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Abstract. Vision-language models (VLMs) pre-trained on large-scale
image-text pairs have shown great success in various image tasks. How-
ever, how to efficiently transfer such powerful VLMs into video domain
is still an open problem. Given that full finetuning VLMs for video tasks
could be computationally expensive, recent studies turn their focus on
parameter-efficient finetuning (PEFT). The great potential of VLMs lies
in leveraging the bidirectional semantic connections between the two
modalities of vision and language. Nevertheless, most current PEFT
methods use the vision-only framework and usually ignore the seman-
tic connections between vision and language. In this paper, we propose
a novel method called BiEfficient, which use bidirectional prompting
schemes to efficiently transfer the VLM to video recognition task with a
small number of tunable parameters: 1) Vision-to-Language: we propose
two prompt mechanisms, Pre-Prompt and Post-Prompt, which act before
and after the text encoder respectively to generate discriminative video-
level text representation for each input video. 2) Language-to-Vision:
we propose Word-Guided Visual-Prompt, which enhances the temporal
modeling of videos using textual knowledge in an almost parameter-free
manner. Experiments on Kinetics-400, UCF-101, HMDB-51 demonstrate
that the proposed method can achieve comparable or even better perfor-
mance to the full finetuning methods with much fewer tunable parame-
ters across closed-set and zero-shot video recognition benchmarks. Code
is available here: https://github.com/WbLiuBJTULab/BiEfficient.

1 Introduction

Vision-language models (VLMs) are pre-trained on large-scale noisy image-text
pairs from web (e.g ., CLIP [39], ALIGN [18], CoCa [61], Florence [62]), and
have demonstrated remarkable success in various image tasks. However, extend-
ing such success to video tasks poses significant challenges. On the one hand,
collecting a large-scale video-text pre-training dataset is much more difficult than
collecting image-text pairs, on the other hand, training a VLM for video task
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Fig. 1: Comparison with (a) the typical cross-modal framework and existing methods
that focus on cross-modal communication. (b) X-CLIP [33]. (c) BIKE [56]. (d) Our
proposed BiEfficient.

is highly resource-intensive. A prevalent method is to transfer knowledge from
VLMs pre-trained on image-text pairs to the video domain. Nevertheless, as the
model size increases, full finetuning is still too computationally expensive for
video tasks, significantly restricting their deployment in real-world applications.

Recent studies turn their focus on parameter-efficient finetuning (PEFT).
Originating from the field of natural language processing (NLP), PEFT meth-
ods only finetune a small number of parameters while keeping large pre-trained
language models frozen [14, 16, 17, 22, 24, 36, 43, 63]. With the rise of large vi-
sion transformer (ViT) models [8], these techniques have been introduced to
the computer vision community. PEFT methods can be broadly categorized
into adapter-based methods and prompt-based methods. Adapter-based meth-
ods [12,32,34,60] insert lightweight trainable modules into the pre-trained mod-
els, allowing for efficient task-specific adaptations without significantly modifying
the foundation models. In contrast, prompt-based methods [2,13,66,67] prepend
a set of learnable tokens at the input point of the models for task finetuning,
with minimal parameter updates.

However, existing PEFT methods usually fall short in leveraging the se-
mantic connections between vision and language. PEFT methods AIM [60], ST-
Adapter [34] and EVL [27] all use vision-only framework and discard language as
supervision, leading to overfitting on the training dataset while losing capability
of zero-shot on new data. Some existing works have explored the connections be-
tween vision and language, e.g ., X-CLIP [33](Fig.2(b)) and BIKE [56](Fig.2(c)).
Nevertheless, the two methods both have drawbacks. X-CLIP only focus on
vision-to-language direction, disregarding the language-to-vision direction, while
BIKE adds preprocessing steps and extra branch. Moreover, the models are full
finetuned for both methods, which is highly resource-intensive. X-CLIP and
BIKE have demonstrated the effectiveness of leveraging the interaction of the
two modalities, while their drawbacks also highlight the need for PEFT methods
exploring the bidirectional semantic connections of the two modalities to deepen
the understanding of multi-modal data.
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In this paper, we propose a novel method named BiEfficient(Fig.2(d)), which
leverages the Vision-to-Language and the Language-to-Vision knowledge by bidi-
rectional prompting mechanisms.

For the first Vision-to-Language direction, we propose two prompt mecha-
nisms, i.e., Pre-Prompt and Post-Prompt. Pre-Prompt consists of two learnable
components: a set of context tokens that effectively transfer pre-trained knowl-
edge into downstream task and a learnable token (meta-token) that learned
through a lightweight network (Meta-Net) acting as a discriminative context to-
ken for each video. Post-Prompt is builded on top of the text encoder, which
allows text representation to extract the related visual context automatically
to yield the video-level text representation. The two prompt mechanisms are
inspired by that related visual context can make the text representation more
discriminative for enhancing recognition. For example, if there is extra visual
information about “grass”, then the category is more like to be “kicking soccer
ball” instead of “swimming”.

