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Abstract. Differentiable volume rendering has evolved to be the preva-
lent optimization technique for creating implicit and explicit maps. Nu-
merous efforts have explored the role of camera pose optimization and
non-rigid tracking within Neural Radiance Fields (NeRFs). However, the
relation between differentiable volume rendering and classical multi-view
geometry remains under explored. In this work, we investigate the role of
direct alignment in radiance field estimation by incorporating a simple
but effective loss while training NeRFs. Armed with good practices for
direct alignment while leveraging the effectiveness of volumetric repre-
sentation in occlusion handling, our proposed framework is able to recon-
struct real scenes from sparse or dense views at a much higher accuracy.
We show despite relying on the photometric consistency, incorporating
direct alignment improves view synthesis accuracy of NeRFs by 12% with
known poses on LLFF dataset whereas joint optimization of pose and
radiance field gets a boost in view synthesis accuracy of over 18% with
rotation and translation errors going down by 64% and 57% respectively.

Keywords: Neural Radiance Field, Direct Alignment, Volume Render-
ing

1 Introduction

Since the advent of Neural Radiance Fields (NeRFs) for novel-view synthesis,
myriads of developments have taken place in adapting the volume rendering
frameworks to solve the classical problem reconstructing scene from multiple
images. Originally introduced for view synthesis, NeRF [18] offered some very ob-
vious advantages over the classic reconstruction methods. The first was compact,
learnable scene representation, in the from of coordinate MLPs. These allowed
for continuous volumetric representation to be distilled into a MLP weights, com-
pressing maps to a few MegaBytes instead of typically a few GigaBytes required
by the explicit counterparts (with reasonable volumetric resolutions). Second, it
facilitated view-dependent rendering of surfaces without explicitly modeling the
material properties and scene lighting which traditional reconstruction meth-
ods struggled with. Finally, optimizing the reconstruction error of a single pixel
(working on a single ray) at a time, allowed volume rendering frameworks to
bypass handling occlusions and multi-view matching which was known to be
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2 R. Garg et al.

one of the biggest hindrance for direct alignment based reconstruction and flow
estimation methods.

Leveraging these advantages, a plethora of work adapted volume rendering
frameworks for rigid and non-rigid reconstructions in the recent past [4,8,23,28,
30, 35, 36]. In this work, we try to understand some of the key advantages of-
fered by volume rendering and implicit representations better, by comparing the
radiance field based multi-view reconstruction with that of traditional structure-
from-motion approaches to answer the question:

What concepts from classic structure-from-motion are still relevant in
the world of NeRFs?

In particular, we explore the utility of direct-alignment – that dominated
the dense multi-view reconstruction for decades – while deploying differentiable
volume rendering. Our view is that while it seems advantageous to bypass ex-
plicit occlusion reasoning, direct matching and triangulation of multiple-rays
at the first glance, ignoring explicit alignment leads to over-fitting in learning
NeRFs. This was first observed in [9] where the authors show that NeRFs learned
undesirable multi-modal ray termination distributions when trained with small
number of training views 3. This practically means that a single opaque 3D
surface element in the scene can be divided into multiple semi-transparent sur-
faces scattered along the viewing ray leading to ghosting artifacts. [9] proposed
to utilize the sparse depths estimated by COLMAP [25, 26] to partially mit-
igate this over-fitting by explicitly enforcing unimodal ray terminations. This
was achieved by aligning sparse depths with peaks on the ray termination dis-
tributions. Note that with known camera poses, depth supervision is equivalent
to enforcing sparse feature matching across multiple-views which came as the
byproduct of COLMAP.

Similar ideas of utilizing large and small baseline correspondences established
by off-the-shelf optic-flow estimations, filtered by enforcing rigidity [9, 27] or
with other heuristics such as enforcing cycle consistency of estimated pairwise
correspondences have been used in literature to stabilize training of static and
dynamic NeRFs [5,28,30]. In this work, we extend the idea of enforcing this multi-
view matching to all the rays in the dataset without requiring accurate camera
poses, approximate depths, optic-flow or sparse reconstructions from an off-the-
shelf method. To achieve this, we advocate on-the-fly direct dense-alignment of
multiple views using intermediate structure and motion estimates coming out of
a framework like BARF [16] at all iterations.

