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Fig. 1. Results of our Content-Adaptive Style Transfer (CAST). CAST produces the
stylized image (left), given content image (top right), and style image (bottom right).

Abstract. We introduce Content-Adaptive Style Transfer (CAST), a
novel training-free approach for arbitrary style transfer that enhances
visual fidelity using vector quantized-based pretrained autoencoder. Our
method systematically applies coherent stylization to corresponding con-
tent regions. It starts by capturing the global structure of images through
vector quantization, then refines local details using our style-injected de-
coder. CAST consists of three main components: a content-consistent
style injection module, which tailors stylization to unique image regions;
an adaptive style refinement module, which fine-tunes stylization inten-
sity; and a content refinement module, which ensures content integrity
through interpolation and feature distribution maintenance. Experimen-
tal results indicate that CAST outperforms existing generative-based
and traditional style transfer models in both quantitative and qualita-
tive measures.
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1 Introduction

Style transfer represents a cutting-edge area in image editing research, with
widespread applications in cinematography, fashion, interactive gaming, and
more. Its primary goal is to adapt the style of an input image while preserving the
original content’s integrity, a technique popularized by the work [19]. This semi-
nal work spurred further research into learning-based methods [27,45,46,17,30,7]
and arbitrary style transfer [25,21,36,34,58,14]. Recent developments have sig-
nificantly benefited from the integration of attention mechanisms [48,16], which
enhance the transfer process by enabling more precise semantic correspondences
between style and content images. This is achieved through sophisticated manip-
ulations of the keys and values within attention operations [36,53,34,14,23,13].
Additionally, there has been a concerted effort to incorporate adversarial strate-
gies [20] into style transfer frameworks to further refine visual fidelity of the
resulting images [4,50].

Recently, generative models, especially diffusion models [41,22], have ex-
celled in style transfer by aligning closely with target domain distributions
[9,52,29,26,57]. However, their long inference time and large model size remain
significant drawbacks. As an effective alternative, vector quantized-based auto-
regressive models [47,18] that generate images through discrete token prediction
have been gaining attention. These models have been rapidly applied across var-
ious fields, including image generation [11,6], editing [28,5], and style transfer
[24,40,51,8]. They offer superior performance and faster processing speeds com-
pared to diffusion models when trained on the same datasets. However, auto-
regressive models still face challenges: they often require fine-tuning for specific
domains [51,40] or additional model training [8,24], which can be both cumber-
some and time-consuming.

In response to these challenges, we introduce the Content-Adaptive Style
Transfer (CAST), a novel, training-free approach for arbitrary style transfer.
This method is specifically designed to apply coherent styles to corresponding re-
gions within the content image, utilizing a feature space within decoding blocks.
Inspired by the hierarchical manner in which humans typically perceive or create
images [43], our approach initiates by capturing the global structure of the image
through vector quantization. Subsequent local details are then refined through
our decoder, which incorporates our newly designed style injection module into
the multi-scale quantization autoencoder described in [43]. This allows for op-
eration across multiple scales, significantly enhancing the style transfer process.
Importantly, this approach utilizes the high visual fidelity of vector quantization-
based generative models without relying on traditional training methods.

Our style injection module consists of three main components: Content-
consistent style injection, Adaptive style refinement, and Content refinement.
The Content-consistent style injection is based on the assumption that recogniz-
ing and adapting to the unique regions within the content image during styliza-
tion will preserve essential content information and yield more natural results.
Operating within the VAR decoder’s self-attention block, this technique clusters
the content image’s queries and categorizes them into distinct regions. Style im-
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Content-Adaptive Style Transfer 3

age features are then utilized as keys and values in the self-attention process,
allowing for the injection of similar styles into similar content, thereby enhancing
the naturalness of the stylized outcomes. The adaptive style refinement compo-
nent adjusts the stylization intensity in various areas of the image, building upon
the outcomes of content-consistent style injection. It intensifies stylization where
the initial style application is underrepresented and conserves well-stylized areas,
thus refining the overall aesthetic effect. This technique not only complements
but also enhances the results achieved by the initial style injection, ensuring
a balanced and refined visual presentation. The content refinement component
addresses distortions in content information that can arise from the prior two
processes. By employing interpolation within the decoder’s residual blocks and
maintaining pixel distribution in the feature map, it effectively preserves the
integrity of the original content, all without the need for additional training.

