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Abstract. Tracking-by-detection typically involves associating detec-
tion boxes across frames in a video sequence. A common approach is
to use Kalman filter for prediction and matching with detection boxes
based on IoU. However, the Kalman filter is a linear prediction method,
which, in scenarios involving camera motion or nonlinear object motion,
will result in issues like ID switching or tracking loss. To address the
problem, we propose a method that leverages phase correlation to cal-
culates the translational relationship between adjacent frames, maping
target positions into the current frame’s coordinate system. This posi-
tional correction effectively compensates for the shifts caused by camera
movement, significantly reducing ID switches. Furthermore, our method
distinguishes between the motion and stationary states of trajectories,
thereby enhancing tracking stability and accuracy. Our experimental re-
sults demonstrate that the proposed approach attains real-time efficiency
and excels in scenes with camera motion. It achieves an MOTA of 80.17%,
IDF1 of 78.93%, and HOTA of 64.04% on the MOT17 test sets, surpass-
ing mainstream works in terms of multiple performance indicators.

Keywords: Mutli-object tracking · Tracking-by-detection · Kalman fil-
ter · phase correlation.

1 Introduction

Multi-object tracking (MOT) is a fundamental problem in the realm of computer
vision, aiming to accurately detect and track multiple objects simultaneously in
dynamic environments. MOT boasts extensive applications across diverse do-
mains such as autonomous driving, smart transportation systems, and video
analytics. The task involves the continuous monitoring and localization of mul-
tiple objects within a video stream, enabling crucial functionalities like object
interaction analysis, behavior understanding, and scene understanding.

Tracking-by-detection has emerged as the prevailing paradigm in the contem-
porary field of multi-object tracking. The process entails initially detecting ob-
jects within each frame to ascertain their spatial positions. Subsequently, these
detections are linked across consecutive frames to form coherent trajectories,
providing a comprehensive understanding of object movements and interactions
over time.

*These authors contributed to the work equally and should be regarded as co-
first authors.

This ACCV 2024 paper, provided here by the Computer Vision Foundation, is the author-created version.
The content of this paper is identical to the content of the officially published ACCV 2024

LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/accv

3091

https://orcid.org/0000-0002-9365-6767


2 X, Guo. Y, Zheng et al.

Within tracking-by-detection methodologies, Kalman filter emerges as a preva-
lent choice for state estimation and trajectory prediction. Kalman filter is adept
at forecasting the positions of tracked objects in the succeeding frames by incor-
porating information from previous observations and predicting the evolution of
object states over time. These predicted positions are then matched with detec-
tion boxes from the current frame using techniques like Intersection over Union
(IoU) to establish associations between predicted trajectories and detected ob-
jects.

However, despite the efficacy of Kalman filter, challenges persist, particu-
larly in complex scenarios characterized by camera motion. In such situations,
the predicted positions of tracking boxes may deviate significantly from the
corresponding detection boxes due to camera motion-induced distortions. Con-
sequently, the overlap between predicted and detected boxes diminishes, leading
to association failures and consequent degradation in tracking performance.

To address the challenges posed by camera motion in multi-object tracking,
the method we propose leverages phase correlation to compute the translational
relationship between consecutive frames in a video sequence. By accurately de-
termining the translation between frames, we can effectively compensate for the
displacement induced by camera motion. This information is then utilized to
refine the state vector of the Kalman filter. This correction mechanism signifi-
cantly reduces instances of tracking loss and improves the overall robustness of
the tracking system in dynamic environments, ensuring more accurate trajec-
tory predictions. Moreover, we can further distinguish stationary and moving
tracklets, allowing for tailored association strategies based on the motion states
of objects. By adjusting the association threshold for stationary trajectories, we
prioritize the matching of these objects with detection boxes, thereby enhancing
the continuity and reliability of tracking results. The main contributions of this
work can be summarized as follows:

– We propose a camera motion compensation module named Translation-
based Prediction Modification(TPM), which modifies the predicted bound-
ing box positions based on the translational relationship between adjacent
frames. This effectively alleviates association failures caused by camera mo-
tion, resulting in a significant reduction in the number of ID switches.

