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Abstract. Few-shot image synthesis entails generating diverse and re-
alistic images of novel categories using only a few example images. While
multiple recent efforts in this direction have achieved impressive results,
the existing approaches are dependent only upon the few novel samples
available at test time in order to generate new images, which restricts the
diversity of the generated images. To overcome this limitation, we pro-
pose Conditional Distribution Modelling (CDM) — a framework which
effectively utilizes Diffusion models for few-shot image generation. By
modelling the distribution of the latent space used to condition a Dif-
fusion process, CDM leverages the learnt statistics of the training data
to get a better approximation of the unseen class distribution, thereby
removing the bias arising due to limited number of few shot samples.
Simultaneously, we devise a novel inversion based optimization strategy
that further improves the approximated unseen class distribution, and
ensures the fidelity of the generated samples to the unseen class. The
experimental results on four benchmark datasets demonstrate the effec-
tiveness of our proposed CDM for few-shot generation.

Keywords: Few-shot image generation - Diffusion models

1 Introduction

In this paper, we tackle few-shot image synthesis i.e., given only a few samples of
a novel category, our goal is to generate diverse and realistic images of this new
concept. Few shot synthesis can be effectively used to generate rarely occurring
objects (such as rare species of birds or animals) and help to overcome the
class imbalance issue in the naturally occurring datasets by generating more
examples of the minority categories. However, few-shot synthesis is a challenging
task because the state of the art generative models such as GANs and
VAEs need a large amount of data to learn any concept. Even with sufficient
amount of data, due to their inherent nature (involving adversarial learning)
adapting GANs for few samples is unstable to converge . On the other hand,
the sample quality achieved by VAEs is not as good as GANs even though their
training is stable . The scarcity of the available novel examples in few-shot

818


https://orcid.org/0000-0002-4379-1573
https://orcid.org/0000-0002-2706-5985
https://orcid.org/0000-0002-2230-1440
https://orcid.org/0000-0002-6249-0848
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learning makes it difficult to estimate the distribution of the new categories
which is disjoint from the training distribution. This often leads to overfitting
on the few available test samples and lack of diversity in the generated examples.

Most of the existing few-shot synthesis approaches employ GAN-based ar-
chitectures with carefully formulated auxiliary loss functions. We can broadly
categorize these methods into 3 types: fusion based, optimization based and
transformation based. Fusion based approaches |2,|14,|19,[21] fuse the latent fea-
tures of a set of same-class images and then decode the fused feature into a new
image to generate sample of the same class. However in addition to needing at
least two novel examples, the generated images lack diversity, as they are simi-
lar to the few available examples and can’t cover the entire distribution of the
novel class. Optimization based approaches [5,[24,/47] introduce meta-learning,
where they first learn a base model and then fine tune it for each novel cate-
gory to generate new images. But the images generated by these methods are
often blurry and of low quality. Transformation based approaches [1,{20] learn
the intra-category transformations in the training data and apply them on the
novel samples to generate new examples. Our method is a combination of the
transformation and optimization based approaches, having the merits of both,
i.e. good quality samples belonging to unseen class but with added diversity
in the generated images, owing to our modelling the entire distribution of the
novel class in the conditional latent space, which yields efficient and meaningful
augmentation of the novel class samples (as explained in detail in Sec. .

We use a recently popular class of generative methods called Denoising Dif-
fusion Probabilistic Models [17] for few shot image generation. These models can
learn to generate meaningful images belonging to the training distribution from
pure noise and enjoy the benefit of a stabilized training process (no adversar-
ial learning) while maintaining the sample quality. They have shown remarkable
success in various applications such as text-conditioned image generation [30}/34],
image super-resolution [35] and have outperformed GANSs in class-conditioned
image generation [7]. Since diffusion models are essentially probability density
estimators, their application to few shot generation is non-trivial. Unlike VAEs,
their latent space is unstructured — the latents are just training images dis-
turbed by adding varying levels of Gaussian noise. Therefore, applying the ideas
from few-shot GAN-based approaches [14,[20] and fusing or transforming the
latent representations of diffusion models is not intuitively expected to yield any
meaningful results. Diffusion-conditioning mechanisms have been developed for
controlling simpler concepts such as low-shot attribute generation [36], class-
conditional synthesis (for seen classes during training) [28], artistic domain-
adaptation [49] and test-time adaptation [4], but not yet explored to generate
entirely novel complex classes, from only a few available examples, using a lim-
ited amount of training data. Our approach successfully generates new samples
of unseen concepts by modelling the distribution of the space used to condition
the diffusion process. In order to do so, we develop Conditional Distribution
Modelling (see Sec. where we estimate the probability distribution of sam-
ples belonging to each class. This enables us to augment the conditional vectors
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for novel class by simply sampling from its approximated distribution, whose
statistics are borrowed from the closest class in the training set and optimized
using the few novel class samples. These augmented unseen conditionals when
passed through the conditional diffusion process in turn give us a set of diverse
and realistic new samples. While the latent space distribution of training classes
can be accurately estimated using the abundant samples available, using only
the small number of samples of the never seen concepts at test time results
in poor approximation of their distribution statistics. To counter this, for each
unseen class, we propose to transfer the distribution statistics from the closest
seen classes [44] to get an initial estimate and optimize them using the available
samples. Thus, the sample diversity in our approach comes from two sources —
firstly, the conditional space modelling helps us generate more conditionals for
the diffusion process and secondly the diffusion model learns valid intra-class
transformations (from the conditional latent to the target latent).
In summary, our major contributions are:

— We propose a novel diffusion model-based framework for few-shot
image generation that effectively captures the diversity while maintaining
the distinctive characteristics of unseen classes by modelling their distribu-
tions in its conditional space.

