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Abstract. In this paper we propose minimal solvers for relative pose
estimation for two views of the projected silhouettes of two 3D cylin-
ders. Using such line features instead of the standard point feature cor-
respondences means more stable information (i.e. more stable to lighting
condition, seasons, changes in environment etc.). Such features also lead
to more compact and semantically interpretable representations in 3D
as opposed to standard 3D point feature clouds. In this paper we show
how it is possible to transform the problem into a simple parameteriza-
tion where we can represent the problem as a set of six polynomials and
provide solvers for their solutions. Through tests in synthetic and real
settings we show that the solver is accurate and stable in the presence
of added and inherent noise. Our code is publicly available1.
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1 Introduction

In order to understand the world, we as humans make simplifications to interpret
it. We typically use geometric primitives, to represent and build up the world,
see e.g. the ideas of Marr [31], and the recognition-by-components (RBC) theory

1 https://github.com/hamburgerlady/cylinder-SfM

Fig. 1: An example of the target problem. Left and middle show two images of cylinder
shapes from the Storm King Sculpture park in New York state. Note that there are no
possible point feature correspondences between the two images, due to the view-point
change. Traditional feature point based methods for SfM will hence fail. To the right
is our reconstruction shown, based on cylinder geometry estimation.

This ACCV 2024 paper, provided here by the Computer Vision Foundation, is the author-created version.
The content of this paper is identical to the content of the officially published ACCV 2024

LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/accv
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2 A. Gummeson and M. Oskarsson

of Biederman [7]. These ideas were put forward mostly in the context of object
recognition, but are equally relevant for computer vision tasks such as 3D under-
standing and positioning and localization. Today, geometric estimation in Struc-
ture from Motion (SfM) and Simultaneous Localization and Mapping (SLAM)
applications is primarily built upon explicit representations (sparse 3D-points
and camera matrices). Methods for extraction of semantic information from im-
ages are on the other hand typically highly data driven, and the representations
are to a large extent learned and coded implicitly in neural network architectures.
Many existing systems built to do SfM and SLAM work efficiently [35, 42, 43].
Sparse point clouds are well suited for matching, camera geometry estimation
and optimization. However, there are significant problems with scaling to very
large scenes, and with stability over time [41]. These methods are also not well
suited for downstream tasks such as interpretation and recognition.

As an overall goal we would like to investigate the use of mid-level repre-
sentations that carry more semantic meaning than simple points do, such as for
example cylinder shapes. In this paper we will specifically study the problem
of relative pose, given cylinder silhouette correspondences in two views. We will
show that it is possible to estimate both the camera and cylinder geometry given
only the silhouettes of two cylinders and two cameras. Note that we in this paper
restrict image information to the silhouettes of the sides of cylinders, and not the
apparent contours of the cross sections, i.e. we consider infinitely long cylinders
(analogous to using lines as opposed to line segments for line geometry). Our
focus has been on the geometric estimation, but line segment detectors have ma-
tured over the last years, [13,37,38,48,51] and we foresee that they will soon be
applicable for many general computer vision tasks. An example of the problem
setup is shown in Fig. 1. Here two images of a number of cylinders are shown.
Note that since the images are taken from opposing views, there are no common
point features seen in these images. This means that any point based method
for SfM will fail. In general line correspondences will not give any constraints on
the camera geometry in two views, but since we know that the silhouette lines
lie on the cylinder outlines this will give constraints on the geometry. The 3D
reconstruction to the right in the figure is based on our proposed near minimal
solver given two cylinder silhouette correspondences. Given this initial solution,
the other cylinders can be triangulated using the estimated camera matrices.

Our main contribution is a near minimal solver, that can be used for robust
and accurate estimation of two view relative pose, given two or more cylinder
silhouette correspondences. We show in our experiment that it works on a diverse
set of scenarios, and on scenes that cannot be reconstructed using previous SOTA
methods.

1.1 Related work

The previous work on geometric estimation involving quadrics and conics are
primarily based on general projective models, [14, 30], and not using calibrated
cameras. There are several results on pose or homography estimation and relative
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pose, e.g. in [17,18,23,33,34], and relative shape from two views was considered
in [22,40] which is closely related to the theory for general silhouettes, [1, 2].