Extensive experiments demonstrate that the proposed method outperforms
state-of-the-art style transfer techniques, confirming its effectiveness. In sum-
mary, our primary contributions include:

– We propose a training-free arbitrary style transfer method that outperforms
all competitive traditional and generative model-based style transfer models.

– We present the Content-consistent style injection technique, designed to styl-
ize images according to the distinct regions of the content image.

– We propose the Adaptive style refinement technique, which effectively refines
stylization based on the feature differences with the style image.

– We introduce the Content refinement technique, which efficiently preserves
the content information of the stylized image.

2 Related work

2.1 Vector-Quantized image generation

VQVAE [47] pioneer the method for quantizing images into discrete tokens.
Subsequently, techniques have emerged that train these models alongside adver-
sarial loss from Generative Adversarial Networks (GANs) [20] to generate images
stably [18,11,2]. Furthermore, methods based on bi-directional transformers for
predicting masked areas in a non-autoregressive manner—as opposed to au-
toregressive transformers—have significantly accelerate the inference speed [6].
Recent advancements in vector-quantized image generation have led to signif-
icant successes, even surpassing diffusion models in image generation [55,43].
Parallel to remarkable progress in language models [35,15,37], models capable of
generating images conditioned on text have emerged, utilizing vector-quantized
methods [5,38]. Additionally, vector quantization techniques have been applied
across various fields, including processing sequential data like video [55,28] and in
applications such as image captioning, Visual Question Answering (VQA), and
image recognition [54,59]. These applications demonstrate the versatile applica-
tion of vector quantization in enhancing data representation and manipulation.
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4 J. Gim et al.

2.2 Traditional style transfer

Image Style Transfer, significantly advanced by [19], represents a landmark in
image stylization. This method leverages a pre-trained Convolutional Neural
Network (CNN), specifically VGGNet, to extract distinct content and style fea-
tures. However, traditional style transfer methods are known for their substan-
tial computational demands due to the per-image optimization approach. To
address this issue, [25] introduces Adaptive Instance Normalization (AdaIN),
which realigns the mean and variance of the source image features with those of
the style image, enabling real-time style transfer. Subsequently, [31,32] proposed
the Whitening and Coloring Transform (WCT), which aligns the entire covari-
ance matrix of the features to enhance stylization outcomes. With the advent
of attention mechanisms in neural networks [48,16], various style transfer mod-
els have been developed that leverage these mechanisms to achieve impressive
results [16,34,23,14,36,53], demonstrating the evolving nature of style transfer
technology.

2.3 Generative model-based style transfer

Generative model-based style transfer has heralded new opportunities through
the use of Generative Adversarial Networks (GANs) [20], diffusion models [22],
and Vector-Quantized Variational Autoencoders (VQVAE) [18]. Research such
as [4,50] has moved beyond mere style and content fidelity by incorporating
adversarial loss to enhance visual fidelity. Diffusion-based style transfer models
[9,52,44,29,10,1,26] employ latent diffusion models, trained on extensive datasets
[39], and incorporate style information during the denoising process via cross-
attention. This technique has demonstrated impressive results with a focus on
visual fidelity. Another significant advancement in this domain involves the use
of vector quantization for style transfer. This method, explored in works such as
[8,40,51], combines content output from image tokenizers with style information.
Notably, [24] has shown that quantized features maintain high visual fidelity,
which significantly enhances the quality of style transfer outcomes. However,
earlier models based on vector quantization faced limitations, such as the need
for a separate style codebook or extensive fine-tuning.

