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Abstract. Human intelligence gradually accepts new information and
accumulates knowledge throughout the lifespan. However, deep learn-
ing models suffer from a catastrophic forgetting phenomenon, where
they forget previous knowledge when acquiring new information. Class-
Incremental Learning aims to create an integrated model that balances
plasticity and stability to overcome this challenge. In this paper, we pro-
pose a selective regularization method that accepts new knowledge while
maintaining previous knowledge. We first introduce an asymmetric fea-
ture distillation method for old and new classes inspired by cognitive sci-
ence, using the gradient of classification and knowledge distillation losses
to determine whether to perform pattern completion or pattern separa-
tion. We also propose a method to selectively interpolate the weight of
the previous model for a balance between stability and plasticity, and
we adjust whether to transfer through model confidence to ensure the
performance of the previous class and enable exploratory learning. We
validate the effectiveness of the proposed method, which surpasses the
performance of existing methods through extensive experimental proto-
cols using CIFAR-100, ImageNet-Subset, and ImageNet-Full.

Keywords: Class Incremental Learning · Knowledge Distillation · Weight
Interpolation

1 Introduction

The successful development of deep learning has created many businesses and
has applied to the real-world. However, many studies on deep learning have
been evaluated in limited experimental settings. To achieve human-level goals,
consideration of changes in real-world environments is required. In this respect,
continual learning has recently been receiving a lot of attention from the artificial
intelligence community. Continual learning is a methodology that can continu-
ously learn about real-world situations where visual characteristics change, such
as robot vision and autonomous driving systems [33]. Although recent studies on
continual learning have shown promising results, they still suffer from the prob-
lem of losing previous knowledge in the process of learning new knowledge. This
phenomenon is called catastrophic forgetting [10, 25], and this problem results
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Fig. 1: Comparison of regularization methods in continual learning by location and ap-
plication. (a) Response-based methods regularize the model’s outputs through knowl-
edge distillation. (b) Model-based methods regularize model’s parameters by impor-
tance. (c) Our approach selectively applies regularization based on gradient and confi-
dence throughout the learning process rather than maintaining constant regularization.

in performance degradation of deep learning models. One of the major concerns
of recent continual learning approaches is mitigating the catastrophic forgetting
problem to prevent such performance deterioration.

Class-Incremental Learning (CIL) is a representative scenario of continual
learning that seeks to learn new classes that have not been learned before while
preserving knowledge from old classes. To mitigate the catastrophic forgetting
that occurs as new knowledge is learned, existing methods adopt regularization
methods that leverage previous learning models. The major approaches for ap-
plying regularization to CIL can be divided into response-based regularization
methods [7, 13, 17, 30], and model-based regularization methods [1, 4, 5, 18] (as
illustrated in Fig. 1). However, both approaches maintain regularization through-
out training and depend on regularization hyperparameters to strike a balance
between stability and adaptability. The stability-plasticity dilemma highlights
the challenge of forgetting old knowledge while acquiring new knowledge, and
the risk of rejecting new knowledge to preserve old knowledge. Despite this,
achieving a balance between stability and adaptability remains a topic requir-
ing further investigation. Here, we propose a simple but effective method to
selectively apply regularization, accommodating new knowledge while ensuring
stability.

In this paper, we introduce a selective regularization method named SRIL
that leverages knowledge distillation and weight interpolation. First, we pro-
pose an asymmetric feature distillation method called Gradient-based Fea-
ture Distillation. Our intuition begins with pattern completion and pattern
separation in cognitive science [28, 32]. The pattern completion means integrat-
ing memories by judging that they are existing knowledge when they are newly
readjusted by external stimuli, and pattern separation is the process of mak-
ing memories distinct from existing memories by judging that they are different
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from the contents in memory. We intend to achieve realignment of knowledge
by adopting an asymmetric learning strategy for the previously learned class
and the newly learned class in terms of pattern completion and pattern sepa-
ration. In the process of learning a new class, we utilize the gradients of the
knowledge distillation and classification losses to determine whether knowledge
distillation is beneficial or harmful. Then, we generate a mask for the channel
of each intermediate feature and exploit the mask to apply feature distillation
to conflicting channels for the old and new classes. Selective feature distillation
through masks generated by this process considers different characteristics by
taking an asymmetric strategy for old and new classes.