– We propose a new association method named Tracklets State Prior(TSP),
which distinguishes the motion states of tracklets based on prior information.
For static targets, we prioritize association and narrow down the range of
participating detection boxes, aiming to achieve more accurate matching.

2 Related Work

2.1 Tracking by detection method

The basic idea of tracking-by-detection is to detect and associate objects. Firstly,
each frame’s objects are detected using a detection algorithm. Then, a match-
ing algorithm is used to associate objects in adjacent frames, forming tracking
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trajectories for each object. Hence, the accuracy and reliability of the detec-
tor significantly influence the overall tracking quality. SORT[3] employs Kalman
filter to predict the state of each detection box in the current frame, thereby
obtains predicted tracking boxes through state estimation. It then uses the Hun-
garian algorithm based on IoU to match the tracking boxes and detection boxes,
thereby updating the Kalman filter parameters. deepSORT[26] enhances SORT
by incorporating appearance information, which improves tracking accuracy by
leveraging the visual features of objects. Additionally, it employs a cascaded
matching strategy for robust association. GGDA[27] designs a graph network
for tracklets grouping, using min-cost flow for intra-group association and hy-
pothesis proposals with pruning for inter-group association to address long-term
occlusion and reduce false positives. ByteTrack[31] introduces a novel associ-
ation method that preserves nearly all detection boxes for matching, thereby
mitigating the issue of discarding low-score boxes caused by occlusion or motion
blur. OCSORT[5] focuses on observations, smoothing the parameters of the tra-
jectory loss state to reduce noise accumulation during prediction. TrackFlow[13]
introduces a depth estimation network to infer the distance between targets
and the camera, incorporating depth information into the association process.
MotionTrack[17] devises an interaction module to replace Kalman filtering for
motion prediction, alongside a refine module to stitch fragmented tracklets.

Traditional methods relying on Kalman filter for state prediction encounter
limitations due to the linear modeling assumption. In real complex scenarios,
camera motion introduces non-linear object motion, leading to mismatching be-
tween detection boxes and tracking trajectories. We employ phase correlation
method to adjust tracking trajectories, thereby compensating for camera motion
and ensuring accurate matching between the tracking trajectories and detection
boxes.

2.2 Joint detection and tracking method

The joint detection and tracking framework employs a shared neural network
to simultaneously learn detection and tracking tasks. By employing a multi-task
learning paradigm, the framework shares feature learning network parameters
and defines loss functions, facilitating interaction and mutual promotion between
detection and tracking. JDE[25] incorporates the feature extraction network into
a unified single-stage object detection model, enabling the network to output re-
sults for both tasks and proposes a new association mechanism. FairMOT[32]
employs two parallel heads that share extracted features, used separately for
detection and re-identification tasks. CenterTrack[33], based on CenterNet[34],
incorporates input from the previous frame and introduces an additional branch
to predict the displacement of targets between consecutive frames, employing a
greedy algorithm for association. These approaches showcase the advancement
in joint detection and tracking by leveraging shared feature learning and innova-
tive association mechanisms within neural network architectures. FineTrack[18]
comprehensively describes appearance from both global and local perspectives,
enhancing feature consistency and discrimination.
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2.3 Transformer-based tracking method

With the widespread use of transformers[23] in the field of computer vision, their
powerful inter-frame propagation capability has also found application in the do-
main of multi-object tracking. TransTrack[21] utilizes an attention-based query-
key mechanism to decouple MOT into two sub-tasks, namely detection and asso-
ciation. Similarly, TrackFormer[14] jointly performs tracking and detection using
a single decoder network. Additionally, MOTR[30], extending upon DETR[7],
introduces a "tracking query" mechanism to represent and track objects across
the entirety of a video sequence in an end-to-end fashion. MEMOTR[9] injects
long-term memory into the track query, enhancing the utilization of temporal
information.