3 Preliminary: Vector quantization

The multi-scale quantization autoencoder in VAR model [43] consists of a VQ-
encoder E and a decoder D with a vector-quantization bottleneck Q. The en-
coder processes an image I, producing a raw feature map f̃ . These features are
then quantized through the bottleneck to generate the quantized feature map f ,
which is subsequently input into the decoder D. The decoder reconstructs the
image I ′ as follows:

f̃ = E(I), f = Q(f̃), I ′ = D(f),

I ∈ RH′×W ′×3, f̃ ∈ RH×W×CH , f ∈ RH×W×CH , I ′ ∈ RH′×W ′×3,
(1)
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Fig. 2. Overall pipeline of CAST. The initial vector-quantized features f0
c and f0

s are
extracted from the content image Ic and the style image Is using a VQ Encoder and
then combined using AdaIN to create the initial stylized feature f0

cs. This feature is
input to the decoder D∗, initially passing through N green blocks that incorporate CSI
and ASR modules, along with residual feature interpolation. The enhanced feature, f∗

cs,
then progresses through the N orange blocks equipped with a CDA module to produce
f ′
cs. In the subsequent process, the feature passes through the same structure as decoder
D, culminating in the stylized image Ics.

where H, W , and CH denote the height, width and channel of feature maps,
respectively. H ′ and W ′ represent the height and width of images. Given the
raw feature f̃ , the vector-quantization bottleneck Q quantizes this feature to
produce f , aligning each vector with the nearest vector in the learned discrete
codebook. The codebook z ∈ RK×CH consists of K vectors as follows:

fh,w = zk̇, where k̇ = argmin
k∈{1,...,K}

∥f̃h,w − zk∥2,

∀h = {1, . . . ,H}, ∀w = {1, . . . ,W}.
(2)

4 Method

4.1 Overall pipeline

Our model employs a VQ-encoder E and a vector-quantization bottleneck Q as
dervied from VAR’s multi-scale quantization autoencoder [43]. We design a new
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6 J. Gim et al.

structure for the decoder D∗ as illustrated in Fig. 2. The decoder receives the
content feature f0

c , style feature f0
s and the initial stylized feature f0

cs as inputs.
These features are defined as follows:

Ics = D∗(f0
cs, f

0
c , f

0
s ), where f0

c = Q(E(Ic)), f0
s = Q(E(Is)), (3)

where f0
cs is constructed using AdaIN [25] as follows:

f0
cs =

(
f0
c − µc

σc

)
· σs + µs, (4)

where σc and σs denote channel-wise standard deviation of content feature fc
and style feature fs, respectively; µc, µs represent the channel-wise mean of con-
tent feature fc and style feature fs, respectively. The initial stylized features f0

cs

are then transformed into high fidelity stylized features {fn
cs}2Nn=1 by being se-

quentially processed through 2N -number of decoder blocks (green, orange blocks
in Fig. 2). This transformation enhances the detail of the stylization, enabling
more refined and visually appealing outputs. Starting from the subsequent sec-
tion, we will simplify the notation by removing the block-specific term n from
the feature fn and denote it as f to streamline the equations and discussions.

4.2 Content-consistent Style Injection (CSI)

To achieve content-consistent style transfer, we utilize content features as queries
and style features as keys and values inspired by the successful stylization tech-
niques detailed in [9]. For all content-consistent style injection module in N green
blocks, the queries of content features Qc and the keys and values of style features
Ks and Vs are extracted as follows:

Qc = fc ·W q, Ks = fs ·W k, Vs = fs ·W v, (5)

where W q, W k, and W v are the weight matrices that transforms a feature f to
the query, key and value, respectively. To inject the appropriate style into each
region of a content image, we construct the set of cluster centroids {Q̄k

c}Kk=1 by
averaging the clustered content image queries Qc as follows:

Q̄k
c =

1

|Ck|
∑

Qh,w
c ∈Ck

Qh,w
c , (6)

where Ck denotes the set of content image queries that belong to cluster k and K
is the number of clusters. We then extract stylized clustered features f̄k

cs through
a cross-attention operation between the set of cluster centroids {Q̄k

c}Kk=1 and the
style image keys Ks and values Vs as follows:

f̄k
cs = Softmax

(
Q̄k

cK
T
s√

nk

)
Vs, (7)
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where nk denotes the dimension of the projected feature. Finally, we map the
stylized clustered features f̄k

cs into the image coordinates to produce the content-
consistent style injected feature f̂cs ∈ RH×W×CH for each block as follows:

f̂h,w
cs = f̄ k̇

cs, where k̇ = argmin
k∈{1,...,K}

∥Qh,w
c − Q̄k

c∥2,

∀h = {1, . . . ,H}, ∀w = {1, . . . ,W}.
(8)

