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Abstract. Due to the lack of anomalous data, most existing semi-supervised
video anomaly detection (SVAD) methods rely on designing self-supervised
tasks to reconstruct video frames for learning normal patterns from train-
ing data, thereby distinguishing anomalous events from normal ones ac-
cording to the reconstruction quality. However, these methods heavily
rely on the frequency of event occurring to judge its abnormality, which
often misidentify rare normal events as anomalies. More importantly,
they are usually trained to fit a particular scene leading to poor gen-
eralization to other scenes. Besides, for all existing methods, the nor-
mal/abnormal events are fixed once the training is finished, and can-
not conduct test-time adjust without retraining the model. To resolve
these problems, we propose a semi-supervised video anomaly detection
method based on a multi-modal action-based feature extraction model.
Our method exploits a vision-language model pre-trained with an action
recognition task for action-based feature extraction, making it robust to
scene variations irrelevant to anomalies. A clustering model with learn-
able prompts is employed for learning the normal patterns and anomaly
detection, which does not rely on event frequency and can correctly
identify rare normal events. Benefiting from the multi-modal model, our
method can conveniently adjust the normal events during test time by
text guidance without retraining. We conduct experiments on bench-
mark datasets and the results demonstrate that our method achieves the
start-of-the-art performances. More importantly, our method exhibits
obviously better performances in cross-scene experiment and test-time
anomalies adjustment experiment.

Keywords: Semi-supervised video anomaly detection · Multi-modal model

1 Introduction

Video anomaly detection (VAD) aims to detect anomalous events in video seg-
ments that deviate from expected patterns and to pinpoint the time of these
anomalies. Due to its broad application prospects, such as in intelligent surveil-
lance systems and video review, VAD has garnered increasing attention from
both academia and industry [29, 30, 39, 7, 27, 38, 55, 3].
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LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/accv
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Semi-supervised video anomaly detection4 aims to accurately detect anoma-
lies and determine their occurrence in time without using any labeled anoma-
lous data. This approach is more aligned with real-world scenes compared with
weakly-supervised VAD (WVAD) [60, 57, 17, 53] or open-set VAD (OSVAD) [1,
6, 65, 64] tasks. Most of existing works resort to designing self-supervised tasks
(such as prediction [23, 22], reconstruction [49, 45, 24], jigsaw [46], etc) to learn
normal patterns, and exploit them to distinguish anomalous events from normal
ones.

However, existing methods based on pixels or images have su!ered from the
following several drawbacks. First, since there lack explicit representations for
normal or abnormal events, existing methods estimate the normality of an event
according to only its frequency of occurrence without considering its semantic
information, making some rare normal events misidentified as anomalies. Sec-
ond, while an ideal VAD model is expected to detect abnormal events across
di!erent scenes, methods based on self-supervised tasks are easily influenced by
appearance di!erences across scenes, leading to significant performance degra-
dation when the scene changes. Third, in practical applications, we may need
to adjust the determination of normal and abnormal events during test phase,
which is impossible to achieve without retraining the model using re-annotated
data for existing methods.

Fig. 1. The existing paradigm of SVAD, as shown in (a), aims to design self-supervised
tasks and compare them with ground truth to discover anomalies. (b) presents our
new paradigm. We directly discriminate anomalies in the feature space by employing
a multi-modal action-based feature extraction model.

In recent years, language-vision pre-trained models have achieved remarkable
results in many downstream tasks due to their learned cross-modal prior knowl-
edge and robust transfer learning capabilities [16, 62, 41, 43, 18, 19, 21, 34, 37, 40,
50, 51, 58, 63]. This advancement provides us an opportunity to leverage pre-
trained models for explicitly constructing semantic representation of the events
without labeled data. With these models, we can build a SVAD model to over-
come the problems above.

To be specific, our proposed SVAD model exploits an image encoder of CLIP
followed by a Temporal Fusion Component (TFC) module to extract action fea-
tures from video segments. We pre-train the feature extraction module on action
4 In previous research, many methods have also referred to it as unsupervised VAD.
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recognition tasks to make the features insensitive to appearance variations. Then,
a clustering model with learnable prompts is employed to learn the distributions
of normal patterns from the training set.