We postulate that direct alignment and volume rendering frameworks have
complementary advantages for dense reconstruction. In particular, volume ren-
dering frameworks represent depths and colors of a pixel as occlusion aware
alpha compositions of these quantities sampled on corresponding viewing ray.
This provides a much desired tool to explicitly handle occlusions. Further, while
dense alignment approaches work best with small baselines, a common template
3 Notice that the multi-modality of ray terminations are important to model non-

opaque surfaces
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(in the form of a 3D radiance field) to align all input images allows for seamless
integration of optic-flow that traditional dense reconstruction method struggle
with. For example dense SLAM frameworks such as [20] utilize depthmap of the
keyframe as a template to anchor multi-frame correspondences and rely on ro-
bust loss functions to model occlusions, thereby are restricted to match frames
in a narrow window around keyframes. Frameworks such as Omnimotion [30]
have already showcased the effectiveness of even ‘quasi-3D’ radiance fields to
act as a suitable template to anchor multi-frame correspondences while facilitat-
ing occlusion reasoning and integrating sparse matching across large number of
views.

In this work we propose to marry the impressive capabilities of radiance
field in occlusion reasoning and flow-integration with vastly studied literature of
direct alignment to facilitate multi-view consistency. We do so by introducing
occlusion aware direct alignment loss to jointly optimize for radiance field and
camera poses. We show that despite using simple color as the features for multi-
view matching, i.e. making Lambertian surface assumption, the direct alignment
assisted NeRFs outperforms the counterparts by a substantial margin on real se-
quences. Further, the direct alignment facilitates more accurate pose estimation
with no initialization requirement when baseline for capture is small such as in
forward facing LLFF dataset. In the standard setup of large baseline captures
such as DTU, our method requires noisy camera pose estimate like most other
joint radiance field and pose estimation methods but outperforms comparative
baselines in both pose and structure estimation. While we deploy direct align-
ment loss on implicit radiance field estimation, the loss is generic to be used with
any volumetric rendering pipeline including semi-implicit or explicit representa-
tion. Our work provides a fresh perspective on the efficacy of feature matching
to assist volume rendering.

2 Literature Review

A full review of advances in neural radiance field is out of scope of this paper,
below we present thematic review a subset of related approaches that informs
the presented approach.
NeRF with Unknown Camera Poses: While classic gradient based optimiza-
tion for per frame pose estimation was the natural choice to extend NeRFs, the
naive attempt in doing so failed catastrophically with camera poses estimations
diverging quickly to bad local minima. BARF [16] presented first framework to
jointly optimize radiance field and poses and remain to date a go to approach
which modern rigid NeRF learning that we base our work on. They proposed
to gradually introduce positional encoding used in [18] for high frequency signal
reconstructions. This gradual introduction of the high frequency positional en-
coding mimicked coarse-to-fine reconstruction leading to accurate camera pose
estimations. A range of alternatives [4, 7, 8, 10,13,22,31,32] have been proposed
to optimize camera pose while learning NeRFs. [8] proposes to use Gaussian Ac-
tivation in place of ReLU to facilitate high fequency image synthesis without the
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positional encoding, [22] proposes to precondition cameras, [4, 27] uses off the
shelf single view depth or optic flow predictions to assist camera pose estimation.
The contributions of these works over [16] are orthogonal to the ours and can
be used with direct matching.
NeRF over-fitting and additional supervision Many works have been pro-
posed to address NeRF’s overfitting problem, most of them focus on learning ra-
diance field with sparse viewpoints. Solutions in this domain range from adding
regularizations [3, 11, 14, 15, 21], providing additional supervision in the form of
ground truth or estimated depth maps [5,9,24,34] or utilizing off the shelf sparse
or dense feature correspondences [15,27,29,30].