A very relevant paper to us, is the work of Navab et al. [36], where they
present algorithms for pose, 3D reconstruction and structure from motion from
cylinders. Here there are however not given any explicit solvers for relative pose
estimation. The problem of absolute camera pose from cylinder silhouettes was
considered in [19]. The works from [50] and [45] address camera calibration,
based on cylinders, but using the apparent contours of the ends of finite cylinders
instead. The inverse problem, camera position from known cylinders, is covered
in [19]. Triangulation methods for planar conics [21] and more complex surfaces
based on line representations [24], have been proposed. More recently, work on
cylinder triangulation has been given [20].

The most closely related work to ours is the work of Tegler et al. [46] where
they give solutions to relative pose. There they, however, consider only the sim-
plified case where all cylinders are parallel. This simplifies the geometry signifi-
cantly.

Our proposed solver is targeted for use in robust estimation schemes such as
RANSAC [16]. Following Fischler and Bolles, there have been many proposed
improvements to the original algorithm, based on improved scoring [3,5,6], better
sampling [11,39,47], early sample rejection [10] and early stopping criteria [32].
Many other variants have also recently been published [9,39,49]. Many modern
RANSAC methods include local optimization to work with less accurate initial
models, such as LO-RANSAC [12], LO+-RANSAC [29], MAGSAC++ [5] and
GC-RANSAC [4]. Recently it has been shown that in many cases it is more
favourable to have models based on very few correspondences, even though these
might yield less accurate models [15]. Our method fits very well into this modern
scope of RANSAC.

2 Cylinder Geometry

A 3D cylinder can be defined using polynomial constraints based on its radius,
direction and translation. When this cylinder is projected into a calibrated cam-
era, the silhouette lines will additionally depend on the camera rotations and
translations in 3D. This section will give a short explanation of these geometri-
cal properties and its effect on the polynomial constraints. For more information
on the geometry of cylinders and quadric surfaces the reader is referred to the
excellent book by Semple and Kneebone [44].

Any quadric surface in 3D can be expressed with the quadratic equation

UTCU = 0, (1)

where U ∈ P3 is any point on the quadric surface expressed in homogeneous
coordinates and C is a 4×4 symmetric matrix defining the quadric locus. Equiv-
alently we may express the quadric in its dual form

ΠTDΠ = 0, (2)
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where Π ∈ P3 is any tangent plane to the quadric and D is the inverse matrix to
C (up to a non-zero scalar). It should be noted however that in the special case of
cylinders C does not have full rank, but rank 3. The problem of finding an inverse
is solved by an intermediate projection into 2D, onto any plane perpendicular
to the direction of the cylinder. Here we may find an inverse to the reduced C,
representing the circular cross-section of the cylinder. In addition to this we need
to represent the direction v of the cylinder in 3D.

The back-projected cylinder silhouette lines should tangent the cylinder, and
(2) can be expressed in the camera matrix P and projected silhouette lines l
using

Π = PT l (3)

and the resulting equation is

lTPDPT l = 0. (4)

In addition to this constraint, we should also have that back-projected planes
(PT l) should intersect in a line containing the point at infinity, corresponding
to the cylinder direction v, i.e.

lTPv = 0. (5)

These are the two constraints that a cylinder silhouette line will pose on the
geometry.

3 Relative Pose

The problem of relative pose is to find both camera parameters (rotations and
translation in the calibrated case) and the 3D features. Normally these 3D fea-
tures may be points, but in this paper we consider infinite cylinders with defining
variables radius, direction and translation. Each cylinder has five parameters. A
calibrated camera has six degrees of freedom. For each silhouette line in each
view we get the two constraints given by (4) and (5). This means that if we use
both silhouette lines for each cylinder, we get 4MN constraints in total for M
cameras and N cylinders. If we want to know when the relative pose problem is
well posed, we may count the unknowns and compute to the number of equations
we have. Due to the gauge freedom in a relative pose problem we are able to
choose the coordinate system with seven degrees of freedom (three translation-,
three rotation- and one scale-parameter). In total we have 4MN−(6M+5N−7)
excess constraints. This number is given in Table 1 for different combinations of
M cameras and N cylinders. We see that we have an interesting near minimal
case, for two views of two cylinders. This is the case that we will consider in this
paper.