— Specifically, instead of relying only on the few-shot examples to generate
new samples, we develop a principled approach that leverages the learned
statistics from the neighbouring seen classes to approximate the unseen class
distribution and faithfully capture the unseen class diversity.

— Further, we propose a novel inversion based optimization to refine
the unseen class distribution which in turn ensures the fidelity of the
generated samples to the unseen class.

2 Related Work

The existing literature on few shot image generation can be broadly divided into
three categories - fusion-based, optimization-based and transformation-based
methods.

Fusion based approaches produce new images of unseen classes by fusing the
latent features of the example images in some manner and passing the fused
representation through a decoder, e.g. GMN [2] and Matching-GAN [19] com-
bine the Matching Network [42] (used for few-shot classification) with VAEs and
GANS respectively. F2GAN [21] enhances the fusion of high level features by
filling low level details from the example images using a Non-local Attention
module. Similarly, LoFGAN [14] is based upon a learnable Local feature Fu-
sion module (LFM) combined with GANs. WaveGAN [43] adapts Haar Wavelet
transform to capture features at different frequencies and fuses them. The images
generated using these methods often lack in diversity due to their dependence
on the few unseen examples available for the fusion operation.

Optimization based approaches, e.g., FIGR [5] and DAWSON [24] use adver-
sarial learning (GANSs) combined with meta-learning methods, e.g., Reptile 27|
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(used by [5]) and MAML [10] (used by [24]) to generate new images. LSO [47]
adapts the latent space learnt using StyleGAN [22| (an approach for training
GANs with limited data) for each unseen class using optimization and semantic
stabilization losses. Exposing the model [47] to the few unseen samples at test
time helps it to capture the class-specific characteristics, allowing the generated
samples to have high fidelity with the unseen class; however optimization needs
to be performed carefully to ensure that the model does not over-fit on the few
samples that can take away the generation quality and diversity.
Transformation based approaches (e.g., AGE [8])learn the pattern of trans-
formations between different pairs of the same class during training and use these
transformations to generate new samples of novel categories from the available
samples, e.g., in DAGAN |[1] any sample passed though the encoder gives a fea-
ture containing its class-level information. This feature along with a random
vector is passed through the decoder to generate a different sample of the same
class. DeltaGAN |20] learns to generate transformations called sample-specific
deltas which represent the information needed to convert the sample to another
image of the same class. Given a sample, different plausible deltas can be gener-
ated based upon a random vector input. However, the current transformation-
based approaches require end-to-end training of transformation and generation
that can be unstable resulting in generation of low quality images.

A common limitation of most of the existing approaches is their lack of genera-
tion capability on coarse-grained datasets such as CIFAR-100 or ImageNet, due
to the inherently higher inter-category variance. Due to this, currently, we keep
the scope of our approach limited to fine-grained datasets only.

While Diffusion Models are rarely explored for few-shot image synthesis, sev-
eral works focus on few-shot generative adaptation. These methods pre-train the
model on a large-scale dataset from a related source domain and adapt it to the
target domain. For example, D2C [36] jointly trains a VAE and a Diffusion model
in the VAE’s latent space on a large dataset, then uses a few labeled examples to
train a classifier in that space— e.g., they use the CelebA-64 dataset |25] for ini-
tial training and learn a binary classifier to predict attributes like blond /female
using just 100 labeled examples. To generate images with these attributes, they
produce VAE latents from random noise, select those with high classifier scores,
and decode them via the VAE. Similarly, DDPM-PA [49] employs a pairwise
similarity loss during domain adaptation to maintain relative distances between
generated samples, enhancing diversity in the target domain. In a related direc-
tion, there are several personalisation techniques being developed over the large-
scale pre-trained foundation Diffusion models, wherein limited number of images
of a particular object/person can be used to generate the same object/person
in arbitrary contexts using inversion [11] or fine-tuning [33]. However, the ob-
jects being generated in these approaches aren’t exactly unseen to the Diffusion
models, which have been trained on internet-scale data. Hence, there is no apples-
to-apples comparison of these approaches with the existing methods for few-shot
image generation. To our knowledge, diffusion models for few-shot synthesis have
only been investigated in FSDM [12], utilising a DDPM to generate images of
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different classes through a fusion-based approach. It obtains a class-wise set-level
context by passing the set of images along with the timestep embedding through
a Vision Transformer [9] and uses the context to condition the generative path
(reverse path) of the DDPM. However, its diffusion operates in image space,
limiting scalability to high-resolution images due to memory and inference time
constraints, evaluated mainly on small-scale 32 x 32 datasets. In contrast, our
approach ensures diversity and fidelity in the synthesized images by adequately
modelling the distribution of the few shot samples in the conditional space of the
diffusion process. This provides us with the flexibility to sample new and varied
conditionals which are then effectively mapped to the image space. Since the
diffusion itself happens in a regularized latent space, we are able to efficiently
generate high-resolution and realistic novel class images.

3 Method

3.1 Preliminaries

Problem Definition Given a dataset D = (x;,y),y € [1,C],j € [1,n,] with C
classes and n, images in each class, we divide the dataset into seen classes C;
and unseen classes C, where C; N C, = ¢. Only the images from seen classes
can be used while training. The task of K — shot generation involves generating
new images of any class from C,,, using only K images of this class.