Methods using sparse depths/flow fields in many ways have embodied the
popular approach or track first and reconstruct later from traditional large base-
line multi-view reconstruction methods such as [1, 19, 25, 26]. These approaches
however heavily relied upon powerful model fitting frameworks like RANSAC
that are non-trivial to integrate with NeRF frameworks. Direct alignment [2]
based structure and motion estimation systems such as [20] however use dense
maps and can be integrated with NeRFs relatively easily as shown in this work.

In particular closest to our approach is [4] which propose depth guided direct
alignment loss minimization similar to ours albeit it uses scaled and translated
single-view depth predictions to align neighbouring images in a sequence. The
alignment loss thus does not depend on the radiance field at all but provide
meaningful gradients for camera poses directly. 4 In contrast, we use intermediate
depth estimations from the radiance field for the image alignment and thus
require no external depth estimator.
NeRF with Learned Features Another loosely connected line of work to
ours focuses on pre-training viewpoint invariant features on large datasets, often
combining information from multiple images, to form a proxy to matching loss
[6,33]. These learned features are than used to inform coordinate networks (often
coded as MLPs) about multi-view information implicitly to accurately learn
radiance fields. In principle, while these methods do not explicitly match features
across multiple test-views, the coordinate networks implicitly takes the role of
learning per pixel cost volume optimization.

3 Methodology

In this section we set the mathematical notations and introduce the volume
rendering framework introduced in [18] and joint coarse-to-fine camera pose es-
timation with radiance field learning. Further, we outline the direct matching loss
introduced in this work followed by the simple occlusion reasoning mechanism
that forms proposed approach.

4 This enables [4] to estimate large baseline motions. [4] advocate annealing the align-
ment loss over the course of training to avoid baking in errors in single view depth
predictions and can be seen as alternative initialization scheme to pose via depth
guided image alignment loss instead of using COLMAP.
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Fig. 1: Comparative analysis of image field learning and homography estimation with
seed 9 and H = 0.1. First row consists for homography visualisation for Ground truth,
BARF without and with direct alignment respectively. Second row has selected crop
reconstructions for both approaches followed by learned 2D field by BARF without
and with alignment respectively.

3.1 Preliminary: Learning NeRF with camera pose estimation

In this section we layout a general problem of learning radiance field from a
set of given images and notations used in the rest of the paper. We recommend
BARF for details to the reader which our approach closely follows. Let us assume
that we are given with F images {If}Ff=1 captured by a camera with intrinsic
matrix K ∈ R3×3 from unknown locations Pf = (Rf , tf ) ∈ SE(3). Our goal
is to learn a continuous radiance field function in the form of the coordinate
network f(Θ,x,v) → (c, σ) that corresponds to the given images alongside
camera locations Pf ’s.

The coordinate network is represented as a learnable multi-layer perceptron
(we use the same architecture as BARF see supplementary material for details)

Mean Warp Err. (∆H) Mean PSNR Acc. ∆H <0.025 Acc. ∆H <0.05
H BARF + Align +SS BARF +Align +SS BARF +Align +SS BARF Align +SS

0.05 0.018 0.005 0.007 35.17 34.94 35.98 6/9 9/9 9/9 9/9 9/9 9/9
0.1 0.22 0.06 0.01 29.63 33.83 35.83 1/9 8/9 9/9 3/9 8/9 9/9
0.15 0.38 0.14 0.13 25.60 30.67 31.79 0/9 4/9 5/9 0/9 4/9 4/9
Table 1: Panoramic stitching performance. We report homography estimation errors
and patch reconstruction PSNR of vanilla BARF, RGB Aligned BARF without and
RGB Aligned BARF with explicit Gaussian scale-space coarse to fine (depicted as SS)
deployed while training NeRFs. We define successful homographies at different error
thresholds an present accuracies to compare the basin on convergence for different
methods.
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with parameters Θ that predicts the volume density σ and color c of the scene
coordinate x as observed form the viewing direction v ∈ R3. A pixel u ∈ R2

in the image If thus can be rendered by integrating the implicit radiance field
along a ray r(u, d) = tf + dv passing through the camera center tf and u by:

Îf (u) =
∫ df

dn

T (u, d)σ(r(u, d))︸ ︷︷ ︸
h(u,d)

c(r(u, d))δd, (1)

where viewing direction v is a normalized vector along the line that joins camera
center tf and pixel u. Transmittance T (u, d) of a point on this ray at depth d is
defined as exp(−

∫ d

dn
σ(r(u, d))δd).

Note that the ray termination distribution h(u, d) = T (u, d)σ(r(u, d)) for
sampled depths quantify the probability that the ray hits the scene first at
depth d and is desired to be unimodal for opaque surfaces. NeRFs are trained
to minimize the following rendering loss summed over all pixels in the dataset:

Lrender =

F∑
f=1

∑
u∈Ω(If )

∥Îf (u, Pf ;Θ)− If (u)∥22, (2)

3.2 Direct Matching

We propose to align a reference image Ir with a set of surrogate views s ∈ Nr

while training the NeRF. The alignment loss Lalign is defined as:

Lalign =

F∑
r=1

∑
s∈Nr

∑
u∈Ω(Ir)

V(us,u)∥Is(us)− Ir(u)∥ϵ, (3)

us = Π(KRs(R
−1
r K−1[u, 1]T d̄(u)− tr) + ts), (4)

d̄(u) =
∑

dsample

h(u, dsample)dsample (5)

and Π([X,Y, Z]T ) = [X/Z, Y/Z]T (6)

where V(p, q) is an indicator function depicting co-visibility of argument pix-
els in two given views, d̄u is the estimated depth of the pixel u in the reference
frame r obtained using alpha composition of the sample points dsample on the
ray r(u, .) and ∥.∥h represents huber penalty.

In practice, the Lalign gets minimized using SGD where reference frame r and
point samples u on the reference frame are selected randomly in every iteration.
Unless specified, in this work we select a single reference image at random from
the training set and consider the entire training set as surrogate views for the
reference image.
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Occlusion Reasoning We adapt a simplest strategy to model occlusion func-
tion V(us,u) described in eq. 3. We estimate the depth d̄(us) of the pixel (̄us)
that correspond to the u in reference image. If the 3D point at depth d̄us in front
of the one we projected from the reference image, the u is considered occluded
in frame s 5. Formally:

V(us,u) = 1[d̄(us) < Ts(u, d̄(u))− δd] (7)

where Ts(u, d̄(u)) = ω(K(Rs(R
−1
r K−1[u, 1]T d̄(u)− tr) + ts)) (8)

and ω([X,Y, Z]T ) = Z (9)

4 Experiments

In this section, we present experimental results along the relevant ablation stud-
ies to justify the utility of the direct alignment in the radiance field learning. Sec-
tion 4.1 compares the effectiveness of direct alignment for homography induced
2D image field learning. Section 4.2 focuses on how direct alignment reduces the
overfitting of NeRFs. Finally in Section 4.3 tests our full model for multi-view
3D Reconstruction without on multiple real sequences.

4.1 2D image field and homography estimation

We follow BARF [16] to learn the 2D neural image field corresponding to a
homography based panaroma stitching of given crops. This simple 2D variant of
radiance field estimation with unknown cameras allow us to discard challenges
in aligning non-lambartian surfaces and occlusion reasoning involved in the 3D
counterpart but establish utility of direct alignment. Following BARF, a 2D
coordinate network is designed to render the stitched image while pixel pi in
the training patch i is warped with the estimated homography Hi to rendered
image. We add the homography induced direct image-alignment loss in this setup
and compare the results with BARF baseline. For efficiency propose, at every
iteration, we randomly select a reference crop r to align other crops to instead
of considering all crop-pairs. To this end, pixel pi from any crop i is warped by
estimating composed homography Hri = H−1

r .Hi to its location p
′

i = Hri · pi
in the reference crop. Color constancy of the backward warps to reference crop
for all surrogate views is penalized with huber function and minimized alongside
the rendering MSE.