3.1 Problem parameterization

We now turn to the near minimal case of two cylinders and two cameras. We will
here describe how we can simplify the problem, to ensure a fast and accurate
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Table 1: Excess constraints 4MN − (6M + 5N − 7), for multiple view geometry of
cylinders, with M cameras and N cylinders. In this paper we develop methods for
solving the near minimal case of M = 2, N = 2.

N cylinders
1 2 3 4 5

M
ca

m
er

as 1 0 -1 -2 -3 -4
2 -2 1 4 7 10
3 -4 3 10 17 24
4 -6 5 16 27 38

solver. Denote the cylinders C1 and C2 and the cameras P1 and P2. To remove as
many variables as possible before applying the solvers we may rectify the cameras
in accordance with cylinder C1, and also rotate P1 as to center cylinder C1 in
view one. The result after rectification is that the cylinder in camera coordinates
has a vanishing point at [0 1 0]. This is done by rotating the camera. The effect
of rectification is that the projected silhouette lines is on the form x = x0 in
the camera. See figure 2. When rectifying, the intersection between the lines in

C2

r2

r1

v

P1

C1

lP1C1

ΠP1C1

P2

Fig. 2: Setup of cameras and cylinders after cameras P1 and P2 have been rectified to
cylinder C1. We denote the radii r1 and r2 respectively. lP1C11 and lP1C12 are the lines
in camera P1 from the silhouettes of C1. The tangent plane to C1 that give rise to one
of these lines is ΠP1C1 . v is the directional vector of C2, or alternatively the vanishing
point at which C2 is pointing.

the image is calculated and this is the vanishing point of the cylinder in camera
coordinates. A rotation matrix for the rectification can then be constructed using
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any orthogonal vectors to the infinity point (note that we still have freedom
in rotating around the axis of the vanishing point, i.e. the y-axis). We select
vectors such that the cylinder still is in-front of the camera. For details on image
rectification see e.g. [8]. We may also choose the global coordinate system such
that camera one is

P1 = [I 0]. (6)

These operations removes the x-component of the cylinder translation and both
silhouettes of C1 projected into P1 will result in the same equation, so only one
needs to be considered. The scale of the system can be set such that the shortest
distance pz from camera P1 to center line of C1 is equal to one. The radius of
cylinder 1 follows directly from pz = 1, using similarity and the position x of the
straight line projected into camera 1. See figure 3 for the triangles in question.
(Note that they are represented in different coordinate systems). The result is
that r1 = |x|/

√
x2 + 1. All these changes can be done without loss of generality.

Camera center Camera center

x

p_z

r_1

Image plane
1 pz

x
r1

Fig. 3: The similar triangles used to calculate r1

The inverses of the rectifying rotations can be applied after we have run our
solver, to restore the cameras to the original coordinate system. The result of
these modifications is that camera P2 has four remaining degrees of freedom:
the translation and one rotation angle around the y-axis. Cylinder C2 has five,
namely the direction, two translation parameters (the translation in direction of
vanishing point, v, is superfluous) and radius r2. The direction of C1 is directly
given, since we have set the coordinate system from the rectified P1 at the origin.
The direction for C2 can be calculated knowing that the planes Π (equation 3)
from camera P1 defined by the projected silhouettes are tangents to the cylinder,
and consequently their normals are orthogonal to the cylinder vanishing point.
This vanishing point is calculated as the cross product of the two normals. In
the next sections we show how to estimate the remaining variables.

3.2 Estimation of relative rotation

We will now show how the rotation of camera two can be estimated. Since we
have a rectified system, the rotation RP2

will be on the form

RP2 =

 a 0 b
0 1 0

−b 0 a

 , a2 + b2 = 1 (7)

2550



Relative pose from cylinder silhouettes 7

Now, this rotation should move the direction of cylinder C2 so that it coincides
with the vanishing point of the corresponding silhouette lines of C2 in view 2,
i.e.

ΠP2C2v = PT
2 lP2C2v = 0. (8)

This gives an equation system with two equations which are linear in the un-
knowns a and b. In order to ensure a true rotation, the variables have to be
normalised to enforce that a2 + b2 = 1. This additional constraint corresponds
to the over-determinedness of the whole problem.