Below, for the sake of completeness, we briefly revisit diffusion models [17] and
latent diffusion models [31], followed by the description of our proposed condi-
tional distribution modelling approach for few-shot synthesis (Sec.
Diffusion Models |17] are a special class of generative models which configure
the data distribution as a reverse (or denoising) process of iteratively adding
noise to the data. Thus, the forward diffusion process converts the structured
data (xg) into pure noise (xr) in 7" timesteps by adding small amounts of Gaus-
sian noise each time. The amount of noise € added at each step is controlled by
a non-decreasing variance schedule [3; € (0, 1)]?:1. Thus at each step ¢, we sam-
ple € ~ N (0,1) and then get x; = /1 — Bix;_1 + +/Bie. After T steps through
the encoder, the information in the data point is destroyed completely and x
becomes random Gaussian noise. The Denoising Diffusion Probabilistic Model
(DDPM) [17] learns the reverse, where we start from pure noise and recover
a point from the original data distribution through T steps of a decoder (de-
noted by pg). Given the noisy data point x; and the time step ¢ as input, the
decoder predicts the noise (¢) added to the original data point that lead to this
noisy input. The architecture most commonly used for pg is a time-conditioned
UNet [32]. The training objective (L,;p) comes by minimizing the variational
bound on the negative log-likelihood of the data distribution and is used in com-
bination with the mean square error (Lgimpie = Et z0.¢[]|€ — €a(x¢, t)||*]) between
the true noise and predicted noise. A detailed derivation of the training objective
can be found in [17].

Latent Diffusion Model (LDM) |31] offers an efficient setup for high-resolution
image synthesis, leveraging the diversity and high quality of Diffusion models
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without sacrificing computational efficiency by operating in the latent space of
a pretrained Variational Autoencoder [23] (with Encoder £ and Decoder D).
Pretraining the VAE creates a compressed yet meaningful latent space, allowing
the diffusion process to model the semantic aspects of the data more efficiently
than in the high-dimensional image space. Additionally, LDM introduces a Cross-
Attention mechanism [41] to condition diffusion on signals from other modalities.
We adapt this conditional latent diffusion pipeline for our use case.

3.2 Conditional Distribution Modelling (CDM)

As depicted in Fig. [I] Conditional Distribution Modelling involves five stages,
each of which are described below.

A. ResNet and VAE Training. (Fig. [l| (A)) We initially train a vector-
quantization [39] regularized Variational Autoencoder (VAE) on the seen data
(denoted by C,), following the LDM architecture. The LDM is trained at a later
stage in this VAE’s latent space, denoted by z. Simultaneously, we also train
a simple ResNet-based classifier on the seen data using Cross-Entropy loss and
choose the output of its penultimate layer (denoted by f) as the conditioning
space for our LDM.

B. Distribution Modelling of seen and unseen classes. (Fig.|l| (B)) We
obtain class-wise latent mean p¥ and latent variance (02)y on the seen data as

follows— N
W= S O
Y =1
y_ 1 ¢
()" = 5= g (7 =)’ (2)
DY =N (uy, (Uz)y) (3)

where n, is the number of samples in seen class y and each dimension in the
latent space f is considered to be uncorrelated. We assume that every dimension
in the latent vector ij follows a Gaussian distribution (denoted by Dy, fseen =
{Dy, }yec,) and observe that similar classes usually have similar statistics (mean
and variance) of the feature representations. This allows us to transfer the mean
and variance statistics across similar classes, i.e., from seen classes for which we
have a better approximation of these statistics to the unseen classes for which we
only have a few examples, which are insufficient to approximate the underlying
distribution. Therefore, given K support samples of an unseen class ¢(€ C,,), we
first obtain the latent vectors f (1 < k < K) for each of these K samples using
the ResNet from stage (A). Then, we augment the latent space f¢ by calibrating
the mean and variance statistics from the seen classes which are nearest to this
unseen class. The nearest seen classes are the ones with the minimum Euclidean
distance between their mean latent p¥ and the mean of the unseen latent p°.
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Fig.1: CDM Pipeline: (A) First, we train a ResNet classifier and a Variational Au-
toencoder (VAE) on the seen data (denoted by the set C;). The ResNet’s penultimate
layer’s output (f) is to be used as a conditional input to the Diffusion model later. (B)
We calculate the class-wise means (j1;) and variances (07) of the seen data in the latent
space f. This collection of Gaussian distributions is denoted by fseen. Now, for each
unseen class (belonging to the set C,), we have K support samples for K-shot image
generation task. The seen classes whose distributions (u:, o7) are closest to this unseen
class are used to estimate its distribution (u;,o?) through Conditional Distribution
Modelling. This process is shown in the two plots having 3 unseen classes, where 3
support samples per class and fscen are used approximate the unseen class distribu-
tions. (C) We train a Diffusion model in the VAE latent space, conditioned upon the
samples obtained from the seen class distributions (fseen). (D) We use inversion based
optimization to improve the unseen class distributions (funseen) using the denoising
gradients from the support samples. (E) The optimized unseen class distributions are
used to generate new samples from the Diffusion Model.
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The mean of an unseen class distribution is computed from latent vectors f; of
support samples of that class:

DYy
o g

Let the set of nearest seen classes be denoted by Sy, the calibrated variance
(02)C of that unseen class distribution is given by:

2\¢ ZyESN (02)y
(J) - |SN| (5)

I

Algorithm 1 Training LDM with CDM

Require: Trained Feature Extractor and VAE
Require: Training data D = (x;,y),y € Cs,j € [1,ny]
Require: Seen classes’ statistics {uY, (02)y},y € C, obtained as per Eq. 1| and
Eq.