We generate nine random homographies each, with three scale-noise param-
eters H = {0.05, 0.1, 0.15} while using fix translation noise of 0.2 to analyse
the efficacy of different approach with varying level of difficulty. Table 1 shows
the crop reconstruction and homography estimation errors of different experi-
ments and Figure 1 presents visual analysis for a single seed highlighting the
key differences. It can be seen that image alignment helps in estimating accurate
5 Note that as us is the projection of the point that is intersection of the two rays by

definition it lies on the ray corresponding to pixel us.
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Fern (19 frames) Trex (50 frames)
Training Validation Training Validation

Fig. 2: NeRF training and validation PSNR with and without dense alignment. One
can clearly observe that NeRFs overfit to training data despite having 50 frames to
train on in Trex Sequence.

NERF RGB Aligned
Seq PSNR SSIM LPIPS PSNR SSIM LPIPS
Fern 23.06 0.72 0.28 24.50 0.75 0.25

Leaves 13.60 0.21 0.59 17.45 0.45 0.42
Orchid 17.38 0.51 0.31 17.85 0.54 0.30
T-rex 21.82 0.76 0.22 21.90 0.78 0.19
Flower 23.10 0.67 0.24 24.37 0.72 0.20
Fortress 26.12 0.79 0.18 28.74 0.84 0.10
Horns 19.18 0.57 0.46 22.45 0.72 0.31
Room 33.30 0.95 0.06 32.85 0.95 0.08
Mean 22.20 0.65 0.29 23.76 0.72 0.23

Table 2: View synthesis accuracy of NeRF with Direct Dense Alignment of Images.

homographies for all difficulty levels and converges more frequently when com-
pared to BARF. As the homography estimation becomes more challenging, the
2D field reconstruction without alignment loss has significantly lower PSNRs. In
the interesting case of smaller homography perturbations the mean PSNR with-
out alignment looks marginally better. However we observe that these differences
are often within range of the jitter in the estimated 2D fields observed in the final
few iterations. Further we observe in Table 1 that incorporating coarse-to-fine
scale space estimations helps in minimizing the reconstruction loss as-well-as
in image alignment to a large extent when the homographies are difficult. As
expected you loose on precise homography estimation in simpler cases but the
optimization has higher basin of convergence. These findings translates in train-
ing NeRFs with camera pose estimations presented below as well.

4.2 Nerf With Given Pose

Next we evaluate the efficiency of the proposed approach in learning radiance
field on LLFF dataset [17]. We use COLMAP camera poses as fixed ground truth
and evaluate the radiance field learning in isolation on real-scenes. Like section
4.1, for direct alignment we sample a random image from the training data as
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Ground Truth Vanilla NeRF RGB Aligned

Ground Truth Vanilla NeRF RGB Aligned

Fig. 3: Radiance field learned with and without matching given COLMAP poses. Top
row from left to right show Test image, and renderings using estimated radiance field
without and with direct alignment loss. column 1’s, row2 and row3 show the ray ter-
mination distributions, with following columns showing estimated depth and entropy
of ray distributions.
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reference and minimize the dense alignment loss alongside the per-ray rendering
loss for all the views in the training set. We use the BARF implementation
without normalized device coordinates or coarse probability density function
based fine samplings along the rays for simplicity in these experiments. In all
LLFF experiments with known pose, network architecture, and training hyper-
parameters are kept exactly same as BARF. Our method incorporating RGB
alignment consistently boost radiance field reconstruction accuracies, with novel-
view synthesis PSNR going up by 7% on average as shown in Table 2. The
exception is Room sequence where the proposed method suffers due to large
reflective regions present in the images. 6