4.3 Adaptive Style Refinement (ASR)

While content-consistent style transfer effectively aligns style features with cor-
responding content regions, this approach can sometimes result in the loss of
fine detailed information from style sources. This occurs because the region-wise
application tends to homogenize features within each region, potentially over-
simplifying or averaging out intricate textures and subtle variations. To tackle
this issue, we introduce an Adaptive Style Refinement module that refines the
style information in channels where the stylized features f̂cs are not adequately
representative of the style features fs. The refinement process begins by calcu-
lating an adaptive weight wadp that quantifies the degree of difference between
f̂cs and fs as follows:

wadp = S

(
1

HW

H∑
h=1

W∑
w=1

(
fs − f̂cs

))
, wadp ∈ RCH , (9)

where S denotes min-max scaling function. A large adaptive weight indicates
that the corresponding channel requires additional style information, while a
small adaptive weight suggests that no further style information is needed for
that channel. Lastly, we apply AdaIN [25] combined with the adaptive weight to
refine the style as follows:

fasr
cs = wadp

((
f̂cs − µc

σc

)
· σs + µs

)
. (10)

4.4 Content refinement

While Sec. 4.2 and Sec. 4.3 effectively injects style into each distinct region, we
observe that this often results in the dilution of essential content information. To
address this challenge and enhance content preservation during the stylization
process, we introduce a content refinement module.

Residual Feature Interpolation (RFI) We leverage the architecture of
the decoder, particularly noting how the self-attention block and the residual
block are connected via skip-connections. These connections allow for the preser-
vation and gradual integration of detailed content information, which is crucial
for the stable reconstruction of the image. Inspired by the methodologies dis-
cussed in [44], we employ the residual block connected to the self-attention as a
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8 J. Gim et al.

mechanism for content refinement. This is achieved by interpolating the stylized
features fcs with the original content features fc, enhancing the content fidelity
in the final output. The interpolation operation performed within the residual
block is defined as follows:

f rfi
cs = ResBlock

(
α · fcs + (1− α) · fc

)
, (11)

where α represents the interpolation weight, which determines the balance be-
tween the stylized and original content features. The function ResBlock(·) de-
notes a convolutional layer equipped with a residual block that facilitates the
integration of these features. The interpolated features f rfi

cs are added to the
adaptively refined stylized feature fasr

cs to obtain features f∗
cs that well preserve

both content and style information as follows:

f∗
cs = fasr

cs + f rfi
cs . (12)

This feature is then used as the input fcs in Eq. (11) for the subsequent block
(n + 1), which shares the same structure as the previous n, and this process is
repeated for N blocks. This configuration fine-tunes the extent to which content
features influence the overall composition, ensuring that critical attributes of the
content are retained while embracing the desired stylistic transformations.

Content Distribution Alignment (CDA) To ensure that the essential
content information does not undergo distortion during the stylization process
in the N -number of green blocks, we introduce a Content distribution alignment
technique that operates in the middle decoder blocks. This approach is particu-
larly vital as standard stylization techniques often alter the spatial relationships
and gradients within the content, which can lead to a loss of defining features
and perceived sharpness. The proposed technique aims to maintain the origi-
nal differences between adjacent pixels in the content image, thereby preserving
the structural and textural integrity of the content. This is achieved by aligning
the pixel-wise distribution of the stylized features f∗

cs with those of the origi-
nal content features fc. The alignment process involves adjusting the mean and
standard deviation of the stylized features to match those of the content features
as follows:

f ′
cs =

(
f∗
cs − µp

cs

σp
cs

)
· σp

c + µp
c ,

where µp
c =

1

CH

CH∑
ch=1

f ch
c , σp

c =

√√√√ 1

CH

CH∑
ch=1

(f ch
c − µp

c)
2
,

(13)

where µp
cs, µp

c are the pixel-wise means of the stylized and content features,
respectively, and σp

cs and σp
c are the corresponding standard deviations. This

feature f ′
cs is then utilized as the input f∗

cs in Eq. (13) for the subsequent block
(n + 1), which maintains the same structure as the previous n. This iterative
process is executed through a total of N blocks.