As shown in Fig.1, our proposed method detects anomalies by identifying
out-of-distribution video segments directly in the action-based feature space,
which is significantly di!erent from existing methods. Since the learning process
does not rely on fitting normal data, rare normal patterns are also properly rep-
resented to avoid misidentification. This novel approach of extracting action fea-
tures while disregarding appearance features significantly enhances the model’s
generalization capability across di!erent scenes. Furthermore, benefiting from
the vision-language model, we can conveniently achieve text-guided adjustments
on the definition of normal or abnormal events without retraining the model.

We evaluate our method on several benchmark datasets including Ped2,
Avenue, and Shanghai Tech datasets. The experimental results show that our
method achieves the state-of-the-art performance. Particularly, our method ob-
viously outperforms existing methods on cross-scene experiment, exhibiting sat-
isfactory generalization to di!erent scenes. We can also conveniently make text-
guided adjustments to the normal or abnormal events during testing.

We summarize our contributions as follows:

– We propose a semi-supervised video anomaly detection approach based on
multi-modal action-based feature extraction. To the best of our knowledge,
we are the first to use multi-modal information to guide and discriminate
anomalies based on action understanding in SVAD.

– By extracting action-based features from video segments and detecting anoma-
lies in this feature space, our method obtains superior generalization across
di!erent scenes and better performance on learning rare normal patterns
comparing with existing methods.

– Benefiting from the vision-language model, our method can adjust the defini-
tion of abnormal events by text guidance during test time without retraining
the model.

– Our method achieves state-of-the-art performance on three mainstream datasets
including Ped2, Avenue, and Shanghai Tech. More importantly, it obvi-
ously outperforms other methods in cross-scene and text-guided anomaly-
adjustment experiments.

2 Related Work

2.1 Video Anomaly Detection

Currently, VAD can be roughly categorized into three setting according to the su-
pervision type: semi-supervised anomaly detection(SVAD) [27, 7, 59, 2, 54], weakly
supervised anomaly detection(WVAD) [60, 57, 17, 53], and open set anomaly de-
tection(OSVAD) [1, 6, 65, 64]. SVAD aims at detecting abnormal events from
videos with only normal samples available during training, which is a more prac-
tical technique since the anomalous patterns are quite diverse and di"cult to
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obtain. It’s notable that there was a naming confusion that some early works
named unsupervised VAD were indeed SVAD, since they also used the normal
videos for training.

The mainstream solution for semi-supervised video anomaly detection in-
volves designing a self-supervised task (such as prediction [23, 22], reconstruc-
tion [49, 45, 24], jigsaw [46], or rotation) to learn establishing normal patterns,
and identifying anomalies by comparing the established video segments with
real ones. Some researchers[49, 23, 33, 4] use the reconstruction-based methods
to reconstruct normal events and classify events with large reconstruction er-
rors as anomalies. Other researchers[23, 45, 20] focus on predicting future frames
using previous video frames and determine whether a frame is an anomaly by
calculating the di!erence between the predicted frame and the actual frame.

Additionally, some researchers [44] combine reconstruction and prediction-
based methods to improve detection performance. However, since the self-supervised
tasks are trained to fit the training data including the particular scene, it is liable
to regard normal patterns in other scenes as anomalies, making these methods
poor to generalize to scene variations. Even slight camera rotations can cause the
model to fail. Some other methods treat SVAD as a one-class classification task
and utilize one-class frameworks [47, 52] for anomaly detection. However, these
methods still su!er from interference caused by irrelevant appearance features,
resulting in poor performance.

2.2 Action Recognition

The development of video action recognition can be mainly categorized into two
types. The first type is based on traditional feature extraction networks, such
as two-stream networks, 3D CNNs, and transformer-based networks. Methods
based on two-stream networks [9] establish appearance and motion models with
two separate networks and fuse them either in the intermediate or final stage.
3D CNNs [5] directly learn spatio-temporal features from RGB frames, adding
an additional temporal dimension to the conventional 2D CNNs. Transformer-
based networks [8, 36] adopt and modify the latest transformer architecture to
jointly encode spatial and temporal features. However, most of these works are
single-modal and do not consider the semantic information contained in spatial
and temporal features. Recently, there have been some new methods [18, 28, 48]
that attempt to introduce multi-modal models into video action recognition.