1: for m =1, ..., #epochs do

2 fory=1,...,|Cs| do

3: for j=1,..,n, do

4 Obtain the latent representation z for x; by passing it through VAE

Encoder

5: Sample a timestep ¢ € [1,7] uniformly at random and get the noised
version of z denoted by z;

6: Sample a latent f for class y from the gaussian distribution DY as per
Eq.

7 Use f as a conditional input to the LDM to denoise z; into z and update
the UNet parameters based upon the loss £ as per Eq. @

8: end for

9: end for

10: end for

C. Diffusion Model Training. (Fig.[l| (C)) In this stage, we train a Latent
Diffusion Model (LDM) on the seen data in the z-space of the stage (A) VAE.
This LDM is conditioned using samples from the seen data distributions fseen
defined in (B). Thus, given an image x belonging to a seen class y, we first sample
a latent f¥ ~ DY (the corresponding distribution obtained as per Eq. ) and
also get the perceptually compressed representation z corresponding to x from
the pretrained VAE. Now, the LDM learns to denoise the noisy version z; of z,
conditioned on f¥ and time-stamp ¢ which can be shown as the overall training
objective [28],

L= »Csimple + )\['vlba (6)

where L is the variational lower bound based loss and Lgimpie is the mean
squared error between the true noise and predicted noise and is given by

['simple = ES(X),y,eNN(O,I),t [HE - Gg(Zt, t, fy)”g] (7)
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We further employ classifier-free guidance proposed by [18] in order to enhance
the sample diversity. In summary, while training the LDM, we ensure that the
model learns to transform the vectors f¥ that are sampled from the class dis-
tribution DY into the latent representations z of the same class. Algorithm
describes the LDM training process with the proposed CDM.

Algorithm 2 Inversion based optimization of unseen class distributions

Require: K unseen class samples {x;,c},,c € C,
Require: Trained VAE and LDM models
Require: Initial unseen classes’ statistics {u°, (0'2)0},0 € C, obtained as per Eq.
and Eq.

1: for m =1, ..., #optimization steps do

2 forc=1,...,|C,| do

3: fori=1,..,K do

4 Obtain the latent representation z for x; by passing it through VAE

Encoder

5: Sample a timestep ¢ € [1,7] uniformly at random and get the noised
version of z denoted by z:

6: Sample a latent f¢ for class ¢ by first sampling a latent € from the
standard normal distribution € ~ N'(0, ) and then getting f¢ = pu°+ o°* €

7 Use f€ as conditional input to the LDM to denoise z; into z and update
ue, (0%)°

8: end for

9: end for

10: end for

D. Inversion based optimization of unseen class distributions. (Fig.
(D)) Once the diffusion model is trained, we can use the unseen class distribu-
tions defined in stage (B) (denoted by funseen) t0 generate unseen class samples
from the model, however, we observe that the samples generated using these dis-
tributions are more similar to the seen classes which are in the neighbourhood
of the unseen classes. We hypothesize that the few conditionals f correspond-
ing to the support samples of unseen class ¢ (derived from a classifier which is
trained to differentiate only amongst the seen classes) are not able to properly
capture all the characteristics of the unseen class and hence, the unseen class dis-
tribution ends up being very close to the neighbouring seen class distributions.
Hence, we propose to refine the unseen distributions using inversion based op-
timization, i.e., given a support image s from an unseen class ¢, we aim to find
the conditional f$ that results in the construction of s from our frozen LDM.
Since the conditional f¢ is sampled from the Gaussian distribution of class c,
we back-propagate the gradients to optimize the mean ¢ and variance (02)C as
well. Our optimization goal can therefore be defined as

(1), ((0%)°) = angmin Ee(a)e.conone [lle = €o(zest, SO (8)

ney(o?)*
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Algorithm [2| describes the inversion based optimization of unseen class distribu-
tions.

E. Few-shot Image generation using optimized unseen distributions.
(Fig. [l (E)) Once our unseen class distributions are optimized, we can generate
diverse samples for each class using the LDM by sampling zr ~ N(0,I) and

fo N (e (0%)°)-

Flowers Animal Faces VGGFace NABirds

Method Shot|prny (1) LPIPS(1)|FID(4) LPIPS(1)|[FID(1) LPIPS(1)|FID(4) LPIPS(1)

DAGAN [i] 3 |151.21 0.0812 |155.29 0.0892 |128.34 0.0913 |159.69 0.1405
1 [179.59 0.0496 [185.54 0.0687 |134.28 0.0608 |183.57 0.0967
MatchingGAN [19]| 3 |143.35 0.1627 [148.52 0.1514 |[118.62 0.1695 |142.52 0.1915
F2GAN |21] 3 12048 0.2172 |117.74 0.1831 |109.16 0.2125 |126.15 0.2015
LoFGAN [14] 3 |112.55 0.2687 |116.45 0.1756 |106.24 0.2096 |124.56 0.2041
3 |104.62 0.4281 | 87.04 0.4642 | 78.35 0.3487 | 95.97 0.5136
DeltaGAN [20] 1 [109.78 0.3912 | 89.81 0.4418 | 80.12 0.3146 | 96.79 0.5069
LSO [47] 3 |47.34 0.3805 | 43.29 0.4446 | 4.77 0.2835 |21.67 0.5347
1 |55.79 0.2721 |64.35 0.2230 | 5.88 0.1650 |25.23 0.3318
FSDM |[12] 3 | 63.87 0.5219 | 74.94 0.6309 - - 73.95 0.7359
3 | 77.26  0.4034 |40.04 0.4459 | 12.77 0.2029 | 41.48 0.5406
CDM (Ours) :
1 | 83.97 0.83728 | 64.88 0.3077 | 12.61 0.1240 | 45.583 0.4958
F2DGAN¥* [48| 3 | 38.26 0.4325 | 25.24 0.5463 4.25 0.3521 - -
CDM*(Ours) 3 - - 36.56  0.5224 - - - -