3.3 Solving for the remaining variables

In total we now have six unknowns remaining to be estimated, three translations
in space for P2, two translations for C2 and the radius of C2. We use (4) to get
an equation system of six equations to solve for our variables, where the cylinder
dual for C1 is given by

D1 =


−p2z 0 0 0
0 0 0 0
0 0 (p2z(1 + l2x)− p2z) pz(1 + l2x)
0 0 pz(1 + l2x) (1 + l2x)

 . (9)

Here pz = 1 is the distance from P1 to midpoint of C1 and lx is the value defining
the line lxx+ 1 = 0 when C1 is projected into P1. The other cylinder dual is

D2 = AC−1
0 AT (10)

where

C−1
0 =


−r22 0 0 0
0 0 0 0
0 0 −r22 0
0 0 0 1

 (11)

and
A =

[
RC2 tC2

0 1

]
. (12)

The equation system to be solved is:

lTP2C11
P2D1P

T
2 lP2C11 = 0

lTP2C12
P2D1P

T
2 lP2C12 = 0

lTP1C21
P1D2P

T
1 lP1C21 = 0

lTP1C22
P1D2P

T
1 lP1C22 = 0

lTP2C21
P2D2P

T
2 lP2C21 = 0

lTP2C22
P2D2P

T
2 lP2C22 = 0

(13)

Due to our parameterization, the first two equations are only functions of the x−
and z-coordinates of the translation of P2. This means that we can solve these
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equations independently of the other variables. This system has in general four
solutions, and we have constructed a fast solver using the Grobner basis solver
generator from [27,28].

The radius r2 of cylinder C2 only appears in quadratic form and if we consider
r22 as our variable all four following equations are linear in r22, so it is easily
eliminated. Left is a small system three equations in three unknowns, namely the
two translation parameters of C2 and the y−coordinate of the camera translation
of P2. Here we have constructed a solver based on the Grobner basis solver
generator from [27,28]. This solver gives in general eight solutions. This special
system can also be solved using the E3Q3 solver from Kukelova et al. [25],
which we have also tested. In total we get maximum 4 ·8 = 32 solutions from the
collective solvers. To find the correct solution one may use additional knowledge,
for example the projection lines of an additional cylinder, and a procedure for
this is described in Section 4.

3.4 Degenerate cases

The previous sections describe the case when we have cylinders in general forms.
In some cases, special geometric setups will cause the solvers to fail. One degener-
ate case is when we have truly parallel cylinders. This gives an under-determined
system along the translation in direction of the cylinders. This special case calls
for a reduced system of equations with fewer variables (a reduction to a 2D
problem) and was addressed by Tegler et al. [46]. However, we will show in Sec-
tion 5.4 that we may still apply the solvers to almost parallel cylinders, and
not much deviation is needed for a functional model. Another degenerative case
would be if either of the cameras is placed within the infinite extension of one
of the cylinders. Then no tangent planes will pass through the camera center.
When the center-lines of the cylinders intersect we introduce ambiguity of where
the cameras may be placed. One may construct other, less obvious, cases but we
have not made sufficient analysis to be able to present this in the paper.

4 Consensus estimation from two views

Our solver will give a number of hypotheses, and we would like to estimate which
solution is the correct one. Typically in a RANSAC loop one would estimate
models on minimal or small subsets of data, and then check this model on the rest
of the data, and in the end choose the model with largest support. In our problem
there are a number of ways that we can do this. First of all, since our solver is
not strictly minimal, we can check already in the rotation estimation stage if
the chosen correspondence is possible. In Section 3.2 we estimate the rotation
parameters a and b linearly. However, in order for this to be a valid rotation
a2 + b2 = 1. So checking the norm of (a, b) gives a constraint that can rule out
false correspondences. Note that there could be possible false correspondences
that still fulfill this constraint.
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For the different solutions, we can use cheirality to rule out a number of false
or geometrically invalid solution candidates. This now gives us a set of up to 32
models to work with.

When we have estimated our multiple camera models, we want to check
these models on the rest of the data. We could for instance triangulate the
other cylinders using the estimated cameras, and then check the reprojection
errors. But we have opted for a faster and simpler check. For a rectified system,
the cylinder has three unknown parameters, the center point and the radius.
For two given views we have four constraints on these parameters. We have
tested to algebraically eliminate the three unknowns from the four equations.
This gives a final equation that we can evaluate for each cylinder to check if it
is consistent with our estimated cameras. We found however that this is quite
numerically difficult to use, and set thresholds. Instead we have tried a more
geometric approach. We relax the assumption of our cylinder to have circular
cross-section, and estimate two (camera axis parallel) radii (and eliminate the
center point) from the four equations. We then check the ratio of these radii. If it
is close to one, then the cylinder is consistent with the estimated cameras. This
gives and efficient and geometrically valid way of checking inliers in RANSAC.