Subsequently, the stylized feature f ′
cs from the 2N-th block is processed in the

same manner as the original decoder D, resulting in the synthesis of the stylized
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Content-Adaptive Style Transfer 9

image Ics. This ensures seamless integration and refinement of style throughout
the network. The overall pipeline of the proposed stylization process is illustrated
on the right side of Fig. 2.

5 Experiment

5.1 Implementation Details

We conduct all experiments resizing images size by 512×512 and using the frozen
multi-scale quantization autoencoder proposed by VAR [43], trained on the Im-
ageNet dataset [12]. The autoencoder features a codebook size of 4,096 and a
quantized feature size of (32, 32, 32). The each number of blocks in the decoder
N is set to 3. We defaulted the number of clusters to 22 and the interpolation
weight α to 0.87. All experiments were performed on a single NVIDIA A6000
GPU.

5.2 Experimental setup

Traditional style transfer models often employ style and content losses for train-
ing and evaluation, based on the method [19]. However, these metrics can lead
to overfitting on style images and might not fully account for visual fidelity, po-
tentially resulting in unfair comparisons. Thus, we utilize a recently proposed
metric, ArtFID [49], which was validated through a large-scale user study. Art-
FID complements traditional style and content loss evaluation schemes, which
is computed as follows:

ArtFID = (1 + LPIPS(Ic, Ics))(1 + FID(Is, Ics))), (14)

where Ic and Is denote the content and style images, respectively, and Ics de-
notes stylized image. LPIPS(Ic, Ics) measures content fidelity between the con-
tent and stylized images, while FID(Is, Ics) assesses style fidelity. Evaluations
are performed under the same conditions as those in StyleID [9], using content
images from the MS-COCO dataset [33] and style images from the WikiArt
dataset [42]. All images were center-cropped to a size of 512×512 pixels. For
quantitative evaluation, we generate 800 stylized images by applying style trans-
fers to 20 content images and 40 style images from each dataset, following the
method used by StyleID [9].

5.3 Quantitative comparison with state-of-the-art style transfer
models

To evaluate our model, we conduct quantitative assessments against seven state-
of-the-art style transfer models—AesPA-Net [23], StyTR2 [13], EFDM [56], MAST
[14], AdaAttn [34], AdaConv [3], and AdaIN [25]—as well as four generative
model-based and one vector quantization based style transfer models, including
four diffusion-based models (DiffuseIT [29], InST [57], StyleID [9], DiffStyle [26])
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10 J. Gim et al.

Table 1. Quantitative comparison of ours with state-of-the-art traditional style trans-
fer models. The symbol ↓ indicates lower values are better.

Metric Ours AesPa-Net StyTR2 EFDM MAST AdaAttn AdaConv AdaIN

ArtFID ↓ 28.370 31.420 30.720 34.605 31.282 30.350 31.856 30.933
FID ↓ 17.788 19.760 18.890 20.062 18.199 18.658 19.022 18.242

LPIPS ↓ 0.5100 0.5135 0.5445 0.6430 0.6293 0.5439 0.5562 0.6076

time (s) ↓ 0.730 0.286 0.306 0.045 1.149 0.115 0.055 0.046
#Param (M) ↓ 108.95 24.20 48.34 7.01 17.12 26.57 62.83 7.01

Table 2. Quantitative comparison of ours with state-of-the-art generative model-based
style transfer models. The symbol * denotes for 256×256 resolution reproduction model.

Metric Ours DiffuseIT* InST StyleID DiffStyle* QuantArt

ArtFID ↓ 28.370 40.721 40.633 28.801 41.464 35.747
FID ↓ 17.788 23.065 21.571 18.131 20.903 23.558

LPIPS ↓ 0.5100 0.6921 0.8002 0.5055 0.8931 0.4556

time (s) ↓ 0.730 518.811 3.930 10.905 105.785 0.138
#Param (M) ↓ 108.95 552.81 1497.59 1066.24 553.84 112.35

and one vector quantization-based model (QuantArt [24]). Note that the data
in Tab. 1 and Tab. 2 are sourced from the work [9], with the exception of the
data for the QuantArt, which we obtain independently.

Comparison with traditional style transfer In Tab. 1, we present a
quantitative comparison with leading traditional style transfer models. Our re-
sults show that our method more accurately reflect the style from the style image
(measured by FID) and preserve the content from the content image (measured
by LPIPS) more effectively than traditional methods. This confirms that our
approach achieves a balanced style transfer as indicated by ArtFID.