Meanwhile, to deal with the stability-plasticity dilemma, we introduce a
Confid-ence-aware Weight Interpolation, which determines whether the
model retains old knowledge well and performs selective regularization accord-
ing to the determined result. Here, we determine whether the new model main-
tains previous knowledge through the confidence of the new model on old data.
The existing weight interpolation method is used to improve the generalization
performance of a model as a method for approximating an ensemble [37, 38]. In
contrast, we ensure that the upper bound of the loss for the old data does not
increase by making the new model close to the old model in the weight space
to ensure model stability. However, not moving away from the weight space can
instead become a constraint on learning new knowledge. Therefore, if the new
model’s confidence in the old data exceeds a certain value based on the old
model’s confidence, we remove regularization to enable exploratory learning and
balance stability and plasticity. Overall, our contributions are as follows:
– We propose a new asymmetric Gradient-based Feature Distillation (GFD)

to consider feature characteristics between old and new classes.
– We propose Confidence-aware Weight Interpolation (CWI) to strike a bal-

ance between stability and plasticity. CWI ensures the stability of the model
and enables exploratory learning by operating selectively.

– We achieve comparable performance to the recent state-of-the-art methods
and validate our methods through various experimental settings in CIFAR-
100, ImageNet-Subset, and ImageNet-Full.

2 Related Work

Class-Incremental Learning. CIL is largely classified into three types ac-
cording to how to solve the problem. (i) Regularization based methods regular-
ize the difference between the parameters of the previous network and current
network to maintain a low loss area for previous tasks [1, 5, 18]. (ii) Dynamic
architecture method is a method that continuously adds sub-networks or ex-
pands the network dynamically through pruning and retraining [15,31, 40]. (iii)
Replay based method allows a limited amount of memory composed of data
from previous tasks. As a representative method, studies are being conducted to
transfer dark knowledge of previously trained networks using knowledge distilla-
tion [3,13,30] or to improve performance through efficient memory management
strategies [22,23].
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Knowledge Distillation. Knowledge distillation (KD) approaches have been
proposed to improve the performance of lightweight models by transferring
knowledge from large models to small models [12]. Similarly, many studies have
been conducted in CIL to solve the catastrophic forgetting problem by trans-
ferring the knowledge of the old model through KD when learning new data.
LwF [20] applies KD to CIL and uses KD so that the output of the model
follows the output of the previous trained model. iCaRL [30] stores a limited
amount of old data as exemplars and applies KD to new data to maintain rep-
resentation. LUCIR [13] proposed feature distillation in the embedding space
rather than prediction by logit. PODNet [7] applied distillation not only in the
embedding space but also in the intermediate features with pooling. GeoDL [34]
considers the training trajectory on sub-dimension through an additional regu-
larization term that considers the geodesic between features in the embedding
space. AFC [17] defines the gradient magnitude of each channel in interme-
diate features as importance and applies differentiated feature distillation for
each channel. Furthermore, SnD [41] selects KD between zero-shot and contin-
ual CLIP [29] in the vision- language model. In our work, rather than selecting
between two models, we choose whether to apply KD within a single model.
Weight Space Ensemble. Ensemble is the most basic method used to im-
prove the performance of a model in deep learning. However, existing ensemble
methods are accompanied by an increase in model size or additional cost in the
inference process. SWA [16] showed that by performing weight averaging peri-
odically along the trajectory of SGD in a single model, the model improves in
more generalized performance and converges to a wide minima. WiSE-FT [38]
demonstrated that the weight space ensemble from the zero-shot model improves
the robustness of the model in the fine-tuning process. In a recent study of model
soups [37], the performance of the model was improved without additional infer-
ence time by applying the weight space-ensemble from the fine-tuned multiple
model. Inspired by these weight space ensemble methods, there have been at-
tempts to apply them in CIL. It either transfer the knowledge of new classes to
the old model by updating the old model via exponential moving average [35],
or apply consistent weight interpolation for the entire learning process [9].