Overfitting Figure 2 presents training and validation PSNRs observed for the
LLFF dataset on two selected sequences Fern with sparse and T-rex with large
number of views. It is clear to see that NeRF overfits to training views and this
problem can be mitigated by using direct alignment loss. We visualize these ray
termination distributions for vanilla NeRF and presented approach for a few
selected points in Figure 3 to confirm that the overfitting relates to the multi-
modal ray terminations as hypothesised in [16]. To analyse this over-fitting more
closely, we also visualize the normalized entropy of all the pixels for a validation
image as a joint indicator of non-peaky ray terminations. It is important to
note that our experimental setup does not use finer depth sample informed
by the PDF predicted by coarse NeRF which naturally leads to overall flatter
distributions when compared to that reported in [9].

It is important to note though that the over-fitting happens despite having
large number of training views (50+ views in T-rex) and systematic mitigation
of the over-fitting should help NeRF training for both sparse and dense view
regime. This is a contrary observation to the conventional literature working on
regularizing NeRF where [9, 27] show diminishing returns of using depth/flow
regularization in scenarios with dense captures for LLFF dataset with [27].

4.3 Joint Camera Pose and Radiance Field Estimation

In this section we present the results on joint camera pose optimization and
radiance field learning on LLFF and DTU sequences. We follow the same train-
ing and test split as used in BARF and similar evaluation protocol with the
exception of not using run-time optimization for view-synthesis. While run-time
optimization in BARF was used to isolate pose estimation noise to bring PSNR
closer to be a measure of geometric error, the optimization ends up peaking into
answers (images which are to be reconstructed) for view synthesis evaluations.
Further, changing the pose of the query image to optimize rendering loss distorts
relative camera locations between query and training images – i.e. changing the
nature of view synthesis problem altogether. Thus, in absence of direct geomet-
ric evaluations such as via depthmaps, we advocate evaluating PSNR without
6 We see small boast in performance by linearly decreasing the weight of alignment

loss to zero and the results in 2 uses this scheduler. Ablation for scheduling can
be find in supplementary material. Please note that all other reported results and
visualization (except table 2) use no scheduling.
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Seq. BARF +Alignment BARF +Alignment
E Rot E Trans E Rot E Trans PSNR SSIM LPIPS PSNR SSIM LPIPS

Fern 0.197 1.82 0.172 1.78 21.12 0.63 0.32 21.66 0.64 0.33
Leaves 1.311 2.65 1.019 2.29 11.74 0.13 0.46 12.18 0.14 0.42
Orchid 0.580 3.94 0.508 3.42 13.50 0.19 0.34 13.71 0.19 0.35
T-rex 1.198 7.51 0.185 2.37 14.61 0.33 0.33 18.26 0.53 0.25
Flower 0.212 2.26 0.202 1.88 19.96 0.51 0.24 21.47 0.59 0.21
Fortress 0.372 3.14 0.253 1.97 23.25 0.49 0.14 23.27 0.55 0.14
Horns 2.950 13.97 0.120 1.41 11.43 0.30 0.57 21.54 0.67 0.35
Room 0.375 2.93 0.071 1.07 20.70 0.75 0.15 29.19 0.91 0.13
Mean 0.90 4.78 0.32 2.02 17.04 0.42 0.32 20.16 0.53 0.27

Table 3: BARF and BARF with Matching. Rotation error are in degrees where as the
Translation errors are in millimeters. Note that reported reconstruction results do not
use run time optimization as is done in [16].