3 Method

Translation-based Prediction ModificationTranslation-based Prediction Modification
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Fig. 1: The pipeline of our proposed PMTrack.

The method described in this paper, as depicted in Fig. 1, employs phase
correlation to compute the translation relationship between consecutive frames
in a video sequence. The offset is utilized to adjust the state vector of the Kalman
filter. Both detection results and trajectory predictions are transformed into the
coordinate system of the current frame. Subsequently, association is performed
separately for moving and stationary trajectories using the approach proposed
in Byte[31]. By mitigating matching losses and ID switches induced by camera
motion, this approach significantly improves tracking performance.
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3.1 Translation-based Prediction Modification

In tracking-by-detection, matching between detection boxes and Kalman filter-
predicted tracking boxes is typically performed by calculating the IOU score. The
effectiveness of tracking heavily depends on the degree of overlap between de-
tection and tracking boxes, as it directly influences the accuracy of association.
Abrupt camera movements can lead to substantial displacements of detection
boxes relative to their positions in the previous frame, leading to some detec-
tion boxes failing to associate with predicted tracking boxes. This challenge is
especially pronounced for smaller targets, resulting in track losses or increased
ID switches. Botsort[1] employs the GMC algorithm implemented in OpenCV
to estimate motion between image backgrounds. This process involves extract-
ing feature points from consecutive frames and utilizing sparse optical flow for
feature tracking. The algorithm computes the affine transformation matrix be-
tween adjacent frames to transform the coordinates of predicted bounding boxes
into the current frame’s coordinate system. Although this approach enhances
performance in scenarios with moving cameras, it imposes significant computa-
tional overhead, leading to a notable reduction in processing speed and failing
to satisfy real-time constraints for multi-object tracking.

Adjacent frames in a video sequence exhibit a certain translational relation-
ship due to camera motion. Considering the translational invariance property
of the Fourier transform of images, which is reflected in the phase, we inte-
grate the phase correlation method used in image registration into the trajec-
tory association process of multi-object tracking. It calculates the translational
transformation between images and transforms the prediction process of track-
ing trajectories from the coordinate system of the previous frame to that of the
current frame.

Phase correlation is an algorithm used to address registration problems be-
tween two images with translational relationships. The foundation of phase cor-
relation lies in the Fourier transform of images. For two images f1(x, y) and
f2(x, y), it satisfies:

f2 (x, y) = f1 (x+ x0, y + y0) (1)

According to the properties of Fourier transform, when reflected in the fre-
quency domain, we have:

F2 (u, v) = F1 (u, v) ∗ e−j2π(ux0+vy0) (2)

Where F1 and F2 are the Fourier transforms of f1 (x, y) and f2 (x, y) respec-
tively. Computing their cross-power spectrum yields:

H(u,v) =
F ∗
1 (u, v)F2 (u, v)

|F ∗
1 (u, v)F2 (u, v)|

= e−j2π(ux0+vy0) (3)

Where F ∗
1 (u, v) is the complex conjugate of F1 (u, v). Applying the inverse

Fourier transform to Eq. 3 results in an impulse function, with the coordinates of
its peak denoted as (x0, y0), representing the translational relationship between
images.
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x =
[
x+ x0, y + y0, a, h, ẋ, ẏ, ȧ, ḣ

]
(4)

Adjusting the state vector used by the Kalman filter for each tracking tra-
jectory, as shown in Eq. 4, allows for transforming the tracking trajectory into
the coordinate system of the current frame. Subsequently, subsequent operations
such as Kalman filter prediction, association, and update can be performed.

3.2 Tracklets State Prior

In conventional tracking-by-detection architectures, all tracking trajectories are
usually associated with detection boxes using a uniform IoU threshold. However,
in typical scenes, a mixture of static and moving targets is present. The positional
variation of static targets in images is notably less pronounced compared to that
of moving targets. It is more appropriate to use distinct IoU thresholds for
matching static and moving targets separately, as Fig. 2.