For the second Language-to-Vision direction, we propose Word-Guided Visual-
Prompt mechanism, which leverages textual knowledge to enhance the temporal
modeling of videos in an almost parameter-free manner. We notice that only
a few frames among the video clip are keyframes helpful for recognition, while
most of the remaining frames are about background. So we use textual knowl-
edge to highlight the keyframes which are semantically similar to the category for
enhancing recognition. For example, if we highlight the keyframes “kicking the
ball” and “running”, then the actions “kicking soccer ball” and “running on the
grass” that are both actions on the grass will be much easier to be distinguished.

We evaluate our model on three popular datasets (i.e., Kinetics-400 [20],
UCF-101 [42], HMDB-51 [21]) across two video recognition benchmarks, i.e.,
closed-set and zero-shot video recognition. Comprehensive experiments demon-
strate our proposed method is generally effective. Our contributions are summa-
rized as follows:

– We propose a novel method for parameter-efficient finetuning of CLIP on
video recognition tasks which use bidirectional prompting mechanisms to
leverage the semantic connections of vision and language.

– We propose the Pre-Prompt and Post-Prompt mechanisms in Vision-to-
Language direction to generate discriminative text representation using vi-
sual context, and the Word-Guided Visual-Prompt in Language-to-Vision
direction to enhance temporal modeling of videos using textual knowledge.

– Extensive experiments on three datasets across two video recognition bench-
marks demonstrate the effectiveness and efficiency of our proposed method.

2 Related Work

Vision-Language Models (VLMs) pre-trained on web-scale data have re-
cently shown great success. By using natural language as supervision, VLMs
can learn generalizable visual representation [18,39,61,62]. One of the most im-
pressive works is CLIP [39]. The effectiveness of CLIP has inspired numerous
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applications in various downstream tasks. For example, CoOp [67], CoCoOp [66],
CoPL [13] leverage the strong generalization capability of CLIP to enhance the
few-shot transfer on downstream recognition tasks. PointCLIP [64] applies CLIP
to 3D recognition, leveraging the model’s strong representation capabilities to
handle 3D data effectively. For video understanding, some works [32,54,65] have
explored using CLIP for video-text retrieval. All these works highlight the trans-
formative impact of VLMs in vision tasks. In this work, we continue to explore
transferring CLIP to video recognition tasks.

Video Recognition Convolutional neural networks (CNNs) have long been the
standard backbone for video recognition tasks. Early works [6,10,41,49] learned
spatial and temporal representation through parallel branches. Later works [37,
45,46,57] widely utilized 3D CNNs to jointly learn spatiotemporal representation.
However, the computational demands of 3D CNNs are substantial, leading to the
development of methods [25,26,29,30,48,53] which insert temporal modules into
2D CNNs for efficient temporal modeling. The rise of vision transformers (ViTs)
[8] marked a significant shift in video recognition. Transformer-based methods
[1, 3, 9, 28, 59] leverage the capabilities of self-attention mechanism to capture
long-range temporal dependencies. Very recently, the application of VLMs e.g .,
CLIP, in video recognition task has shown remarkable promise. By transferring
knowledge from the pre-trained VLMs to video domain, these methods (e.g .,
ActionCLIP [50], X-CLIP [33], BIKE [56], Text4Vis [55]) significantly enhancing
video recognition performance, opening new avenues for research in this field.
However, all these models are full finetuned on video data, which makes the
training cost unaffordable to most of us. In this work, we focus on efficiently
transferring CLIP to video recognition tasks with minimal training cost.