Seq. BARF +Alignment BARF +Alignment
E Rot E Trans E Rot E Trans PSNR SSIM LPIPS PSNR SSIM LPIPS

Fern 4.10 8.70 3.13 6.65 11.86 0.33 0.67 12.42 0.32 0.63
Leaves 2.00 4.30 1.13 2.41 10.88 0.11 0.48 11.27 0.10 0.42
Orchid 0.74 5.58 0.38 2.15 13.43 0.23 0.32 14.45 0.27 0.29
T-rex 8.22 40.82 0.34 1.71 10.47 0.34 0.67 17.04 0.49 0.31
Flower 0.55 2.40 0.60 1.14 17.83 0.44 0.31 16.02 0.30 0.34
Fortress 11.84 63.84 2.19 13.31 11.48 0.30 0.62 16.33 0.35 0.39
Horns 3.39 28.26 1.71 13.96 11.90 0.27 0.62 13.37 0.30 0.54
Room 0.65 4.49 0.15 1.17 16.91 0.65 0.25 21.19 0.77 0.21
Mean 3.99 19.93 1.20 5.31 13.09 0.33 0.49 15.26 0.36 0.39

Table 4: Results on LLLF sequence with first five images used for training with and
without RGB Alignment. Rotation error are in degrees where as the Translation errors
are in millimeters. Note that this experiment do not correspond to the once reported
in DS-NeRF and other literature where training views are sampled uniformly to create
with large baselines.

run-time optimization as an accurate measure of view-synthesis errors. Table 3
shows the quantitative results of jointly optimizing the radiance field and camera
poses on standard train and test splits used in [16] on LLFF dataset. One can
clearly see the advantage of using direct matching which boost BARF camera
pose estimation on all sequences with an average of 60% in rotation and 53% for
translation. In particular, Trex and Horns despite having more than 50 image
for training sees maximum boost in performance. This improved camera pose
accuracy translates directly to the view synthesis performance. Figure 4 shows
the qualitative comparison for camera pose estimation and reconstruction for se-
lected sequences. It can be seen easily that the BARF rendered images does not
align with the ground truth and is shifted upwards while the generated depth
maps have more ghosting artifacts and structural inaccuracies. NeRFs trained
with direct alignment of RGB image mitigate both these problems and learns
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low entropy ray termination distributions with better poses. One can see the lim-
itation of direct RGB alignment where violation in photo-consistency hampers
reconstructions. However if the RGB alignment loss is replaced with alignment
loss of DINO features (capturing non-localized information about local patches)
and gradient images (capturing localizes features), these artifact can be avoided
to an extent while semi transparent object such as the glass support for the tiny
skull on the right can be recovered.

Ground Truth Vanilla BARF RGB Align DINO + Grad Align

Fig. 4: Qualitative comparison on joint motion and structure estimation on Horns
sequence. Top row shows test image follow by view synthesis from BARF, BARF
with direct RGB alignment and BARF with alignment of DINO features and image
gradients respectively. Next two row show the depthmaps and ray termination entropies
for different methods in column 2-4 while column 1 show ray termination distributions
for Vanilla BARF, and barf with RGB Alignment and DINO + GRAD Alignment.

Scan IDs
Methods Metric 24 37 40 55 63 65 69 83 97 105 106 110 114 118 mean

BARF 0.80 2.08 0.47 0.62 0.25 0.65 3.02 0.27 0.38 0.16 0.32 0.27 0.40 0.54 0.73
+RGB rotation 0.99 1.68 0.18 0.36 0.27 0.37 0.24 0.23 0.26 0.17 0.31 0.27 0.32 0.48 0.44
+RGB+SS 0.76 0.35 0.21 0.25 0.34 0.52 0.21 0.24 0.34 3.79 0.28 0.34 0.28 0.44 0.59

BARF translation 2.27 3.36 1.59 2.21 0.70 2.41 7.01 0.60 1.10 0.38 1.02 0.52 1.19 0.62 1.78
+RGB (×100) 2.84 3.27 0.47 1.17 0.95 1.26 0.54 0.58 0.57 0.44 0.88 0.69 0.74 1.01 1.10
+RGB+SS 2.5 0.91 0.63 0.78 1.25 1.45 0.41 0.70 1.06 11.22 0.67 0.97 0.53 0.99 1.72