2.3 Vision-text Multi-modal Model

Frome et al.[10] proposed joint learning of image-text embeddings using cat-
egory name annotations. Building upon these works, CLIP [41] attempted to
explore the relationship between natural images and text, while ALIGN [16] and
FILIP [56] further expanded the scale of training data. By utilizing simple noise
contrastive learning, the network can learn powerful visual representations from
image-text pairs. Based on this foundation, vision-text multi-modal models have
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been applied to various downstream domains [18, 19, 21, 34, 37] and achieved re-
markable results. The rich semantic information brought by the multi-modal
model not only improves performance but also empowers the model with strong
zero-shot capabilities.

3 Method

3.1 Overview

The semi-supervised video anomaly detection task assumes that during the train-
ing phase, only videos containing normal events are available. The goal is to train
a detection model that can predict frame-level anomaly probabilities in videos.
Given a test video frame F from a video V , the label y = 1 if it is an anomalous
frame and y = 0 otherwise.

Fig. 2. The structure of our Model. Di!erent from existing SVAD methods resorting to
self-supervised tasks, our approach distinguishes between normal and abnormal events
based on their response to action prompts. The process within the gray box repre-
sents an optional step that allows for the redefinition of normal and abnormal events
during testing based on text guidance, without the need for retraining the model or
re-annotating the dataset. The green check-mark indicates that the events conform to
the current text guidance should be seen as normal, thereby reducing the anomaly
scores for such events, and vice versa.

The overall model structure is illustrated in Fig.2. Firstly, we utilize a pre-
processed, annotated action recognition dataset to align video action features
with semantic information. Subsequently, we employ learnable prompts and a
clustering model to obtain more robust descriptions of the normal patterns. Fi-
nally, we use the cosine distance to the nearest normal pattern as the anomaly
score. Additionally, we can choose to leverage the zero-shot capability of the
CLIP model to make text-guided anomalies adjustments during testing.
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In Section 3.2, we will introduce the construction of the pre-training dataset
and model. In Section 3.3, we will detail how to guide the pretrained model
towards the VAD task. In Section 3.4, we will describe the details about inference.
In Section 3.5, we will describe how to leverage the zero-shot capability of CLIP
to achieve text-guidance anomalies adjustments.

3.2 Multi-modal Pre-training for Action Feature Extraction

In SVAD, most anomalies are closely related to human activities(cycling on
sidewalks, chasing and playing, skateboarding and others) and not related on
appearance. However, existing methods tend to overfit to specific scenes, where
irrelevant features beyond the human behaviors become noise and significantly
degrade model performance. Therefore, we focus on extracting behavior-related
features to accurately detect anomalies in videos, free from the interference of ap-
pearance factors, thereby achieving greater generalization across di!erent scenes.

Recently, outstanding works [18, 48, 28] have successfully introduced CLIP
into the field of action recognition and achieved significant e!ects. Inspired by
these works, we propose a vision-text multi-modal model to extract action-
related features and pre-train it using action recognition datasets to address
the issue of lacking anomalous data. In addition to accurately detecting anoma-
lies, such a model can generalize across di!erent scenes and flexibly adjust the
anomalous events without retraining, paving the way for semi-supervised video
anomaly detection.

Fig. 3. During the pre-training stage, we leverage action recognition datasets and CLIP
to establish a connection between video segments and their semantic meanings.

Due to the fact that SVAD applications often involve multiple objects in the
same frame and require fine-grained detection for each one, while action recogni-
tion task mainly focuses on the behavior of the main object in the scene, directly
using mainstream action recognition pre-trained models for extracting action-
based features often yields unsatisfactory results. To overcome this challenge,
we use an object detector to simultaneously process VAD datasets and action
recognition datasets. Specifically, we utilize existing object detectors to process
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popular action recognition datasets(HMDB51, UCFSports, Weizmann, K400,
and KTH), while excluding data containing viewpoint changes. This allows us
to construct a pre-training dataset consisting of 30 labels and over 50000 sam-
ples that are relevant to common actions such as walking, running, golf swinging,
diving, cycling, pull-ups, and others.