Parameter-Efficient Finetuning (PEFT) techniques [14,16,17,22,24,36,44,
63] originated from the field of natural language processing (NLP), and have
been introduced to computer vision community. The goal of PEFT techniques
is to reduce training cost by tuning only a small number of parameters while
keeping the majority of the large pre-trained model frozen. Recently, researchers
have explored applying PEFT to video recognition task. For example, meth-
ods like AIM [60] and ST-Adapter [34] insert lightweight adapter modules into
the pre-trained model, allowing for task-specific adaptation without significantly
modifying the foundation models. PromptCLIP [19] enhances video recogni-
tion by prepending a set of learnable tokens at the input point of the model.
EVL [27] freezes the image encoder of CLIP and adding new trainable decoder
branches specifically designed for temporal modeling. However, all these PEFT
methods disregard the importance of cross-modal communication. In this work,
we propose a PEFT method for video recognition, which leverages the seman-
tic connections between vision and language to bidirectionally prompting CLIP
for parameter-efficient video recognition, achieving improved performance across
three datasets on two benchmarks.
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Fig. 2: Illustration of BiEfficient for video recognition. (a) BiEfficient prompts CLIP
for video recognition bidirectionally: 1)Vision-to-Language: we propose (b) Pre-Prompt
mechanism, which leveraging the vision context to efficiently generate video-level text
prompt before the text encoder, and (c) Post-Prompt mechanism, which generates the
final discriminative video-level category embeddings. 2)Language-to-Vision: we pro-
pose the (d) Word-Guided Visual-Prompt mechanism, which leverages the semantic
similarity between video and categories to enhance temporal modeling for video.

3 Methodology

In this section, we first briefly present our framework in Sec. 3.1. Then, we
describe the details of Pre-Prompt and Post-Prompt for the Vision-to-Language
direction in Sec. 3.2, and the Word-Guided Visual-Prompt for the Language-to-
Vision direction in Sec. 3.3. Finally, the training loss is introduced in Sec. 3.4.

3.1 Overview

An overview of our proposed BiEfficient is shown in Fig.2(a). Given a video clip
V with T sampled frames, and a collection of categories C = {C1, C2, . . . , CK},
where K is the number of categories. We feed the video clip V into the visual
encoder f (·|θv) to obtain the visual representation v, where

v = f (V |θv) (1)

Then, the Pre-Prompt generator f (·|ϕpre) is employed before the textual
encoder to get a video-level textual prompt p. It takes v as input, formulated
as:

p = f (v|ϕpre) (2)
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With the Pre-Prompt generator, we feed the category C into the textual en-
coder f (·|ϕc) to get the text representation c, and we employ the Post-Prompt
generator f (·|ϕpost) leveraging v to generate the discriminative video-level cat-
egory embedding ĉ, where

c = f (p, C|ϕc) , ĉ = f (c,v|ϕpost) (3)

Then, we use the Word-Guided Visual-Prompt module f (·|θt) to obtain the
video embedding v̂, enhancing temporal modeling for video, where

v̂ = f (v, ĉ|θt) (4)

Our goal is to ensure that v̂ and ĉ are similar if V and C are matched, and
dissimilar otherwise. During training, the parameters θv and ϕc are initialized
with weights from the pre-trained CLIP [39].

3.2 Vision-to-Language: two prompt mechanisms

In video recognition task, text refers to the category names, i.e., a word or phrase,
whose information is too insufficient. In order to get a good text description,
current works usually use hand-crafted prompt(ActionCLIP [50], BIKE [56])
or learnable prompt(PromptCLIP [19]). In contrast, to learn robust and dis-
criminative text representation, we propose two prompt mechanisms to improve
performance for video recognition, leveraging visual context in the input video.

Pre-Prompt As depicted in Fig.2(b), given the i -th category Ci ∈ C and the
visual representation v. The category Ci is transformed into category embedding
c̄i through CLIP Tokenize and TokenEmbedding, where

c̄i = TokenEmbedding(Tokenize(Ci)) (5)

First, we introduce M learnable context tokens {c1, c2, . . . cM} to transform
the pre-trained model into video recognition task efficiently. Then, on top of the
M context tokens, we further learn a lightweight network (Meta-Net), denoted
as f (·|ϕm), which takes v and a learnable meta-token cinit as inputs. Meta-Net
includes an Attention block allowing meta-token to extract helpful visual context
automatically, and an Adapter block for visual-textual alignment. Its output cv
can act as a discriminative visual context token, where

cv = f (v, cinit|ϕm) = Adapter (Attention (v, cinit)) (6)

Here, the Attention block is constructed by the standard multi-head self-
attention and feed-forward network [47], which takes cinit as query, v as key and
value. The Adapter block is built with a two-layer bottleneck structure(Linear-
GELU [15]-Linear), with the hidden layer reducing the input dimension by
0.25×. The prompt for the i -th category Ci is thus enhanced by the visual
context, i.e., ti = {c1, c2, . . . cM , cv, c̄i}. Then, we feed ti into the textual en-
coder to obtain the category representation ci of Ci. M is set to be 16 in this
paper.
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Post-Prompt In order to further improve the representation ability of cate-
gories, we continue to explore the impact of visual context on text information.
To this end, we propose the Post-Prompt module, as depicted in Fig.2(c), which
generates the final discriminative video-level category embeddings. For the i -th
category Ci ∈ C, the Post-Prompt module takes the category representation
ci and the visual representation v as inputs, and gets the video-level category
embedding ĉi as follows:

ĉi = ci + α× FFN (MHSA (v, ci)) (7)
Here the Post-Prompt module consists of a multi-head self-attention block

and a feed-forward network [47], which takes ci as query, v as key and value,
allowing ci to automatically extract the related visual information that can
make itself more robust and discriminative. Finally, we combine c and ci with
a learnable parameter α to preserve the original information of c from being
destroyed.