3 Method

3.1 Problem Definition

CIL aims to improve performance for all classes by starting from learning a
limited number of classes and sequentially adding new classes. These sequential
stages are called tasks. In CIL scenario, we have sequential training dataset Dt =

{xt
i, y

t
i}

N
i=1 and exemplar Et =

{
x1:t−1
j , y1:t−1

j

}R

j=1
containing limited data for

previous tasks, where t, x and y denote task, input image and labels, respectively,
and 1 : t denotes from the 1-st task to the t-th task. Each task’s classes are
disjoint in CIL scenario, i.e., y1:t−1 ∩ yt = ∅. Since our goal is to maintain
the performance of previous tasks while learning new tasks, the optimization
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Fig. 2: Illustration of GFD. Feature distillation by new data is applied when the di-
rection of the gradients of KD loss and classification loss are the same, and feature
distillation by old data is applied when the direction is opposite.

problem is defined as follow:

argmin
θ

E(x,y)∼D1:t [L (x, y; θ)]

s.t. E(x,y)∼Dt∪Et [L (x, y; θ)] < ϵ,
(1)

where the L is the loss function (e.g., Cross-Entropy), and the θ is parameters
of the model. Since the model converges while learning from current task data
and exemplar, there exists some small number ϵ higher than loss.

3.2 Gradient-based Feature Distillation

We use the gradients of classification and KD losses for pattern integration and
separation, inspired by [8,42]. We consider that each channel contains informa-
tion about patterns in the features of the model, therefore we decide whether
to apply feature distillation to each channel based on the similarity between
gradients of the classification and the KD losses. To achieve this, we build a
binary mask M where activation is determined by the cosine similarity of the
two gradients.

Ml,c =

{
1, if cos(∇zl,cLkd,∇zl,cLlsc) ≥ 0

0, otherwise
, (2)

where cos(·) is a cosine similarity. The ∇zl,cLkd and ∇zl,cLlsc are the gradi-
ents of KD and classification losses for each channel c for the features zl,c of
the l-th layer, respectively. The binary mask M is activated when directions of
the two gradients for the new class data are equal. If the mask is activated,
feature distillation is applied. Using the new class data, pattern completion is
achieved through KD when the gradients of KD and classification losses have
same directions for each channel of the features. On the other hands, applying
KD can inhibit the classification performance when the two gradients have dif-
ferent directions [8]. Therefore, in this case, we rule out the KD to achieve the
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Fig. 3: Illustration of CWI. Determine the stability of the new model based on the con-
fidence of the old model trained on old data. In the subsequent learning process, which
has stable performance on previously learned data, it pursues exploratory learning on
a new class by eliminating regularization by weight interpolation.

pattern separation. Nonetheless, not regularizing at all for a particular channel
may cause problems with the stability of the model. Additionally, in the pro-
cess of pattern separation, from the perspective of pursuing differentiation from
existing knowledge, maintaining the existing pattern can lead to complete differ-
entiation. To achieve this, we apply a mask that is opposite to the binary mask
to the old classes data while applying the binary mask to the new data. Finally,
the objective for our GFD is defined as follows:

Lgfd = M · Lfd(xnew) + (1−M) · Lfd(xold), (3)

where,

Lfd =

L∑
l=1

C∑
c=1

∣∣∣∣∣∣ztl,c − zt−1
l,c

∣∣∣∣∣∣2
F
, (4)

in which xnew and xold are new classes data and old classes data, respectively.
L is the total number of layers and C is the total number of channels in each
layer. ||·||F is the frobenius norm and Lfd is a channel-wise feature distillation
loss, and we normalize each feature for learning stability.