As shown in Fig.3, we first input the video segment Si = I1, I2, . . . , In
from the samples into the image encoder of CLIP to extract visual features
F1, F2, . . . Fn. Then we input the corresponding action annotation into the text
encoder of CLIP to extract text feature F text

i . Since CLIP is trained to con-
nect the text with static images, overlooking the temporal information among
successive frames that is crucial to activity recognition, we introduce a simple
and lightweight temporal feature confusion(TFC) [18] module to integrate im-
age features of multiple frames for extracting the feature of the video segment
F video
i . The TFC module is a transformer encoder following the image encoder

for extracting temporal features from several independent image embeddings.
Additionally, we use a adapter structure to fuse the original image features and
the action features to preserve their zero-shot capability.

The feature of a video segment is extracted as:

Fk = CLIPimage(Ik), k → [1, 2, . . . n] (1)

F video
i = ω · TFC(F1, F2, . . . Fn) + ε · CLIPimage(Imiddle), (2)

where i is the object index in the corresponding image, ω and ε are employed
as "residual ratio" to preserve the original image features of CLIP. Imiddle rep-
resents the middle image in Si.

Then, the action-based features and their corresponding text features can be
aligned using a simple NCE Loss:

Lnce = ↑
∑

i

(log
exp(< F video

i · F text
g(i) > /ϑ)

∑
j
exp(< F video

i · F text
j > /ϑ)

), (3)

where ϑ is the temperature hyper-parameter, F text
g(i) is the ground truth of Si

in pre-train datasets. In this way, we e!ectively convert the powerful image
adaptation capability of CLIP into videos.

3.3 Multi-modal Action-based Feature Extracted Model for SVAD

As mentioned in Section 3.2, the pre-trained model can establish the connec-
tion between semantic information and action segments, enabling us to extract
action-based features. Based on this, an intuitive way is to directly apply it to
the SVAD task for action classification on both the training and testing sets. In
this way, action segments that do not appear in the training set are considered
as anomalies.

However, this seemingly simple approach often fails in practice. There are
two main reasons for this:
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First, the pre-training dataset and the SVAD datasets have inconsistent dis-
tributions. Directly using the pre-trained model to detect anomalies will result
in a significant amount of mis-classification.

Second, the majority of samples in the pre-training datasets are mutually ex-
clusive. However, it is di"cult to describe the samples in the SVAD dataset with
a simple action category. For example, a person may be simultaneously waving
and walking, but such samples may be lacking in the pre-training datasets.

Inspired by [35], we describe events in SVAD datasets based on their re-
sponses to a series of action prompts. Normal samples are expected to cluster
around several response patterns, while abnormal samples should exhibit distinct
response patterns. Specifically, we describe the samples by utilizing the response
of many action prompts and obtain the centers of normal modes through clus-
tering with cosine similarity. The cosine distance is then used as the anomaly
score for each sample.

In the pre-training dataset, action text is often presented in the form of
words or phrases, which may not comprehensively describe the complex and
diverse action patterns in videos. To ensure robustness in action prompts and
better adaptability to downstream tasks, we draw inspiration from [61] and
introduce learnable prompts into the action text. It is worth noting that these
action-related text have no specific restrictions. Therefore, any distinctive batch
of action-related text can be used to describe the normal patterns. In this paper,
we utilize all the annotations from the K400 action recognition dataset as action
text set T = [T1, T2, . . . , TN ].

The process of obtaining the text features F̂ text
j after embedding the learnable

prompts can be described as:

pi = argmax
j=1,...,N

< F video
i · F text

j >, (4)

Promptj = {C1, C2, . . . , T okenizer(Tpi), . . . , Ck}, (5)

F̂ text
j = CLIPtext(Promptj). (6)

where {C1, . . . , Ck} are learnable prompts, and N represents the number of
action prompts. At this stage, we are still using the method mentioned in Sec-
tion 3.2 for training.