Comparison with generative model-based style transfer To further
validate the efficiency of our proposed CAST method, we present a quantitative
comparison with contemporary generative model-based style transfer models in
Tab. 2. The results reveal that, with the exception of [9] and [24], most generative
model-based style transfer approaches struggle to preserve content information
adequately, as indicated by LPIPS scores. They also fall short in accurately re-
flecting the intended style, as measured by FID scores. Specifically, [24] maintains
content fidelity effectively but lacks style incorporation, leading to unbalanced
visual results. While [9] yields results that are closest to our CAST in terms of
style-content balance, our method surpasses it in terms of inference time, the
efficiency of parameter usage, and overall performance as measured by ArtFID,
thus demonstrating enhanced effectiveness and usability.
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Content Image Style Image Ours DiffuseIT StyleID DiffStyle

Fig. 3. Qualitative comparison with state-of-the-art generative model-based style
transfer models.

Content Image Style Image Ours AesPA-Net StyTR2 EFDM MAST AdaAttn AdaConv

Fig. 4. Qualitative comparison with state-of-the-art traditional style transfer models.

5.4 Qualitative comparison with state-of-the-art style transfer
models

Comparison with traditional style transfer To showcase the effectiveness
of our proposed method, we present a qualitative comparison with state-of-the-
art traditional style transfer models in Fig. 4. The results from this comparison
clearly demonstrate that our CAST model excels at preserving content integrity
while effectively reflecting the desired style across different regions. This leads to
a more cohesive and naturally stylized outcome across the entire image, surpass-
ing the capabilities of traditional models which often struggle to balance style
application with content preservation.
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12 J. Gim et al.

Comparison with generative model-based style transfer Similarly, we
also conduct a qualitative comparison with leading generative model-based style
transfer approaches, as illustrated in Fig. 3. These results reveal that many gen-
erative models either compromise too much content detail or do not adequately
capture the style essence, often resulting in a mismatch between style applica-
tion and content integrity. In comparison, while StyleID [9] shows results that
most closely resemble those of our CAST, it occasionally loses content details
or applies styles inconsistently, leading to less natural-looking outcomes. Our
model, by contrast, maintains a superior balance between style fidelity and con-
tent preservation, consistently delivering more natural and aesthetically pleasing
results.

5.5 Ablation Study

To validate the efficacy of our proposed techniques and ensure they perform as
designed, we conduct an ablation study. The results of this study are both quan-
titatively and qualitatively analyzed, with quantitative outcomes presented in
Tab. 3 and qualitative observations illustrated in Fig. 5. Notably, the quantita-
tive results shown in Tab. 3-(e) highlight the comprehensive impact when com-
bining all proposed methods: Content-consistent Style Injection (CSI), Adaptive
Style Refinement (ASR), Residual Feature Interpolation (RFI), and Content
Distribution Alignment (CDA). In Tab. 3-(a), the initialization using AdaIN
demonstrates effective style reflection while preserving content. The results from
Tab. 3-(b) reveal that our CSI module significantly enhances both FID and
LPIPS scores by ensuring content-consistent stylization, although it indicates
that optimal stylization has not been fully realized. Tab. 3-(c) shows that the
ASR module addresses the stylization shortfall noted previously, albeit at a
slight cost to content fidelity. Further analysis in Tab. 3-(d) and (e) affirm that
RFI and CDA effectively maintain the overall and detailed content information,
respectively.

Qualitative assessments in Fig. 5 complement these findings. Fig. 5-(a) shows
an under-stylized image that lacks content consideration. Fig. 5-(b) displays
natural stylization with differentiated styles applied to various content regions,
though still slightly lacking in depth. Fig. 5-(c) confirms the effective compen-
sation for this deficiency. Fig. 5-(d) verifies the preservation of overall content
across the image, and Fig. 5-(e) demonstrates the precise adjustment of addi-
tional content details. These visual results confirm that our proposed methods
function according to design specifications.