3.3 Confidence-aware Weight Interpolation

Under the stability-plasticity dilemma [26, 36] in the CIL, simultaneously im-
proving stability and plasticity is a challenging problem. However, continual
learning considering the balance between the stability and plasticity is essential
to improve overall performance. Regarding stability-plasticity, previous meth-
ods [7,17] have had difficulties in ensuring stability enough to expect satisfactory
performance improvement despite performing feature distillation that directly
transfer the representation. To overcome these limitations, we interpolate the
weights of the old model into the new model, thereby preventing loss changes
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for the old data and ensuring stability for the previous task. In addition, we pur-
sue the plasticity through exploratory learning after the stability of the model
is guaranteed enough.

Consequently, we introduce a confidence-aware weight interpolation to im-
prove both stability and plasticity. As the model learns on the new data, we
interpolate the weights of the new model through the weights of the old model
to prevent the model from getting out of the low error area due to a large differ-
ence between parameters with the old model. We update the parameters of the
new model θt through the parameters of the old model θt−1, which is expressed
as:

θt ← βθt + (1− β)θt−1, (5)

where β ∈ [0, 1] is an interpolation parameter. However, weight interpolation can
adversely affect plasticity from a continuous perspective. To solve this problem,
we use confidence in the old data to enable exploratory learning without weight
interpolation when the model has sufficient knowledge about the old data. We
adaptively adjust the interpolation parameter β, to apply weight interpolation
when the confidence of the new model and the old model for the old data is above
the threshold, and not to apply when the confidence is below the threshold.
Therefore, interpolation parameter β is defined as follows:

β =

{
α, if conf(xold; θ

t−1)− conf(xold; θ
t) ≥ δ

1, otherwise
, (6)

in which confidence denotes conf(x; θ) = E [py(x; θ)] and α ∈ [0, 1] is the hy-
perparameter, where py(x; θ) is the predicted probability for the ground truth
y, and δ is the threshold. Since the prediction distribution also changes as the
class increases, we set δ = λthδ

t, where λth is the hyperparameter, and adaptive
factor is δt = (nt)

2
/n1:t and nt is the number of classes in task t.

Fig. 4: Difference in confidence
based on training epochs.

Fig. 4 shows the difference in confidence
between the old and new model for the pre-
vious 50 classes data in the process of learn-
ing an additional 10 classes from the model
trained for 50 classes on CIFAR-100. In the
initial learning process, while learning new
class data, the prediction performance for old
classes is destroyed, but the difference in con-
fidence for old classes is reduced through fea-
ture distillation and weight interpolation. In
addition, in the later learning process, when
the difference in confidence between the two
models is lower than the threshold, it is con-
firmed that a certain level of confidence is
guaranteed by exploratory learning on new
class data without weight interpolation.
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Algorithm 1 SRIL: Selective Regularization Algorithm

Input: training set Dt, exemplar set Et, old model’s parameters θt−1, new model’s
parameters θt, interpolation parameter α, distill factor λt

gfd, learning rate γ
Output: θt

θt ← θt−1 // initialize new model
for e in {1, · · · , E} do

sample a mini-batch (x, y) ∼ Dt ∪ Et
zero initialization binary mask M
compute gradient from new classes (xnew, ynew)
for l in {1, · · · , L} do

if cos(∇zl,cLkd,∇zl,cLlsc) ≥ 0 then
Ml,c = 1

end if
end for
Lgfd = M · Lfd(xnew) + (1−M) · Lfd(xold)
Ltotal = Llsc + λt

gfdLgfd

compute gradient ∇Ltotal

compute confidence from old classes (xold, yold)
if conf(xold; θ

t−1)− conf(xold; θ
t) ≥ δ then

θt ← αθt + (1− α)θt−1

end if
update parameters θt ← θt − γ∇Ltotal

end for
update exemplar from Dt ∪ Et

3.4 Overall Framework

Our SRIL consists of Gradient-based Feature Distillation and Confidence-aware
Weight Interpolation. GFD is a KD method for considering different expressive
features of the old class and new class. CWI balances between stability and
plasticity. Our overall loss is follow as:

Ltotal = Llsc + λt
gfdLgfd, (7)

in which distill factor is λt
gfd = λgfd · λt, where λgfd is a hyperparameter,

and adaptation factor is λt =
√

n1:t/nt. λt is a well-used adaptation factor in
CIL [7, 13, 17, 34]. We also use local similarity classifiers (LSC) following the
previous works [7, 17]. LSC allows K proxies for each class. The logit for each
class c is obtained as the average of K proxies.

sc,k =
exp ⟨ϕc,k, z⟩∑
i exp ⟨ϕc,i, z⟩

ŷc =
∑
k

sc,k ⟨ϕc,k, z⟩ , (8)

where ϕ is a classifier weight, sc,k and ŷc denote the probability by each proxy
and the probability for each class. We use LSC loss [7] which is based on NCA
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loss [27] as follows:

Llsc =

[
− log

exp(η(ŷy − ε))∑
i ̸=y exp(ηŷi)

]
+

, (9)

where η and ε are learnable parameters and small margin, respectively, and hinge
[·]+ denotes max(0, ·).

4 Experiment

To verify the experimental validity, we compare our performance with the state-
of-the-art replay-based methods that address the same problem as ours and use
KD. Exemplar stores 20 fixed samples for each previous class and uses herding
selection [30]. We report both results of model predictions and nearest-mean-of-
exemplars [30] classification, denoted as CNN and NME, respectively.

4.1 Experimental Setup

Dataset and protocol. We evaluate our method on CIFAR-100 [19], ImageNet-
Subset [6, 7, 13] and ImageNet-Full [6]. CIFAR-100 consists of 60,000 images of
32× 32 pixels with 100 classes. It contains 500 training data and 100 test data
for each class. ImageNet is a large-scale classification dataset, including 1.28 mil-
lion images and 50k test set, and consists of 1,000 classes. ImageNet-Full uses
all classes of ImageNet, and ImageNet-Subset refers to a dataset that randomly
extracts 100 classes out of 1,000 classes. We use the same random seed and class
order as the previous methods [7, 17] for fair comparison. The mean and stan-
dard deviation of the performance are obtained as a result of three different class
order. After learning a part of the entire class for CIL setting, we gradually learn
a certain number of classes. Feature-based distillation methods transfer repre-
sentation directly, so representation of previously learned models is important.
Therefore, it shows better performance than response-based distillation in small
task incremental learning settings, where it learns about half of the total class
in advance and then gradually learns a small number of classes [7, 13,17].
Implementation details. For reproducibility, we conducted an experiment
based on the PODNet [7] code. All experiments are conducted on TITAN-Xp
GPU. We follow the experimental setup of PODNet [7]. In the CIFAR-100 ex-
periment, we use the ResNet-32 [11] architecture. We trained the model for 160
epochs with SGD with momentum of 0.9 and used a batch size of 128 and a
weight decay of 0.0005. We use a cosine annealing learning rate scheduler with
an initial learning rate of 0.1. The hyperparameters are α = 0.995, λth = 0.1, and
λgfd = 2. For ImageNet-Subset and ImageNet-Full, we use the ResNet-18 [11]
architecture. We trained the model for 90 epochs with SGD with momentum of
0.9 and used a cosine annealing learning rate scheduler with an initial learning
rate of 0.1 and 0.05, respectively. We use a batch size of 64 and a weight decay
of 0.0001. α and λth use 0.999 and 0.1. λgfd uses 5 and 7 for ImageNet-Subset
and ImageNet-Full, respectively.

1540



10 J. Han et al.

Table 1: Comparison of average accuracy (%) between state-of-the-art methods using
exemplar and our SRIL on CIFAR-100. The best accuracy is indicated in bold.