3.3 Language-to-Vision: Word-Guided Visual-Prompt

In Sec. 3.2, we have improved the representation ability of categories by leverag-
ing visual context from the input video. In this section, we describe how to guide
the temporal modeling by leveraging the semantic similarity between video and
categories, as depicted in Fig.2(d).

Word-Guided Visual-Prompt Given a video clip V with T sampled frames,
we can get the frame embeddings v ∈ RT×D, where D is the dimension size. We
also have the category embeddings ĉ ∈ RB×N×D, where B is the batch size, N
is the number of words in the category name. According to CLIP [39], we can
get two sets of embeddings through ĉ: z ∈ RB×D is a set of class embeddings,
which can be regarded as category-level representation, and w ∈ RB×N×D is a
set of word embeddings, which is fine-grained representation.

First, we perform meanpooling on v ∈ RT×D to get a video-level embedding
v̄ ∈ RD. Then, we calculate the similarity of v̄ and

{
zi ∈ RD |i = 1, 2, . . . , B

}
to get ẑ, which is semantically most similar to v̄. Also, we have ŵ ∈ RN×D in
the same category as ẑ. To get the word-guided temporal weights for frames, we
calculate the cosine similarities between each frame and each word as follows:

S (vi, ŵj) =
⟨vi, ŵj⟩

∥vi∥ · ∥ŵj∥
, i = 1, 2, . . . T, j = 1, 2, . . . N (8)

Next, we perform softmax in the temporal dimension to normalize the simi-
larities for each frame, and perform meanpooling in the textual dimension to get
the temporal weights S ∈ RT . Finally, we can generate the text-enhanced video
embedding v̂ ∈ RD as follows:

v̂ = v̄ + β × vTS (9)
where β is a learnable parameter to combine the meanpooling video embedding
v̄ and the text-enhanced video embedding v̂.
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3.4 Training Loss

BiEfficient consists of the visual encoder f (·|θv), the textual encoder f (·|ϕc),
the Pre-Prompt module f (·|ϕpre), the Post-Prompt module f (·|ϕpost), and the
Word-Guided Visual Prompt module f (·|θw). Model parameters θv and ϕc are
initialized with the weights from pre-trained CLIP [39]. We freeze θv and ϕc,
and jointly optimize ϕpre, ϕpost and θw.

During training, given a video Vi ∈ {V1, V2, . . . VB} and a category Ci ∈
{C1, C2, . . . CB}, where B is the batch size. Our objective is to maximize the
similarity between v̂i and ĉi if Vi and Ci are matched, and minimize it otherwise.
This is achieved with a symmetric cross entropy loss, following CLIP:

L = −1

2

(
log

exp (s (v̂i, ĉi) /τ)∑B
j=1 exp (s (v̂i, ĉj) /τ)

+ log
exp (s (ĉi, v̂i) /τ)∑B
j=1 exp (s (ĉi, v̂j) /τ)

)
(10)

where s (·, ·) is cosine similarity, τ refers to the temporature parameter for scal-
ing.

4 Experiments

4.1 Experimental Settings

Datasets We evaluate our proposed BiEfficient on two popular benchmarks,
i.e., closed-set video recognition and zero-shot video recognition. For closed-set
video recognition, we employ Kinetics-400 [20], which is a large scale action
recognition dataset spanning 400 categories, including 240,000 training videos
and 20,000 validation videos. For zero-shot video recognition, we employ UCF-
101 [42] and HMDB-51 [21]. UCF-101 is an action recognition dataset that con-
tains 13,320 videos from 101 categories, collected from YouTube. HMDB-51 is
a collection of realistic videos from various sources, including 7,000 videos span-
ning 51 categories.

Implementation Details In this paper, the visual encoder and textual encoder
are adopted from the pre-trained CLIP(ViT-B/16) [39], and are both frozen. We
sample 8, 16 or 32 frames with a sparse sampling method. The spatial resolution
of the input frames is 224×224. We use AdamW [31] as the optimizer with batch
size of 32. The models are trained with 50 epochs and the weight decay is 0.2.
The learning rate is 5× 10−4. It is warmed up for 5 epochs and decayed to zero
following a cosine schedule for the rest of training. The temperature parameter
is set to be 0.01. All models are trained with 4 NVIDIA RTX 3090 GPUs.