BARF 9.34 8.46 12.92 20.24 9.85 13.16 17.79 12.65 8.93 11.34 13.35 15.19 13.77 15.46 13.03
+RGB abs. depth ↓ 5.01 6.86 2.30 2.80 4.64 3.77 1.95 4.09 1.85 2.47 2.24 3.18 1.16 2.55 3.20
+RGB+SS x100 4.65 3.77 5.79 2.12 5.03 3.37 1.69 3.51 2.36 9.64 1.81 3.03 1.61 1.78 3.58

Table 5: Absolute pose and depth accuracy evaluation on the DTU dataset [12] be-
fore test-time optimization, using 15% noisy pose initialization. Row blocks represents
rotation errors in degrees, translation errors in cms and absolute depth errors in cm
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To show the effect of sparse views, we repeat the aforementioned ablation
with using first five images in each sequence and report results in Table 4 and
Figure 5. Note that this is a particularly challenging setup due to small baseline,
less number of views and the test image being further away from training set
requiring view-extrapolation. It can be seen that while BARF starts failing com-
pletely in estimating camera pose for Fortress, Trex and Horns, the performance
of presented approach degrades gracefully with sparse view.

Finally, we evaluate effectiveness of proposed approach on large baseline
dataset DTU [12]. We use same architecture and training setup as used for
LLFF dataset with a couple of exceptions. For every frame, a surrogate view
is chosen from a neighbourhood starting from 2 frame till 5 frames on either
side of keyframe for direct alignment. We train BARF and our direct align-
ment assisted version (called +RGB in Table 5) for 100k iterations and report
the results. Additionally we experimented with deploying traditional Gaussian
scale-space based coarse-to-fine (dubbed +RGB+SS) procedure which is vastly
used in variational optic-flow estimation. For this we smooth input images while
training NeRFs with a Gaussian kernel with standard deviation 4 ∗ (1− γi). We
use a linear schedule to increase γi from 0 to 1 in first half of training. Quan-
titative result in table 5 show that the RGB image alignments immensely help
both camera pose and structure estimation despite lack of texture and change
in exposure between frames of the sequences. alignment with / without scale

Ground Truth Vanilla BARF RGB Aligned

BARF + Aligned

Fig. 5: Qualitative comparison on joint motion and structure estimation on sparse
fortress sequence. Top row shows test image follow by view synthesis from BARF
without and with direct RGB alignment respectively. Next two row show from left to
right the estimated poses and depth-maps for different methods in the same order as
row 1. It can be seen that while BARF fails to reconstruct a test-frame due to large
pose error as well as outfitted Nerf’s with ghosting artefacts, our approach provide
significantly better results.
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Ground Truth BARF RGB Aligned RGB+SS

Fig. 6: Visual comparison of depth estimates on DTU sequences.

space coarse to fine outperform baseline 12/14 and 11/14 cases for rotation and
translation estimation. We notice that scale space coarse to fine helps in pose
estimation for reasonably textured scenes but gets stuck into local minima for
pose estimation in very homogeneous scene. Absolute depth errors for proposed
work consistently outperform baseline by large margin despite the noisy pose
estimation. Figure 6 visualize selected depthmaps where one can clearly see the
ghosting artifacts as observed in many LLFF sequences which the direct align-
ment removes. Additional results, visualizations and implementation details can
be found in the supplementary material.

5 Conclusion

We present a simple but effective occlusion aware direct alignment loss and show
its effectiveness in learning radiance field. Our paper critically analyse the key
advantages of volume rendering and complement them with well studied direct
alignment. We show that, despite violation of the Lambertian assumption, di-
rect multi-view alignment of images helps circumvent the over-fitting problem in
training NERFs for most real scenes. Further, direct alignment helps in avoid-
ing local minima in joint camera pose estimation and reconstruction, without
requiring expansive optic-flow depth or other foundation models to regularize
NeRF. Our approach fails to reconstruct severely reflective or semi-transparent
surfaces. Like many NeRF and pose estimation methods ours too struggles with
large baselines without coarse pose initialization.
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