Frame130 Frame140 Frame141

Fig. 2: Illustration of the Tracklets State Prior. The blue box has been static for
the past ten frames and is suitable for a small association range, such as the
blue dotted box. The red box is in motion and is suitable for a large association
range, such as the red dotted box. The images are from the MOT17-04 sequence.

We utilize prior information from tracklets to determine their motion states.
Tracklets exhibiting high overlap among associated detection boxes over a con-
secutive number of frames are classified as stationary, constituting static track-
lets, while others are categorized as motional tracklets. The association process
follows Byte[31] methodology, wherein the tracklets are firstly matched with the
high-scoring detection frame, and subsequently re-matched with the low-scoring
detection frame if unmatched in the first round. Static tracklets are prioritized
for associating, employing a higher IOU threshold to narrow down the range
of matching detection boxes, thereby achieving more accurate matching. Mo-
tional tracklets, on the other hand, engage in association with a larger range of
unmatched detection boxes.
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3.3 Algorithm Description

The pseudo-code of PMTrack is shown in Algorithm.1. The input of PMTrack
is a video sequence V , along with an object detector Det and a detection score
threshold τ . We also set high IOU threshold thresholdhigh, low IOU threshold
thresholdlow, static tracklet threshold α and static consecutive frame number n.
This thresholdhigh is used as the threshold of matching between static tracklets
and detections while thresholdlow is used as the threshold of matching between
move tracklets and detections. α and n are used to judge the motion state of
tracklets. The output of PMTrack is the tracks T of the video and each track
contains the bounding box and identity of the object in each frame.

Line 7 to 12 in Algorithm.1 represent our TPM module. This module involves
computing the translation between adjacent frames using phase correlation and
adjusting the state vectors of the tracks accordingly. This modification effectively
reduces the number of association failures caused by camera motion, ensuring
more accurate predictions of object positions.

Line 15 to 34 in Algorithm.1 show the TSP method. The tracks are split
into static and moving categories based on their state and then associate with
detections using different IOU threshold. The Byte method in Algorithm.1 is
come from ByteTrack[31], which means associating with both high-score and
low-score boxes.

4 Experiments

4.1 Experimental Settings

Datasets. The datasets used in this study include MOT17[15] and Kitti[11].
MOT17 is a common dataset in the field of multi-object tracking, primarily
used for pedestrian tracking. It consists of multiple video sequences captured by
static or dynamic cameras, which are divided into training and testing sets. In
the final evaluation of the MOT challenge, only the boxes marked as pedestrians
are used. Therefore, our tests on the MOT17 dataset are only for the category
of pedestrians. Kitti is a multi-object tracking dataset collected using cameras
installed on moving vehicles. It provides annotations for various classes, including
pedestrians, cars, cyclists, and trucks, among osthers. It comprises 21 training
video sequences and 29 testing video sequences.

Implementation details. For fair comparison, we utilize the same detec-
tion results as ByteTrack in our experiments on MOT17. ByteTrack employs
YOLOX[10] as the detector and has trained a well-performing detection model
on MOT17. We utilize the provided bytetrack_ablation.pth.tar from the Byte-
Track open-source project for ablation study on MOT17, which is trained on
Crowdedhuman[20] and the first half of MOT17 training sets. The detection
model used on the MOT17 test set is bytetrack_x_mot17.pth.tar from Byte-
Track. Our approach achieves a processing speed of 20.2 FPS on the MOT17
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Algorithm 1 Pseudo-code of PMTrack
Input: A video sequence V ; object detector Det; detection score threshold τ ; high IOU

threshold thresholdhigh; low IOU threshold thresholdlow; static tracklet threshold
α; static consecutive frame number n

Output: Tracks T of the video
1: Initialization: T ← ∅
2: for frame fk in V do
3: Dk ← Det(fk)
4: Dhigh ← ∅, Dlow ← ∅, Tstatic ← ∅, Tmove ← ∅
5: Dhigh, Dlow ← split Dk with threshold τ
6: /* Translation-based Prediction Modification */
7: if k > 1 then
8: (x0, y0) ← phaseCorrelation(fk, fk−1)
9: for t in T do