For the same dataset, the normal samples in the test set have a similar
distribution to the normal samples in the training set, while the distribution
of abnormal samples in the test set di!ers from that of the normal samples.
By introducing learnable prompts to enhance the sample’s maximal response
to action prompts, the model can continuously optimize the way it describes
normal samples, thereby capturing the characteristics of normal samples more
accurately.
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3.4 SVAD Inference

After transferring the pre-trained model to the SVAD task and introducing learn-
able prompts, we extract features from the training set using this model. In this
paper, we use the Sim(x, y) function to calculate the similarity between x and
y:

Sim(x, y) =
< x · y >

||x|| · ||y|| . (7)

For a given sample, we utilize its response to the action prompts with learn-
able prompts to provide a detailed description:

Responsei[j] = Sim(F video
i , F̂ text

j ), j → [1, 2, . . . N ]. (8)

We then attempt to group the normal samples into several clusters and
use these clusters to describe the entire set of normal samples as comprehen-
sively as possible. Since the training set lacks annotations, a simple yet ef-
fective approach is to use clustering model to obtain several cluster centers
Centerm,m → [1, 2, . . .M ] representing normal modes. It is notable that the
same intensity of responses at di!erent positions in the features represents dif-
ferent actions. Therefore, using existing Euclidean distance is not suitable. In
this paper, we use K-means clustering based on cosine similarity to obtain the
centers of normal modes. The number of cluster centers is determined by the
size of the dataset, and the specific settings can be found in Section 4.2.

We calculate the cosine distance between a test sample and the nearest cluster
center as the sample’s anomaly score. Normal samples should have higher cosine
similarity and shorter cosine distance to one of the centers, while abnormal
samples would exhibit lower cosine similarity and longer cosine distance to all
cluster centers. The process of assigning an anomaly score to a sample can be
described as follows:

Scorei = 1↑max
m

[Sim(Responsei, Centerm)],m → [1, 2, . . .M ], (9)

where M represents the number of cluster centers obtained from the normal
modes in the training set.

3.5 Test-time anomaly redefine

Existing SVAD methods define events that did not appear in the training set as
anomalies. However, in the real world, the definition of anomalies is often sub-
jective and situational. For example, running rapidly inside a shopping mall or
riding a bicycle on a sidewalk is usually considered abnormal behavior, whereas
running in the playground or cycling on a highway is considered normal. For ex-
isting SVAD methods, each anomalies adjustment requires adjusting the dataset
and retraining the model.

In this paper, we aim to leverage the rich semantic information and zero-shot
capabilities of CLIP to adjustment normal and abnormal events during testing
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based on the text guidance, without incurring any additional computational cost.
Specifically, we start by providing a set of text as text guidance Tg, which can be
single words, phrases, or sentences, and explicitly specify which ones represent
normal and which ones represent anomalies.

Then, text guidance Tg are passed through the text encoder, and their similar-
ity with visual features is computed by Sim(F video

i ,CLIPtext(Tg)).If the similar-
ity value between a sample and the text guidance exceeds a predefined threshold,
we consider it as a match with the text guidance and adjust its score accordingly:

SNew =

{
S + Smin · ϖ · (Similarity ↑ threshold) (if Tg = Anomaly)

S ↑ Smax · ϱ · (Similarity ↑ threshold) (if Tg = Normal)
(10)

In this equation, S represents the anomaly score of the current frame. Smax

and Smin denote the maximum and minimum anomaly scores in the current
video, respectively. Similarity refers to the similarity between the sample and
the text guidance. ϖ and ϱ represent the constant terms.

4 Experiment

4.1 SVAD Datasets

– UCSD Ped2 The UCSD dataset [32] contains 16 training videos and 12 test
videos of pedestrians walking on sidewalk. The abnormal events are about
cyclists, carts, cars, or people walking across the surrounding grass.

– CUHK Avenue The CUHK dataset [26] contains 16 training videos and 21
test videos about sidewalk. The anomalies include anomalies of pedestrians,
wrong direction of movement, appearance of anomalous objects, etc.

– Shanghai Tech The Shanghai Tech dataset [30] is a challenging anomaly
detection dataset. It contains 330 training videos and 107 testing ones with
130 abnormal events. Totally, it consists of 13 scenes and various anomaly
types.

4.2 Implementation Details

During pre-training of the action feature extraction module, video clips corre-
sponding to each object are resized to 224↓224↓9 and fed into the model, while
both the image encoder and text encoder utilize the pre-trained CLIP (ViT-
B/16) and are kept frozen. The only trainable component is the TFC module,
which fuses the image features of consecutive frames for temporal feature ex-
traction. The model is optimized using AdamW, where we set the learning rate
to 0.0007, the batch-size 512, and the temperature hyper-parameter ϑ to 0.1.