5 Results

We will in this section present experimental results both on synthetic data and
real images from a number of different scenery. We will show that our method
works well as an initialization module for an intended cylinder based SfM system.
Our focus has not primarily been on the system aspects, but rather on thorough
testing of the properties of the solver in a number of scenarios.

5.1 Synthetic data

We construct and use our solvers in Matlab. To test the numerical stability of
the solvers we generated a large number of random problem instances, and ran
the solvers based on this input data. These problem instances were generated
without any noise in the measurements. For the E3Q3-solver [25] we use the
implementation in [26]. The resulting errors, intrinsic to the solvers can be seen
in Fig. 4. One can see that all solvers get close to machine precision. It should
be noted that the E3Q3 solver is almost 10 times faster than the Grobner basis
solver. To test the dependence of noise of the solvers and our problem formula-
tion, we again generate a large number of synthetic problem instances. We then
add Gaussian noise to the lines with increasing standard deviation. The results
can be seen in Fig. 5. The noisy lines are constructed by finding the point on
the line closest to the center point in the image. The two points one length unit
away from the center point are calculated and Gaussian noise with standard
deviation σ is added. The line through these points are the new lines used for
calculation. Since the error is dependant on not only noise level, but distance
between points to define the line, scale set in 3D, angle between cameras etc. the
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10 A. Gummeson and M. Oskarsson

Fig. 4: Distribution of the log10-error of our two solvers and the E3Q3-solver when
applied to random synthetic data without noise.

most noteworthy in this experiment is the linear response to noise. The setup
for this experiment is cylinders with diameter 1 meter, 10 meters from camera
1.

5.2 Roller coaster experiment

We now test our method on real data. We have two images with the same five
cylinders visible. Here the cameras are calibrated. In order to get ground truth
estimates for the cameras we ran COLMAP with standard settings [42, 43]. We
use the estimated camera geometry as pseudo-ground truth for this experiment.

The silhouette lines for the two images were extracted manually. We run
our algorithm for each combination of two different cylinders. Note that the
procedure is not symmetric in the chosen cylinders so we get two different results
for the same pair of cylinders. Example of re-projected result cylinders can be
seen in Fig. 6. Results for all combinations can be found in Table 2. Here we can
see that the performance can be sensitive to the chosen cylinder correspondences,
but for a large amount of combination we get small errors.

5.3 Storm King experiment

We have in this experiment two images taken from the sculpture park Storm
King, situated in New York, shown in Fig. 1. We manually extracted silhouette
lines from the images. We then ran our minimal solver in a RANSAC manner
on all possible silhouette correspondences. Here it is completely feasible to do
exhaustive sampling due to the small number of line features. We used the con-
sensus check described in Section 4. This enables us to get an accurate solution,
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Table 2: Result table for roller coaster experiment. Radius is the estimated radius
of cylinder two. The Relative error is the relative error of the radius of cylinder two.
Rotation is the rotation error of camera P2 in degrees and translation is the Euclidean
distance between estimated and ground truth position of camera P2. Cases cylinders
= [1 5] and cylinders = [2 3] can be seen in figure 6. for comparison, the distance
between cameras are 1.57m

Cylinder 1 Cylinder 2 Radius Relative error ∆θ (deg) ∆xyz (m)

1 2 0.728 0.067 1.574 1.615
1 3 0.377 0.517 2.031 1.340
1 4 0.485 0.378 12.077 1.435
1 5 0.101 0.871 6.850 2.160
2 1 0.016 0.980 0.292 1.246
2 3 0.279 0.642 3.785 0.908
2 4 0.750 0.039 12.516 1.522
2 5 0.343 0.560 2.977 2.165
3 1 0.709 0.092 1.966 1.655
3 2 0.220 0.718 3.920 0.769
3 4 0.340 0.564 20.320 1.608
3 5 0.003 0.997 28.215 2.057
4 1 28.816 35.944 14.301 0.968
4 2 0.584 0.251 16.377 1.349
4 3 0.032 0.959 25.907 1.200
4 5 0.024 0.969 11.751 2.094
5 1 21.358 26.382 6.804 1.702
5 2 0.016 0.980 2.608 1.658
5 3 0.018 0.976 51.587 2.083
5 4 0.068 0.913 28.949 1.458
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Fig. 5: Median errors for synthetic data in response to noise with increasing standard
deviation. For the translations of P2 and C2 the error is the Euclidean distance between
estimation and ground truth. Here vp stands for vanishing point and is the angular
error between estimated and true v. The plot to the left is our solvers, right is our first
solver followed by the E3Q3 solver.