10: t.kalmanfilter.stateVector ← t.kalmanfilter.stateVector+(x0, y0)
11: end for
12: end if
13: KalmanFilter.predict(T )
14: /* Tracklets State Prior: association */
15: Tstatic, Tmove ← split T with t.state
16: t.box=d, association Tstatic with Dhigh and Dlow using Byte,

IOU_threshold=thresholdhigh
17: Dremian_high ← remaining object boxes from Dhigh

18: Dremian_low ← remaining object boxes from Dlow

19: t.box=d, association Tmove with Dremian_high and Dremian_low using Byte,
IOU_threshold=thresholdlow

20: Dremian ← remaining object boxes from Dremian_high

21: Tremian ← remaining tracks from Tstatic and Tmove

22: /* Tracklets State Prior: Tracklets State setting */
23: T ← (Tstatic ∪ Tmove)/Tremian

24: for t in T do
25: if IOU(t.box, t.last_box) > α then
26: t.consecutive_frame ← t.consecutive_frame+ 1
27: if t.consecutive_frame > n then
28: t.state ← static
29: end if
30: else
31: t.state ← move, t.consecutive_frame ← 0
32: end if
33: t.last_box ← t.box
34: end for
35: for d in Dremian do
36: T ← T ∪ {d}
37: end for
38: end for
39: return T
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test set. For ablation study on Kitti, the detection model employs an image size
of 1280x384 for both training and testing. We train the model for 80 epochs
on the first half of the Kitti object tracking dataset and use the latter half as
the validation set. We define stationary trajectories as those formed by match-
ing detection boxes between adjacent frames with an IOU exceeding 0.95 and
persisting for at least 10 consecutive frames. The IOU threshold for matching
stationary trajectories with detection boxes is set to 0.7.

Evaluation metrics. The study employs commonly used metrics in the multi-
object tracking domain, including the CLEAR[2] metrics (MOTA, FN , FP ,
IDSW ), IDF1, and HOTA[12], to assess tracking performance.

MOTAt is defined as follows:

MOTA = 1−
∑

t (FP t + FN t + IDSW t)∑
t GT t

(5)

Where GT t, FP t, FN t, and IDSW t represent the number of ground-truth
bounding boxes, false positives, false negatives, and identity switches, respec-
tively, at frame t. MOTA quantifies the proportion of correctly predicted sam-
ples without missed detections, false alarms, and identity switches among all
annotated samples, measuring the tracker’s performance in detecting targets
and maintaining trajectories.

IDF1 is defined as follows:

IDF1 =
2IDTP

2IDTP + IDFP + IDFN
(6)

IDF1 treats each ID as a separate class, considering both ID accuracy and
ID recall, making it more sensitive to ID information within trajectories than
MOTA.

HOTA is defined as follows:

HOTA =

√ ∑
c∈{TP} A (c)

|TP |+ |FN |+ |FP |
(7)

Where A (c) is the association accuracy score, measuring the alignment de-
gree of true trajectories.

4.2 Ablation Study

The ablation study takes ByteTrack as the baseline. The second half of MOT17
training set video sequences is used as the validation set. All parameters remain
consistent across the ablation study, and the experimental results are shown in
Table 1.

The phase correlation method is primarily used to correct the positions of
tracking trajectories in scenes with camera motion, aligning them with detection
boxes. Therefore, ablation studies are conducted on MOT17 training sets based
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Table 1: Ablation study on the MOT17 validation set.
Method TPM TSP MOTA↑ IDF1↑ IDs↓
Baseline (ByteTrack) 76.6 79.4 159
Baseline + column 1 ✓ 76.9 80.4 126
Baseline + column 1-2 ✓ ✓ 77.4 80.8 124

on whether the camera moves frequently. MOT17-05, MOT17-10, MOT17-11,
and MOT17-13 form the MOT17_move dataset, representing camera motion
scenes, while MOT17-02, MOT17-04, and MOT17-09 form the MOT17_static
dataset, representing static camera scenes. The detection model used is byte-
track_ablation.pth.tar, and the experiments on these two datasets yield results
as shown in Table 2.