Table 1: FID (J) and LPIPS () of images generated by different methods for unseen
categories on four datasets in 1 and 3-shot setting. The best results for each shot are
in bold and the second best results have been underlined. 1-shot results are displayed
in italics. We quote the results of the baseline methods from the DeltaGAN paper [20].
The LSO [47] and FSDM [12] results are obtained by running their official code using
our setting. * refers to evaluations using the F2DGAN setting. CDM is able to maintain
a good balance between sample diversity and generation quality for all the datasets.

4 Experiments

4.1 Evaluation Setup

For our evaluation, we follow the setup in recent state-of-the-art approach |20].
Given a dataset D = (x;,y),y € [1,C],j € [1,n,] with C classes and n, images
in each class, we split it into C,, unseen and C; seen categories. After training on
Cs, at test time for K-shot generation, the model uses K images and generates
128 fake images of each unseen class giving a set Syqe of 128|C, | fake images.
These fake images are generated by considering 2 nearest classes corresponding
to each image for conditional space modelling (stage (B) in Sec. [3) and using
25 steps of DDIM sampling 37| in the diffusion model. The remaining n, — K
images are combined from each unseen category to obtain a set Sy, of real im-
ages. For quantitative comparisons, we calculate the Fréchet Inception Distance
(FID) [16] between Syeq; and Syeke and the Learned Perceptual Image Patch
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Similarity (LPIPS) [45] for Syake. FID score measures the distance between the
latent feature distributions of real and generated unseen images, indicating both
fidelity and diversity. The latent space used to calculate the distance is from an
Inception-V3 [38] architecture pretrained on the Imagenet dataset [6]. LPIPS
indicates the diversity in the generated images by calculating the distance be-
tween all the same class image pairs and then averaging it for each class followed
by measuring the average over all the unseen classes. We use the following four
datasets in order to compare our method with the existing approaches:
Flowers |29 dataset has total 102 categories with number of images in each
class varying from 40 to 258. We split it into 85 seen and 17 unseen classes re-
sulting in 7121 seen and 680 unseen images. Animal Faces [6] dataset contains
149 classes. We split it into 119 seen categories having total 96621 images and
30 unseen categories with 3000 images. In VGGFace [3] dataset, we select 2299
classes and choose 100 images for each class. 1802 classes out of these are used
for training and the remaining 497 for evaluation. NABirds [40| dataset has
555 classes out of which 444 are used for training and 111 for evaluation. This
gives a total of 38306 seen images and 10221 unseen images.

4.2 Implementation Details

We use a downsampling factor of 4 for the Variational Autoencoder (VAE),
transforming x € R128x128X3 tq 7 ¢ R32X32X3 A codebook Z of size 2048 aids
vector-quantization regularization. The batch size is 16 for all other datasets,
except VGGFace (128), and we train the VAE for 100 epochs. For the conditional
space, ResNet-50 [15] is trained with Cross-Entropy Loss and SGD optimizer
over 500 epochs on the seen data, yielding a latent space of 4 x 4 x 512 from the
last latent convolution layer. The LDM uses 1000 timesteps with a linear noise
schedule; and A = 0.001 in the objective Eq. @ following previous works [28].
It is trained with batch size 128 for 200 epochs, with a linear warmup schedule
for the learning rate, increasing from 0 to 2 x 10™* after 50K steps. Training the
diffusion model on a Nvidia GeForce RTX 3060 takes ~ 24 hours for all other
datasets, except for VGGFace, which requires 70 hours on an Nvidia RTX A6000
GPU. Inversion-based optimization runs at learning rate 2 x 10~ for 50K steps.

4.3 Quantitative Evaluation

We compare our proposed approach against several methods, including DAGAN
[1], MatchingGAN [19], F2GAN |21], LoFGAN [14], DeltaGAN [20], LSO [47],
FSDM [12] and F2DGAN [48| in both 3-shot and 1-shot settings. For fusion-
based methods, we only report 3-shot results, as they can’t be evaluated in
1-shot settings. Transformation-based methods, needing one conditional image,
generate Sfqre in 3-shot setting using 3 images per episode, choosing one ran-
domly. Results summarized in Tab.[T]on two datasets show our method performs
comparably to GAN-based approaches and better than previous Diffusion based
method (FSDM) in both sample quality and diversity. For the Flowers dataset,
our model ranks second in both FID and LPIPS scores in 1-shot setting. While

828



12 P. Gupta et al.

Flowers AnimalFaces
Method 1-shot 5-shot|1-shot 5-shot
MatchingGAN [19] - 74.09 - 70.89
LoFGAN |14] - 75.86 - 73.43
DeltaGAN |20| 61.23 77.09 |60.31 74.59
LSO [47] 57.42 79.41]32.91 47.01
CDM (Ours) 60.12 78.99|47.96 74.33

Table 2: Accuracy(%) of different methods on
two datasets in few-shot classification setting (10-
way 1/5-shot) averaged over 10 episodes. Results
of prior methods are as per DeltaGAN |20|. The re-
sults of LSO [47] have been calculated using their
official code in our setting.

v Inversion
40.04
0.4459

X Inversion
85.42
0.5684

Score
FID(])
LPIPS(T)

#seen(—)| 0 1 2 3 5
FID(]) 42.20 | 41.89 | 40.04 | 42.79 | 43.34
LPIPS(1) [0.4304|0.4370|0.4459|0.4396|0.4302

Table 3: (Above) 3-shot FID(]) & LPIPS(t
) scores on AnimalFaces dataset, when applying
CDM with and without inversion based optimiza-
tion of the unseen class distributions.