CIFAR-100
Classifier 50 tasks 25 tasks 10 tasks 5 tasks

New classes per task 1 2 5 10

BiC [39]

CNN

47.09± 1.48 48.96± 1.03 53.21± 1.01 56.86± 0.46
LUCIR [13] 49.30± 0.32 57.57± 0.23 61.22± 0.69 64.01± 0.91
PODNet [7] 57.98± 0.46 60.72± 1.36 63.19± 1.16 64.83± 0.98
GeoDL [34] 52.28± 3.91 60.21± 0.46 63.61± 0.81 65.34± 1.05
DDE [14] - - 64.12± 1.40 65.42± 0.72
AANet [21] - 62.31± 1.02 64.31± 0.90 66.31± 0.87
CSCCT [2] 58.80± 1.92 61.10± 1.12 63.72± 1.06 -
AFC [17] 62.18± 0.57 63.89± 0.93 64.98± 0.87 66.49± 0.81
SRIL (Ours) 63.64± 1.02 64.36± 1.16 65.11± 0.82 66.21± 0.89

iCaRL [30]

NME

44.20± 0.98 50.60± 1.06 53.78± 1.16 58.08± 0.59
LUCIR [13] 48.57± 0.37 56.82± 0.19 60.83± 0.70 63.63± 0.87
PODNet [7] 61.40± 0.68 62.71± 1.26 64.03± 1.30 64.48± 1.32
AFC [17] 62.58± 1.02 64.06± 0.73 64.29± 0.92 65.82± 0.88
SRIL (Ours) 63.84± 0.98 64.87± 0.91 66.25± 1.16 67.13± 1.03

4.2 Main Results

CIFAR-100. We compare the average accuracy with the state-of-the-art meth-
ods that use the exemplar and KD [2, 7, 13, 14, 17, 21, 30, 34, 39] in Table 1. For
a method based on other framework, GeoDL [34], DDE [14], AANet [21] and
CSCCT [2] are a performance result based on PODNet (CNN) [7]. We learn 50
classes in 0-th task and increase the classes of fixed numbers for each task. As
a result of the experiment using the NME classifier, the performance improve-
ment of 0.81–1.96 percent points in all experimental environments. Experiments
using a CNN classifier show that 5 tasks had lower performance of 0.28 per-
cent points than closest state-of-the-art, but 10 tasks, 25 tasks and 50 tasks
show performance improvements of 0.13–1.46 percent points compared to the
state-of-the-art method.
ImageNet-Subset/Full. In Table 2, we compare our method with the state-
of-the-art methods in ImageNet-Subset/Full benchmarks. In this experiment, we
employ CNN classifier following the previous evaluation protocols [7, 17] since
the kNN-based NME classifier has drawbacks in dealing with a large number of
classes. In the ImageNet-Subset, our method outperforms the previous methods
in all experiments and achieves 0.78–1.99% higher performance than the previous
state-of-the-art method, AFC. In the experiment for ImageNet-Full, we achieved
the comparable results compared with the recent CIL methods. Specifically, we
attain 0.07% higher accuracy than the previous state-of-the-art method, AFC,
in the 5-task scenario.
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Table 2: Comparison of average accuracy (%) between state-of-the-art methods and
SRIL on ImageNet-Subset and ImageNet-Full. The best accuracy is represented in bold,
and the second-best accuracy is underlined.

ImageNet-Subset ImageNet-Full
50 tasks 25 tasks 10 tasks 5 tasks 10 tasks 5 tasks

New classes per task 1 2 5 10 50 100

iCaRL [30] 54.97 54.56 60.90 65.56 46.72 51.36
BiC [39] 46.49 59.65 65.14 68.97 44.31 45.72
LUCIR [13] 55.44 60.81 65.83 67.07 59.92 64.34
Mnemonics [23] − 69.74 71.37 72.58 63.01 64.54
PODNet [7] 62.48 68.31 74.33 75.54 64.13 66.95
DDE [14] − − 75.41 76.71 64.71 66.42
GeoDL [34] − 71.72 73.55 73.87 64.46 65.23
AANet [21] − 71.78 75.58 76.96 64.85 67.73
CSCCT [2] − 68.91 74.35 76.41 − −
AFC [17] 72.08 73.34 75.75 76.87 67.02 68.90

SRIL (Ours) 72.86 75.33 77.28 78.57 66.87 68.97

Table 3: Comparison of average accuracy (%) without class balanced fine-tuning on
CIFAR-100. ∗ Reproduced by the official code.