Table 2: Ablation study on the MOT17 validation set for different scenarios.
MOT17_move MOT17_static

Method MOTA↑ IDF1↑ IDs↓ MOTA↑ IDF1↑ IDs↓
Baseline (ByteTrack) 78.2 70.5 287 85.7 82.7 150
Baseline + TPM 79.4 75.8 157 85.7 83.1 149

Table 2 presents a comparison of tracking performance between camera mo-
tion and stationary scenes in MOT17. It is evident that the tracking performance
in stationary scenes significantly outperforms that in camera motion scenes, in-
dicating that camera motion indeed poses challenges to multi-object tracking.
Upon employing motion compensation using phase correlation, notable improve-
ments are observed in tracking performance in camera motion scenes, particu-
larly in reducing ID switches. However, the improvement in tracking performance
in stationary scenes is marginal.

The length of historical tracklets is a critical hyperparameter in the TSP
module. As shown in Fig.3, we designed an ablation study for this parameter,
and the results demonstrate that TSP exhibits robustness to variations in this
parameter.

Table 3: Ablation study on the Kitti validation set for the Car category.
Method TPM TSP MOTA↑ IDF1↑ HOTA↑ IDs↓
Baseline (ByteTrack) 80.091 87.029 71.195 57
Baseline + column 1 ✓ 80.292 87.494 71.747 40
Baseline + column 1-2 ✓ ✓ 80.62 87.658 71.788 42
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Fig. 3: Ablation study on tracklet length for TSP.

For the ablation study on the Kitti object tracking dataset, the first half of
the training set is used for training, and the second half is used to construct the
validation set.

Ablation study on the MOT17 and Kitti validation sets, as presented in Ta-
bles 1 and 3, assess the contributions of the proposed modules in PMTrack. The
experimental results validate the effectiveness of the modules proposed in PM-
Track. In IoU-based multi-object tracking association methods, camera motion
often results in significant changes in target positions compared to the previ-
ous frame, thereby increasing the difficulty of correct association and leading
to numerous ID switches. To address this challenge, we propose an association
method based on phase correlation. This method calculates the translational
relationship between adjacent frames, mapping the target positions from the
previous frame and the current frame into the coordinate system of the current
frame. By effectively compensating for the positional shifts caused by camera
motion through this positional correction mechanism, we can significantly re-
duce the number of ID switches. However, Table 2 results indicate that phase
correlation provides substantial assistance only on datasets with camera motion
scenes. Furthermore, the method for distinguishing between motion and station-
ary trajectories enhances the precision of association, yielding higher tracking
metrics.

4.3 Visualization results

We show some visualization results of difficult cases which PMTrack is able to
handle in Fig. 4. From frame 24 to frame 26, the image scene undergoes a leftward
translation. In Fig. 4b and Fig. 4c, the predicted box by the Kalman filter is
positioned to the right of the target, failing to be associated via IoU, resulting
in the loss of the 18th tracking box. In Fig. 4e and Fig. 4f, the translational
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(a) ByteTrack result for
MOT17-10 frame 24

(b) ByteTrack result for
MOT17-10 frame 25

(c) ByteTrack result for
MOT17-10 frame 26

(d) PMTrack result for
MOT17-10 frame 24

(e) PMTrack result for
MOT17-10 frame 25

(f) PMTrack result for
MOT17-10 frame 26

Fig. 4: Visualization of the tracking result, where the black boxes in (b) ,(c)and
(e),(f) represent the predicted bounding box of the 18th tracklet. The images
are from the MOT17-10 sequence.

relationship between adjacent frames is computed, and the predicted box is also
shifted leftward, successfully associated with the detection box.