that is consistent with all the cylinder silhouettes. In Fig. 7 the original images
with reprojected lines are shown. The cyan lines correspond to the best chosen
solution in the RANSAC loop. The other lines (in purple) are based on trian-
gulated cylinders. The cylinders were triangulated using the estimated cameras
using the method from [20]. The full 3D reconstruction is depicted to the right in
Fig. 1. Note that all these results are without any additional bundle adjustment
or non-linear refinement.

5.4 Forestry experiment

In this experiment we test how well our solver works in a challenging scenario.
To the right in Fig. 8 two images of a forestry scene are shown. This data
is from [19], with given ground truth cameras. Here we have non man-made
structures (trees) that are not perfect cylinders, and they are close to parallel.
We ran our solver on two example trees, and checked the results against the
ground truth cameras. The reconstruction from a top view is shown to the left in
Fig. 8. Also shown are the ground truth cameras. One can see that both position
and camera direction are quite accurate in this case. Note that the results are
only based on the minimal solver, without any additional non-linear refinement.
Since we only use two cylinders here, we chose the solution from the minimal
solver that was closest to the ground truth cameras. In Table 3 numerical results
on the errors are given. We also compare with the solver by Tegler et al. [46]
that assumes parallel cylinders. We get better rotation estimates, but slightly
worse planar translation estimate. Note however that since their method assumes
parallel cylinders, they do not get a camera height estimate at all.
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Fig. 6: Results of roller coaster experiment. The projections of the estimated cylinders
C1 and C2, using the estimated cameras P1 and P2 are shown in green and purple. The
original input lines are also plotted. Top and bottom show two successful runs based
on two different cylinder inputs.

Fig. 7: The two images from the Storm King experiment. In cyan, the reprojected
silhouettes from the estimated two cylinders and cameras are shown. The purple lines
show reprojections from triangulated cylinders, based on the minimally estimated cam-
era geometry.

Table 3: Errors for the estimates in the forestry experiment. We show viewing direction
errors compared to the ground truth cameras, the planar position error and the height
error. The scale in meters is given by the ground truth cameras. Results are given for
the proposed method and compared to the method of Tegler et al. [46]. Note that since
they assume parallel cylinders they do not get a height estimate of the cameras.

∆θ (deg) ∆xy (m) ∆z (m)

Proposed 6.0 0.18 0.48
Parallel solver [46] 10.8 0.085 -

2557



14 A. Gummeson and M. Oskarsson

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

29 ttttdd
Estimated P1

Estimated P2

GT P1

GT P2

Estimated C1

Estimated C2

Fig. 8: To the left our reconstruction of the forestry scene, seen from above. The two
estimated cylinder outlines are shown circles, in yellow and orange respectively. The
two estimated cameras are shown in blue and red, where the lines indicate the viewing
directions of the cameras. The corresponding ground truth cameras are shown in green
and cyan. To the right are the two images, with reprojected silhouettes, given the
estimated cameras and cylinders.

6 Conclusion

In this paper we have proposed minimal solvers for relative pose estimation
based on projected silhouettes of 3D cylinders. We have shown how these solvers
can be used to reconstruct cylinders in 3D, using only the projected silhouette
lines in two views. Cylinder representations enable robust SfM, that is more
stable to environment changes, and also enable further semantic processing in
down-stream tasks. For some cases, the proposed solver targets problems that
are infeasible using traditional point features, due to e.g. completely opposing
views with no correspondences.

Future work will involve implementing the methods on a system level, in-
corporating e.g. cylinder line feature detectors and bundle adjustment. In this
paper we have targeted the fully calibrated case, but it could be possible to look
at cases where only partial camera calibration is known.
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