For training the SVAD model by learning normal patterns, we set the number
of cluster centers to 10 for the Ped2 dataset and Avenue dataset while 20 for the
Shanghai Tech dataset. During this process, image encoder, text encoder, and
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TFC module are all kept frozen, while only the learnable prompts are trained.
We also use AdamW for optimization and set the learning rate to 0.0002, the
batch size to 128, and the residual ratio ω to 0.7.

We evaluate the model based on recent research, considering both micro
and macro AUC metrics. For micro AUC, videos are concatenated before AUC
calculation. For macro AUC, AUC is computed per video, then averaged, yielding
a single value.

4.3 Comparison with State-of-the-art Methods on Single Dataset

Comparison of our method with various representative methods is shown in
Table 1. In the evaluation of metric Mic AUC, our method achieves sort-of-
the-art performance across three mainstream datasets: Shanghai Tech, Avenue,
and Ped2. For metric Mac AUC, our result on the Ped2 dataset is consistent
with state-of-the-art method, while on the more challenging Shanghai Tech and
Avenue datasets, our performance is the second-best. Undoubtedly, our approach
demonstrates the best overall performance in single-dataset evaluations.

Table 1. Micro and macro AUC scores of several state-of-the-art methods on the
single dataset. We mark the first, second, and third places in the results with red,
orange, and blue respectively.

Method Ped2 Avenue Shanghai Tech
Mic AUC Mac AUC Mic AUC Mac AUC Mic AUC Mac AUC

Ristea et al.[42] - - 91.6% 92.5% 83.8% 90.5%
Georgescu et al.[11] 97.5% 99.8% 91.5% 92.8% 82.4% 90.2%
BA Framework[12] 98.7% 99.7% 92.3% 90.4% 82.7% 89.3%
Hirschorn et al.[14] - - - - 85.9% -

OCAE[15] 94.3% 97.8% 87.4% 90.4% 78.7% 84.9%
Liu et al.[24] 99.3% - 89.9% 93.5% 74.2% 83.2%

Zheng et al.[25] - - 91.8% 92.3% 83.8% 87.8%
Madan et al.[31] - - 93.2% 91.8% 83.3% 89.3%
Wang et al.[46] 99.0% - 92.2% - 84.3% -
Park et al.[39] 97.0% - 82.8% 86.8% 68.3% 79.7%

Ours 99.3% 99.8% 93.6% 93.1% 86.1% 90.3%
ω For more details, please refer to the supplement.

Fig.4 illustrates the visualization of our method’s scores on two videos, namely
01_0051 and 01_0071. By focusing on action-related feature instead of pixels,
our method achieves precise detection with high anomaly scores right at the on-
set of anomalies, rather than exhibiting a slow rise as observed in existing self-
supervised tasks, which strongly demonstrates the reliability of our approach.
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Fig. 4. Visualizations of abnormal and normal videos from the Shanghai Tech dataset
by our model. Our model can accurately identify anomalies with high anomaly scores.

4.4 Experiment on Cross-Scene

As mentioned previously, a significant advantage of our method lies in its ability
to generalize to di!erent scenes without retraining. By leveraging action recog-
nition pre-training datasets and multi-modal models, our method can disregard
visual di!erences between samples and focus on extracting action-related fea-
tures, thereby achieving strong generalization across di!erent scenes.

For the three mainstream datasets, we design four distinct experimental
schemes to explore the generalization capability of our proposed method across
di!erent scenes: Shanghai Tech→Avenue, Avenue→Shanghai Tech, Avenue→Ped2,
and Shanghai Tech→Ped2. The results are shown in Table 2.

Table 2. Experimental results on generalization to di!erent scenes. The metric in this
figure is Micro AUC.