4.4 Benchmarks Evaluation

In Table 4, we present the tracking performance of PMTrack using private detec-
tions on MOT17-test. For fair comparison, we utilize the same detection results
as ByteTrack[31] and employ ByteTrack’s linear interpolation method for post-
processing the tracking results. Compared to other algorithms listed in the table,
PMTrack demonstrates superior performance, particularly with a significant de-
crease in ID switches. Although PMTrack’s MOTA performance is not as high
as ByteTrack, ByteTrack’s 80+ MOTA requires careful tuning of test image size
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and detection thresholds. We used ByteTrack’s default parameters without addi-
tional tuning, and simply using the open-source ByteTrack code does not reach
the MOTA scores reported in our work.

Table 4: Results on MOT17-test with the private detections.
tracker HOTA↑ MOTA↑ IDF1↑ FP(104)↓ FN(104)↓ IDs↓ AssA↑ AssR↑
FairMOT[32] 59.3 73.7 72.3 2.75 11.7 3,303 58 63.6
TransCenter[28] 54.5 73.2 62.2 2.31 12.4 4,614 49.7 54.2
TransTrack[21] 54.1 75.2 63.5 5.02 8.64 3,603 47.9 57.1
GRTU[24] 62 74.9 75 3.2 10.8 1,812 62.1 65.8
QDTrack[16] 53.9 68.7 66.3 2.66 14.7 3,378 52.7 57.2
MOTR[30] 57.2 71.9 68.4 2.11 13.6 2,115 55.8 59.2
PermaTrack[22] 55.5 73.8 68.9 2.9 11.5 3,699 53.1 59.8
TransMOT[8] 61.7 76.7 75.1 3.62 9.32 2,346 59.9 66.5
GTR[35] 59.1 75.3 71.5 2.68 11 2,859 61.6 -
DST-Tracker[6] 60.1 75.2 72.3 2.42 11 2,729 62.1 -
MeMOT[4] 56.9 72.5 69 2.72 11.5 2,724 55.2 -
UniCorn[29] 61.7 77.2 75.5 5.01 7.337.337.33 5,379 - -
ByteTrack[31] 63.1 80.380.380.3 77.3 2.55 8.37 2,196 62 68.2
OC-SORT[5] 63.2 78 77.5 1.511.511.51 10.8 1,950 63.2 67.5
MEMOTR[9] 58.8 72.8 71.5 2.65 12.5 1902 58.4 63.0
GHOST[19] 62.8 78.7 77.1 - - 2325 - -
PMTrack 64.0464.0464.04 80.17 78.9378.9378.93 2.66 8.39 1,2451,2451,245 63.6463.6463.64 70.1170.1170.11

In Table. 5, we compare our method with other SORT-based algorithms. As
shown, our method performs similarly to BotSort, but achieves a speed that is
4 to 5 times faster.

Table 5: comparison on MOT17-test with the SORT-like.
tracker HOTA↑ MOTA↑ IDs↓ FPS↑
ByteTrack[31] 63.1 80.3 2,196 29.6
BotSort[1] 65,0 80.5 1,212 4.5
OC-SORT[5] 63.2 78 1,950 29.0
PMTrack 64.04 80.17 1,245 20.2

5 Conclusion

We analyze the limitations of SORT-like tracking methods. Specifically, we iden-
tify the inability of Kalman filter to predict non-linear motion as a key limitation.
As a consequence, predicted tracking trajectories fail to associate with detection
boxes in scenes with camera motion. We propose PMTrack, leveraging phase
correlation to determine the translational relationship between adjacent frames,
allowing us to map target positions into the current frame’s coordinate system.
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This positional correction compensates for shifts caused by camera motion, lead-
ing to a significant reduction in ID switches. Moreover, distinguishing the mo-
tion states of tracking trajectories and applying different association thresholds
further enhances the accuracy of the associations. PMTrack exhibits superior
tracking performance in dynamic camera scenes while maintaining simplicity
and real-time capability. Experimental results on multiple datasets validate the
effectiveness of PMTrack for multi-object tracking in scenes with camera motion.
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