatial
super-resolution. arXiv preprint arXiv:2405.07012 (2024)

40. Xing, Z., Ye, T., Yang, Y., Liu, G., Zhu, L.: Segmamba: Long-range sequential mod-
eling mamba for 3d medical image segmentation. arXiv preprint arXiv:2401.13560
(2024)

41. Yeung, H.W.F., Hou, J., Chen, X., Chen, J., Chen, Z., Chung, Y.Y.: Light field
spatial super-resolution using deep efficient spatial-angular separable convolution.
IEEE Transactions on Image Processing 28(5), 2319–2330 (2018)

42. Yoon, Y., Jeon, H.G., Yoo, D., Lee, J.Y., So Kweon, I.: Learning a deep convolu-
tional network for light-field image super-resolution. In: Proceedings of the IEEE
international conference on computer vision workshops. pp. 24–32 (2015)

43. Zhang, S., Lin, Y., Sheng, H.: Residual networks for light field image super-
resolution. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 11046–11055 (2019)

44. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using
very deep residual channel attention networks. In: Proceedings of the European
conference on computer vision (ECCV). pp. 286–301 (2018)

45. Zhao, H., Kong, X., He, J., Qiao, Y., Dong, C.: Efficient image super-resolution
using pixel attention. In: Computer Vision–ECCV 2020 Workshops: Glasgow, UK,
August 23–28, 2020, Proceedings, Part III 16. pp. 56–72. Springer (2020)

46. Zhu, L., Liao, B., Zhang, Q., Wang, X., Liu, W., Wang, X.: Vision mamba: Efficient
visual representation learning with bidirectional state space model. In: Forty-first
International Conference on Machine Learning (2024)

547


	Mamba-based Light Field Super-Resolution  with Efficient Subspace Scanning