5.6 Number of cluster

The Content-consistent Style Injection module plays a vital role in enabling
region-aware style transfer. To assess how the number of clusters impacts this
module, we conduct an additional ablation study. The results, detailed in Tab. 4-
(Left), demonstrate that the number of clusters significantly influences both the
degree of stylization, as measured by FID, and content preservation, as assessed
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Table 3. Ablation study on the initial AdaIN, Content-consistent Style Injection (CSI),
Adaptive Style Refinement (ASR), Residual Feature Interpolation (RFI) and Content
Distribution Alignment (CDA).

Component Quantitative Metrics
# init AdaIN CSI ASR RFI CDA ArtFID ↓ FID ↓ LPIPS ↓
(a) ✓ 31.797 19.909 0.5207
(b) ✓ ✓ 29.698 18.553 0.5188
(c) ✓ ✓ ✓ 29.546 16.875 0.6530
(d) ✓ ✓ ✓ ✓ 28.372 17.578 0.5271
(e) ✓ ✓ ✓ ✓ ✓ 28.370 17.788 0.5100

Content Image Style Image (a) (b) (c) (d) (e)

Fig. 5. Qualitative results showcasing the impact of applying/omitting the proposed
modules. The results from (a)-(e) correspond to the configurations in Tab. 3

by LPIPS. These findings led us to conduct all subsequent experiments using 22
clusters, a configuration that yielded the most balanced results in style transfer.

5.7 Interpolation weight

To preserve content information that might be lost during the Content-consistent
Style Injection and Adaptive Style Refinement phases, we implement interpola-
tion within the residual blocks. To evaluate the effects of different interpolation
weights on our model’s performance, we conduct further experiments as detailed
in Tab. 4-(Right). These results highlight the significant impact of interpolation
weight on both the degree of stylization and content preservation. A lower in-
terpolation weight (α = 0.1) leads to excellent content preservation as indicated
by LPIPS, but it also results in insufficient stylization, as reflected by higher
FID scores. Conversely, increasing the interpolation weight enhances stylization
at the cost of content preservation. This illustrates a clear trade-off between the
two metrics. Based on our findings, we selected an interpolation weight of 0.87
for all experiments, as it offers the most balanced results between stylization and
content preservation.
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Table 4. Ablation study on the number of clusters (Left) and the interpolation weight
(Right). The symbol ↓ indicates lower values are better.
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Table 4. Ablation study on the number of clusters (Left) and the interpolation weight
(Right). The symbol ↓ indicates lower values are better.

# of Clusters ArtFID ↓ FID ↓ LPIPS ↓
4 28.508 17.698 0.5247
8 28.444 17.775 0.5150
12 28.480 17.833 0.5122
16 28.547 17.883 0.5118
20 28.596 17.927 0.5109
22 28.370 17.788 0.5100
24 28.432 17.834 0.5097
28 28.424 17.831 0.5094

α ArtFID ↓ FID ↓ LPIPS ↓
0.1 33.925 26.839 0.2186
0.3 33.241 25.856 0.2377
0.5 31.990 23.939 0.2827
0.7 29.822 20.640 0.3781
0.87 28.370 17.788 0.5100
0.9 28.398 17.473 0.5373

6 Conclusion

In this paper, we present the Content-Adaptive Style Transfer (CAST), a pio-
neering training-free approach for arbitrary style transfer that capitalizes on vec-
tor quantization-based models. This approach includes several innovative tech-
niques. We introduce the Content-consistent Style Injection technique to ensure
precise stylization that is tailored to the unique regions of the content image,
facilitating a natural integration of style elements. Additionally, we propose the
Adaptive Style Refinement technique, which fine-tunes stylization based on the
nuanced differences between the style and stylized image features. We also de-
sign the Content Refinement technique, which effectively preserves the content
information of the stylized image, maintaining the integrity of the original con-
tent. Our experimental results demonstrate that CAST achieves state-of-the-art
performance in both qualitative and quantitative evaluations compared to ex-
isting generative and conventional style transfer models. Looking ahead, there
is potential to extend our proposed method to accommodate various input style
prompts, such as text, broadening the applicability of our approach to a wider
array of artistic and design purposes. This future direction promises to further
enhance the capabilities of style transfer technology, making it more versatile
and accessible for users seeking to creatively combine textual descriptions with
visual content.
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