50steps 25steps 10steps 5steps
New classes per task 1 2 5 10
PODNet w/o CBF 58.71± 0.28 59.68± 0.37 59.75± 0.68 60.70± 1.13

AFC w/o CBF 60.71± 0.59 60.51± 0.73 59.99± 0.87 60.49± 0.77

SRIL w/o CBF 63.37± 0.3662.30± 0.2462.59± 0.1664.40± 0.76

4.3 Ablation studies

Effect of class balanced finetuning Existing methods [7, 13, 17] update the
classifier through an under-sampled balanced set to solve the class imbalance
problem that occurs in the process of learning new data and exemplar, and this
is called class balanced fine-tuning (CBF). The proposed CWI uses confidence to
find a compromise between plasticity and stability of the model. Therefore, the
performance changes in the absence of CBF is additionally confirmed in Table 3.
Stability-plasticity analysis. We analyze Forgetting Measure (FM) [5] and
Intransigence Measure (IM) [5] to determine how the stability and plasticity of
SRIL differ from other feature distillation methods in Fig. 5. FM is a measure of
stability and is defined as the average difference between the maximum accuracy
of the previous model and the accuracy of the current model for all tasks. The
lower the FM , the higher the stability. IM is a measure of plasticity and is
defined as the average difference in accuracy for new data between models learned
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Fig. 5: Stability-plasticity
analysis. Fig. 6: t-SNE visualization.

Table 4: Effect of CWI

Method
50 tasks 5 tasks

Old New Avg. Old New Avg.

Finetuning 38.71 92.79 40.02 36.71 87.13 45.76
GFD 58.61 73.32 59.21 61.27 71.60 65.34

w/ WiSE-FT [38] 63.26 63.14 63.38 64.69 49.58 65.39
w/ CWI (Ours) 63.34 63.47 63.64 63.11 67.04 66.21

Table 5: Effect of GFD

Method
50 tasks 5 tasks

Old New Avg. Old New Avg.

CWI 50.17 86.57 51.22 50.91 83.55 59.62

w/ GFD (new data) 62.58 65.44 62.94 62.26 66.72 65.62
w/ GFD (old data) 62.72 63.10 63.03 63.71 65.45 66.54
w/ GFD (both) 63.34 63.47 63.64 63.11 67.04 66.21

without regularization and models with regularization of all tasks. The lower
the IM , the higher the plasticity. As a result, PODNet [7] has strengths in
plasticity, and AFC [17] and SRIL have strengths in stability. We explain the
results of the main experiment through the results of stability-plasticity analysis.
Our method has high stability by using two selective regularization methods,
feature distillation and weight interpolation, and improves overall performance
by maintaining performance on the old task. As a result, there was a large
performance gain in small task settings, where the class increased by a small
number. On ImageNet-Full, we achieved a similar level of performance to the
existing method.
Feature visualization. We visualize the embedded features of 0-th task data
for model trained up to the 50-th task on CIFAR-100 using t-SNE [24] in Fig. 6.
Compared to previous work [7, 13, 17], our method achieves to construct more
cohesive clusters for each class. These results show that our method works suc-
cessfully on NME classifier and small exemplar size.
Effect of each component. We perform an ablation study to examine the
effectiveness of each component of our methods in Table 4 and 5. We conduct
experiments by adding each proposed method from finetuning without any reg-
ularization. In the case of GFD, the experiments demonstrate an overall per-
formance improvement. For CWI, a significant performance gain is observed,
particularly in experiments involving the learning of 50 tasks, which consist of
smaller tasks. Furthermore, the highest performance is achieved when both meth-
ods are used together. The weight interpolation method [38], which maintains
consistency over the learning process, contributes to stability; however, it can
impair the plasticity due to the stability-plasticity trade-off in continual learn-
ing. We address this issue by achieving a balance between stability and plasticity
with our distinct confidence-aware weight interpolation method. We applied KD
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Table 6: Effect of memory budget on CIFAR-100 with 50 tasks. ∗ Reproduced by the
official code.