Method Avenue→SHT SHT→Avenue SHT→Ped2 Avenue→Ped2
ZS CLIP[41] 60.9% 62.3% 52.7% 51.9%

ZS CLIP IB[13] 61.3% 64.5% 53.6% 52.8%
Astrid et al.[2] 51.7% 54.3% 65.9% 62.7%
Wang et al.[46] 59.3% 62.9% 75.6% 73.1%

Ours 78.7% 86.2% 97.8% 95.2%

It is evident that when evaluating between di!erent scenes, both CLIP and
CLIP IMAGE BIND, as well as existing SVAD methods, fail to maintain their
performance, whereas our method continues to achieve high detection accuracy.
This clearly demonstrates the strong generalization capability of our method
across di!erent scenes.

4.5 Experiment on Test-time redefine

Compared to existing SVAD methods, another significant advantage of our ap-
proach is its ability to adjust normal and abnormal events during testing based
on text guidance, without re-annotation the dataset and retraining the model.
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To illustrate this point specifically, we conduct additional evaluations on the
challenging Shanghai Tech dataset.

Fig. 5. Visualizations of the experiment of test-time redefinition. We specify three types
of anomalies present in the dataset and asked the model to classify them as normal.
It can be observed that the anomaly scores for the abnormal frames are significantly
reduced to levels close to those normal ones.

As described in Section 3.5, we use the phrases "someone is jumping over the
railing." "a people is riding a bike.," and "fast running." as text guidance, and
test them on the test videos with IDs 01_0051, 03_0061, and 04_0050, respec-
tively. Fig.5 shows the visualization of the scores before and after adjustment.
It can be observed that when provided with prior text guidance specifying the
event type as normal, our model leverages CLIP’s zero-shot capability to adjust
the scores, thereby no longer recognizing events not included in the training set
as anomalies. This ability to adjust the classification of normal and anomalous
events during the testing phase without additional computational cost further
enhances the applicability of our method in real-world scenes.

4.6 Ablation Study

To further elucidate our method, we conduct a study on the selection of back-
bones. We aim to demonstrate that any CLIP-based action recognition model can
be applied within our method and achieve outstanding results. Table 3 presents
the performance of our method when three di!erent state-of-the-art multi-modal
action recognition models are used as backbones. It is evident that our method
maintains a high level of performance across di!erent backbones.

Table 3. Experimental results on di!erent backbones.

Backbone Action CLIP[48] CLIP4CLIP[28] Prompt VLM[18]

Pre-train → 68.3% → 69.1% → 70.9%
↭ 85.2% ↭ 84.3% ↭ 86.1%
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Notably, failing to pre-train the model on datasets preprocessed can lead to
catastrophic performance degradation. The specific reasons have already been
analyzed in Section 3.2 and Section 3.3. Additionally, we provide a further de-
tailed analysis and a visual sample in Supplement.

Table 4. Experimental results on the number of input images. The metric in this Table
is Micro AUC.

Input Number 5 7 9 11
Avenue results 84.7% 91.5% 93.6% 82.7%

Shanghai Tech results 78.1% 85.7% 86.1% 79.2%

Furthermore, we investigate the influence of the number of images included
in the input video sequence on model performance, with experimental results
shown in Table 4. It can be observed that there is no significant di!erence in
model performance when the number of inputs is 7 or 9. This is primarily due
to the presence of a large amount of video material with varying frame rates in
the training dataset.

5 Conclusion

This paper proposes a multi-modal action-based feature extraction model for
semi-supervised video anomaly detection task. Without explicit semantic repre-
sentations for video segments, existing SVAD methods struggle to correctly learn
rare normal patterns and demonstrate poor generalization to di!erent scenes.
Considering that the majority of anomalies are closely related to human be-
haviors, we integrate the TFC module with CLIP image encoder for extract
the action-based features from video segments, which is pre-trained using action
recognition task. We then guide this model to SVAD training data for learning
normal patterns, where the feature representations are generated based on their
responses to di!erent action prompts. The anomaly score of a video segment
is obtained according to the similarity between the features. Experimental re-
sults on mainstream public datasets demonstrate outstanding performance of
our proposed model in SVAD task. Moreover, our method benefits from supe-
rior generalization to di!erent scenes, and can conveniently adjust the anomaly
events by text guidance during test phase without retraining. Admittedly, our
method has some limitations. Firstly, our method requires pre-training on pre-
processed action recognition datasets to achieve best performance. Secondly, the
clustering model we use is relatively simple.
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