(Below) 3-shot FID({) and LPIPS(1) on Animal-
Faces dataset, when utilising different number of
neighbouring seen classes to calculate the unseen

class distributions in CDM.

LSO has the best sample quality, its generated samples lack diversity. On the An-
imalFaces dataset, we achieve the best FID in 3-shot setting. The LSO method
uses a StyleGAN2-Ada model with data augmentation applied only for the dis-
criminator, thus improving training data size without compromising fidelity. In
contrast, Diffusion models reflect any augmentation applied to the training data
in generated samples which compromises the sample fidelity. Hence, their effec-
tive training data size gets limited due to lack of augmentations. Consequently,
LSO has better FID scores than CDM due to superior augmentation, but CDM
samples are more diverse and better amalgamate input support samples, unlike
LSO, which shows lower LPIPS scores. DeltaGAN samples, while varied, don’t
align well with unseen class distribution, resulting in worse FID scores than
CDM.

Few-Shot Classification To further evaluate the representativeness of the gen-
erated samples, we present the results of Few-shot classification performed on a
held-out test set comprising of unseen classes. For N-way C-shot classification,
we randomly choose N unseen classes and use C' images of each class to generate
512 fake images. A ResNet18 pretrained on seen data is used as a feature ex-
tractor and the final linear layer is trained using N x (C +512) images. The rest
of the unseen images are used for testing. As Tab. [2] shows, the models trained
using CDM-generated samples are able to classify the test set images with per-
formance comparable to state-of-the-art GAN-based methods. Therefore, the
generated samples match the characteristics of the unseen classes.

4.4 Qualitative Results

For qualitative comparison, we show some generated samples using LSO [47] in
3-shot setting in Fig. [2l on Flowers, VGGFace and NABirds datasets. For all the
datasets, the images generated by CDM are comparable to the ones produced
by the state-of-the-art LSO in terms of quality as well as diversity. We observe
changes in pose/orientation and colour transfers when compared to the condi-
tional (support) images for both CDM and LSO. Rather, for VGGFace dataset,
we can observe a doppelganger kind of effect on the generated samples for LSO,
i.e., the generated faces don’t necessarily have the same identity as the input
faces (evident in rows 4 and 6). This is not the case with CDM, where the gen-
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samples in supplemetary.

In Fig. [3] we show some samples generated in 1-shot setting on the NABirds,
AnimalFaces, Flowers and VGGFace datasets using our approach. The generated
samples display a wide range of poses/orientations/expressions, while maintain-
ing the definitive characteristics of the input sample for all four datasets.

4.5 Ablation Experiments

Varying the number of neighboring seen classes to calculate the initial
unseen class distributions affects sample quality. As shown in Tab. [3] the
optimal number for the AnimalFaces dataset is 2, leading to the best generation
quality. Using more than 2 seen classes includes dissimilar classes, disturbing
distribution variance and resulting in suboptimal FID and LPIPS scores. Simi-
larly, using fewer than 2 classes also yields suboptimal results.

To demonstrate the importance of inversion-based optimization for un-
seen class distributions, we evaluate FID and LPIPS scores for samples gener-
ated with and without inversion on the AnimalFaces dataset in 3-shot setting
(Tab. . Results show significant improvements in image quality with inver-
sion, though there is a slight decrease in sample diversity. This enhancement is
due to improved fidelity, avoiding similar samples from neighboring seen classes,
as shown in Fig. 4| (row 3). For a specific fox species, CDM without inversion
produces a different (seen) species, which is corrected after applying inversion.

5 Conclusion and Future Directions

In this work, we have proposed Conditional Distribution Modelling (CDM) - a
framework that successfully employs Diffusion models for few-shot image syn-
thesis on large scale fine-grained datasets and achieves state-of-the-art results.
We show how taking advantage of the neighbouring seen class statistics at test
time can greatly benefit the image generation diversity. As a future direction,
we aim to extend our approach to few-shot image generation on coarse grained
datasets.

Inputs

without Inversion optimization

Fig.4: We show the images generated by CDM without and with inversion based
optimization for comparison on the AnimalFaces Dataset in 3-shot setting. Inversion
optimization improves the fidelity of the generated samples to the unseen class.

831



CDM 15

References

10.

11.

12.

13.

14.

15.

16.

Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adver-
sarial networks (2017). https://doi.org/10.48550/ARXIV.1711.04340, https:
//arxiv.org/abs/1711.04340

Bartunov, S., Vetrov, D.: Few-shot generative modelling with generative matching
networks. In: Storkey, A., Perez-Cruz, F. (eds.) Proceedings of the Twenty-First
International Conference on Artificial Intelligence and Statistics. Proceedings of
Machine Learning Research, vol. 84, pp. 670-678. PMLR (09-11 Apr 2018), https:
//proceedings.mlr.press/v84/bartunovi8a.html

Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: Vggface2: A dataset for
recognising faces across pose and age. In: 2018 13th IEEE international conference
on automatic face & gesture recognition (FG 2018). pp. 67-74. IEEE (2018)
Choi, J., Kim, S., Jeong, Y., Gwon, Y., Yoon, S.: Ilvr: Conditioning method for
denoising diffusion probabilistic models. arXiv preprint arXiv:2108.02938 (2021)
Clouatre, L., Demers, M.: Figr: Few-shot image generation with reptile (2019).
https://doi.org/10.48550/ARXIV.1901.02199, https://arxiv.org/abs/1901.
02199

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248-255. Ieee (2009)

Dhariwal, P.; Nichol, A.: Diffusion models beat gans on image synthesis. CoRR
abs/2105.05233 (2021), https://arxiv.org/abs/2105.05233

Ding, G., Han, X., Wang, S., Wu, S., Jin, X., Tu, D., Huang, Q.: Attribute group
editing for reliable few-shot image generation. In: CVPR (2022)

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. CoRR
abs/2010.11929 (2020), https://arxiv.org/abs/2010.11929

Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. CoRR abs/1703.03400 (2017), http://arxiv.org/abs/1703.
03400

Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano, A.H., Chechik, G.,
Cohen-Or, D.: An image is worth one word: Personalizing text-to-image generation
using textual inversion (2022). https://doi.org/10.48550/ARXIV.2208.01618,
https://arxiv.org/abs/2208.01618

Giannone, G., Nielsen, D., Winther, O.: Few-shot diffusion models (2022). https:
//doi.org/10.48550/ARXIV.2205.15463, https://arxiv.org/abs/2205.15463
Goodfellow, 1.J.; Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial networks (2014). https://
doi.org/10.48550/ARXIV.1406.2661, https://arxiv.org/abs/1406.2661

Gu, Z., Li, W., Huo, J., Wang, L., Gao, Y.: Lofgan: Fusing local representations
for few-shot image generation. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 8463-8471 (2021)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
CoRR abs/1512.03385 (2015), http://arxiv.org/abs/1512.03385

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. In: Proceed-
ings of the 31st International Conference on Neural Information Processing Sys-
tems. p. 6629-6640. NIPS’17, Curran Associates Inc., Red Hook, NY, USA (2017)

832


https://doi.org/10.48550/ARXIV.1711.04340
https://doi.org/10.48550/ARXIV.1711.04340
https://arxiv.org/abs/1711.04340
https://arxiv.org/abs/1711.04340
https://proceedings.mlr.press/v84/bartunov18a.html
https://proceedings.mlr.press/v84/bartunov18a.html
https://doi.org/10.48550/ARXIV.1901.02199
https://doi.org/10.48550/ARXIV.1901.02199
https://arxiv.org/abs/1901.02199
https://arxiv.org/abs/1901.02199
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2010.11929
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
https://doi.org/10.48550/ARXIV.2208.01618
https://doi.org/10.48550/ARXIV.2208.01618
https://arxiv.org/abs/2208.01618
https://doi.org/10.48550/ARXIV.2205.15463
https://doi.org/10.48550/ARXIV.2205.15463
https://doi.org/10.48550/ARXIV.2205.15463
https://doi.org/10.48550/ARXIV.2205.15463
https://arxiv.org/abs/2205.15463
https://doi.org/10.48550/ARXIV.1406.2661
https://doi.org/10.48550/ARXIV.1406.2661
https://doi.org/10.48550/ARXIV.1406.2661
https://doi.org/10.48550/ARXIV.1406.2661
https://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1512.03385

16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

P. Gupta et al.

Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. CoRR
abs/2006.11239 (2020), https://arxiv.org/abs/2006.11239

Ho, J., Salimans, T.: Classifier-free diffusion guidance (2022). https://doi.org/
10.48550/ARXIV.2207.12598, https://arxiv.org/abs/2207.12598

Hong, Y., Niu, L., Zhang, J., Zhang, L.: Matchinggan: Matching-based few-shot im-
age generation. CoRR abs/2003.03497 (2020), https://arxiv.org/abs/2003.
03497

Hong, Y., Niu, L., Zhang, J., Zhang, L.: Deltagan: Towards diverse few-shot image
generation with sample-specific delta. In: ECCV (2022)

Hong, Y., Niu, L., Zhang, J., Zhao, W., Fu, C., Zhang, L.: F2GAN: fusing-and-
filling GAN for few-shot image generation. CoRR abs/2008.01999 (2020), https:
//arxiv.org/abs/2008.01999

Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training
generative adversarial networks with limited data. Advances in neural information
processing systems 33, 12104-12114 (2020)

Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013). https://doi.
org/10.48550/ARXIV.1312.6114, https://arxiv.org/abs/1312.6114

Liang, W., Liu, Z., Liu, C.: DAWSON: A domain adaptive few shot generation
framework. CoRR abs/2001.00576 (2020), http://arxiv.org/abs/2001.00576
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild.
CoRR abs/1411.7766 (2014), http://arxiv.org/abs/1411.7766

Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed
recognition in an open world. CoRR abs/1904.05160 (2019), http://arxiv.org/
abs/1904.05160

Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms.
CoRR abs/1803.02999 (2018), http://arxiv.org/abs/1803.02999

Nichol, A., Dhariwal, P.: Improved denoising diffusion probabilistic models. CoRR
abs/2102.09672 (2021), https://arxiv.org/abs/2102.09672

Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number
of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics & Image
Processing. pp. 722-729. IEEE (2008)

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-
conditional image generation with clip latents (2022). https://doi.org/10.
48550/ARXIV.2204.06125, https://arxiv.org/abs/2204.06125

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models (2021)

Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Medical Image Computing and Computer-Assisted
Intervention—-MICCAI 2015: 18th International Conference, Munich, Germany, Oc-
tober 5-9, 2015, Proceedings, Part III 18. pp. 234-241. Springer (2015)

Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: Dream-
booth: Fine tuning text-to-image diffusion models for subject-driven generation
(2022)

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E., Ghasemipour,
S.K.S., Ayan, B.K., Mahdavi, S.S., Lopes, R.G., Salimans, T., Ho, J., Fleet,
D.J., Norouzi, M.: Photorealistic text-to-image diffusion models with deep lan-
guage understanding (2022). https://doi.org/10.48550/ARXIV.2205. 11487,
https://arxiv.org/abs/2205.11487

Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D.J., Norouzi, M.: Image super-
resolution via iterative refinement (2021). https://doi.org/10.48550/ARXIV.
2104.07636, https://arxiv.org/abs/2104.07636

833


https://arxiv.org/abs/2006.11239
https://doi.org/10.48550/ARXIV.2207.12598
https://doi.org/10.48550/ARXIV.2207.12598
https://doi.org/10.48550/ARXIV.2207.12598
https://doi.org/10.48550/ARXIV.2207.12598
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2003.03497
https://arxiv.org/abs/2003.03497
https://arxiv.org/abs/2008.01999
https://arxiv.org/abs/2008.01999
https://doi.org/10.48550/ARXIV.1312.6114
https://doi.org/10.48550/ARXIV.1312.6114
https://doi.org/10.48550/ARXIV.1312.6114
https://doi.org/10.48550/ARXIV.1312.6114
https://arxiv.org/abs/1312.6114
http://arxiv.org/abs/2001.00576
http://arxiv.org/abs/1411.7766
http://arxiv.org/abs/1904.05160
http://arxiv.org/abs/1904.05160
http://arxiv.org/abs/1803.02999
https://arxiv.org/abs/2102.09672
https://doi.org/10.48550/ARXIV.2204.06125
https://doi.org/10.48550/ARXIV.2204.06125
https://doi.org/10.48550/ARXIV.2204.06125
https://doi.org/10.48550/ARXIV.2204.06125
https://arxiv.org/abs/2204.06125
https://doi.org/10.48550/ARXIV.2205.11487
https://doi.org/10.48550/ARXIV.2205.11487
https://arxiv.org/abs/2205.11487
https://doi.org/10.48550/ARXIV.2104.07636
https://doi.org/10.48550/ARXIV.2104.07636
https://doi.org/10.48550/ARXIV.2104.07636
https://doi.org/10.48550/ARXIV.2104.07636
https://arxiv.org/abs/2104.07636

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

CDM 17

Sinha, A., Song, J., Meng, C., Ermon, S.: D2C: diffusion-denoising models for few-
shot conditional generation. CoRR abs/2106.06819 (2021), https://arxiv.org/
abs/2106.06819

Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. CoRR
abs/2010.02502 (2020), https://arxiv.org/abs/2010.02502

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Computer
Vision and Pattern Recognition (CVPR) (2015), http://arxiv.org/abs/1409.
4842

Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning.
Advances in neural information processing systems 30 (2017)

Van Horn, G., Branson, S., Farrell, R., Haber, S., Barry, J., Ipeirotis, P., Perona,
P., Belongie, S.: Building a bird recognition app and large scale dataset with citizen
scientists: The fine print in fine-grained dataset collection. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. pp. 595604 (2015)
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017)

Vinyals, O., Blundell, C., Lillicrap, T.P., Kavukcuoglu, K., Wierstra, D.: Matching
networks for one shot learning. CoRR abs/1606.04080 (2016), http://arxiv.
org/abs/1606.04080

Yang, M., Wang, Z., Chi, Z., Feng, W.: Wavegan: Frequency-aware gan for high-
fidelity few-shot image generation. In: European Conference on Computer Vision.
pp. 1-17. Springer (2022)

Yang, S., Liu, L., Xu, M.: Free lunch for few-shot learning: Distribution calibration.
arXiv preprint arXiv:2101.06395 (2021)

Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR). pp. 586-595.
IEEE Computer Society, Los Alamitos, CA, USA (jun 2018). https://doi.org/
10.1109/CVPR.2018.00068, https://doi.ieeecomputersociety.org/10.1109/
CVPR.2018.00068

Zhao, S., Liu, Z., Lin, J., Zhu, J.Y., Han, S.: Differentiable augmentation for data-
efficient gan training. Advances in Neural Information Processing Systems 33,
75597570 (2020)

Zheng, C., Liu, B., Zhang, H., Xu, X., He, S.: Where is my spot? few-shot image
generation via latent subspace optimization. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 3272-3281 (2023)
Zhou, Y., Ye, Y., Zhang, P., Wei, X., Chen, M.: Exact fusion via feature distribu-
tion matching for few-shot image generation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 8383-8392
(June 2024)

Zhu, J., Ma, H., Chen, J., Yuan, J.: Few-shot image generation with diffusion
models. arXiv preprint arXiv:2211.03264 (2022)

834


https://arxiv.org/abs/2106.06819
https://arxiv.org/abs/2106.06819
https://arxiv.org/abs/2010.02502
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1606.04080
http://arxiv.org/abs/1606.04080
https://doi.org/10.1109/CVPR.2018.00068
https://doi.org/10.1109/CVPR.2018.00068
https://doi.org/10.1109/CVPR.2018.00068
https://doi.org/10.1109/CVPR.2018.00068
https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00068
https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00068

	Conditional Distribution Modelling for Few-Shot Image Synthesis with Diffusion Models