Memory per class 5 10 20 50

iCaRL [30] 16.44 28.57 44.20 48.29
BiC [39] 20.84 21.97 47.09 55.01
LUCIR (NME) [13] 21.81 41.92 48.57 56.09
LUCIR (CNN) [13] 22.17 42.70 49.30 57.02
PODNet (NME) [7] 48.37 57.20 61.40 62.27
PODNet (CNN) [7] 35.59 48.57 57.98 63.69
AFC∗ (NME) [17] 44.33 57.27 62.33 63.83
AFC (CNN) [17] 44.66 55.78 62.18 65.07

SRIL (NME) 54.09± 1.45 61.99± 0.66 63.84± 0.98 65.31± 1.30
SRIL (CNN) 50.23± 1.05 60.47± 1.31 63.64± 1.02 65.31± 1.01

Table 7: Effect of varying initial task sizes on CIFAR-100 with 1 class per tasks.

80 tasks 70 tasks 60 tasks 50 tasks
Initial task size 20 30 40 50

iCaRL [30] 41.28 43.38 44.35 44.20
BiC [39] 40.95 42.27 45.18 47.09
LUCIR (NME) [13] 40.81 46.80 46.71 48.57
LUCIR (CNN) [13] 41.69 47.85 47.51 49.30
PODNet (NME) [7] 49.03 55.30 57.89 61.40
PODNet (CNN) [7] 47.68 52.88 55.42 57.98
AFC (NME) [17] 51.31 57.05 60.06 62.58
AFC (CNN) [17] 52.90 57.61 60.27 62.18

SRIL (NME) 53.21± 1.42 58.30± 1.49 61.21± 1.38 63.84± 0.98
SRIL (CNN) 53.18± 1.11 58.93± 1.84 61.29± 1.64 63.64± 1.02

on new data when it does not conflict with the classification loss during the
learning of new classes. This design improves plasticity, and we apply KD on old
data in pursuit of stability. For clarity, Table 5 shows the impact of old and new
data on GFD. In the table, ‘Old’ and ‘New’ refer to the mean accuracies of the
old and new classes across all tasks.
Effect of memory budget. We conduct an experiment on exemplar that stores
5, 10, 20, and 50 samples for each class to check the dependence by memory
budget in Table 6. Although our method adopts an asymmetric learning strategy
for current task data and exemplar, our method achieves state-of-the-art for all
memory sizes and shows robust performance even for small exemplar sizes. For
the most challenging experiment with a memory size of 5 per class, we achieve
significant performance improvements of 5.72 and 5.57 percent points for NME
and CNN, respectively.
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Fig. 7: Sensitivity analysis for each hyperparameter with 5 tasks and 50 tasks on
CIFAR-100. The lineplot and barplot represent average accuracy and forgetting mea-
sure, respectively.

Effect of initial task size. In Table 7, we investigate the impact of the initial
representation by increasing the initial task size from 20 to 50 with an interval of
10. Our method achieves competitive performance across all experiments. These
results show that our method is robust to the model’s initial representation, even
in the lack of diversity in the initial representation.
Hyperparameter sensitivity analysis. In Fig. 7, we investigate our hyper-
parameters λgfd for the gradient-based feature distillation, and λth and α for
the confidence-aware weight interpolation on CIFAR-100. As λgfd increases, the
forgetting measure decreases, and the average accuracy remains similar. FM in-
creases as λth and α increase. This means that stability decreases and plasticity
increases as the hyperparameters of the two values increase. When the two values
are infinity and 1, weight interpolation is not used at all, and at this time, the
performance deteriorates the most. Our method can control the balance between
plasticity and stability through these three parameters. Based on these results,
we determine the final hyperparameters.

5 Conclusion

In this paper, we proposed a selective regularization method to accept new
knowledge while preserving previous knowledge. We introduced an asymmetric
feature distillation approach using the gradients of classification and knowledge
distillation losses to decide whether to perform pattern completion and separa-
tion. Furthermore, we proposed a confidence-aware weight interpolation method
to improve the balance between stability and plasticity in class-incremental
learning. We achieved competitive performance to the state-of-the-art methods,
and extensive experiments demonstrate the effectiveness in various scenarios.
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