Baseline To establish a simple baseline, we employ the typical cross-modal
framework, as shown in Fig.2(a). Technically, we add a 3-layer temporal trans-
former (9M parameters) on top of the visual encoder, commonly used in previous
works [19,50].
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Table 1: Comparison to state-of-the-art on Kinetics-400. Views = #temporal clip ×
#spatial crop.

Method Pre-train Param Tunable Top-1 Top-5 Frames
(M) Param(M) ×Views

Full finetuning
Methods with random initialization
MViT [38] - 37 37 81.2 95.1 64×3×3

Methods with ImageNet pre-training
NL I3D-101 [52] IN-1K 61.8 61.8 77.7 93.3 128×10×3
UniFormer-B [23] IN-1K 50 50 83.0 95.4 32×4×3
TimeSformer-L [3] IN-21K 121 121 80.7 94.7 64×1×3
ViViT-L/16×2 [1] IN-21K 311 311 80.6 92.7 32×1×1
VideoSwin-L [28] IN-21K 197 197 83.1 95.9 32×4×3

Methods with web-scale image pre-training
MTV-L [59] JFT 876 876 84.3 96.3 32×4×3
TokenLearner-L/10 [40] JFT 450 450 85.4 96.3 64×4×3

Methods with web-scale image-language pre-training
ActionCLIP-B/16 [50] CLIP 142 142 82.6 96.2 16×10×3
X-CLIP-B/16 [33] CLIP - - 83.8 96.7 8×4×3
BIKE-B/16 [56] CLIP 161 161 84.0 - 8×4×3
Text4Vis-B/16 [55] CLIP 100 100 82.9 - 8×4×3

Frozen backbone
PromptCLIP-B/16 A5 [19] CLIP - 6 76.6 93.3 -
ST-Adapter-B/16 [34] CLIP 89 7 82.7 96.2 32×3×1
EVL-B/16 [27] CLIP 175 59 84.2 - 32×3×1
AIM-B/16 [60] CLIP 97 11 84.7 96.7 32×3×1

BiEfficient-B/16 CLIP 155 15 82.8 96.3 8×3×1
BiEfficient-B/16 CLIP 155 15 83.1 96.6 16×3×1
BiEfficient-B/16 CLIP 155 15 83.4 96.7 32×3×1

4.2 Main Results

Closed-set Video Recognition is the common scenario, where the model
is trained and evaluated on videos from the same categories. We compare our
method to the state-of-the-art on Kinetics-400 in Tab. 1. The state-of-the-art are
under different pre-training, including random initialization, ImageNet-1k/21k
[7] pre-training, web-scale image and image-language pre-training. We can ob-
serve that:

•Comparison to the methods with full finetuning Compared to the methods
with random initialization and ImageNet pre-training, BiEfficient outperforms
all these models with fewer tunable parameters and frames on lighter backbone.
For example, BiEfficient-B/16 surpasses VideoSwin-L [28] by +0.3% with signif-
icantly fewer number of tunable parameters (15M vs 197M). Also, BiEfficient-
B/16 (with 8 sampled frames) outperforms TimeSformer-L [3] (with 64 sampled
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frames) by +2.1% with fewer tunable parameters (15M vs 121M), which greatly
reduces the training cost.

Compared to the methods with web-scale image pre-training, our BiEfficient
is also competitive. BiEfficient-B/16 (with 32 sampled frames) achieves compara-
ble performance with MTV-L [59] (with 32 sampled frames) and TokenLearner-
L/10 [40] (with 64 sampled frames) (83.4% vs 84.3%, 85.4%). Note that their
backbone is larger than us, and we only need to tune less than 3% parameters
of them.

Compared to the methods with web-scale image-language pre-training, our
results are comparable to or even better than these full fintuning methods. With
the same backbone ViT-B/16, BiEfficient (with 16 sampled frames) surpasses
ActionCLIP-B/16 [50] (with 16 sampled frames) and Text4Vis [55] (with 8 sam-
pled frames) by +0.5% and +0.2%, while tuning fewer parameters (15M vs 142M,
100M). When compared to ActionCLIP [50], X-CLIP [33] and BIKE [56], our Bi-
Efficient achieves comparable performance (83.4% vs 83.8%, 83.8%, 84.0%) while
significantly reduces the training cost by just tuning around 10% parameters of
them.

•Comparison to the methods frozen backbone We compare our BiEfficient
with previous efficient methods on the same backbone ViT-B/16. Compared to
PromptCLIP A5 [19] (with 16 sampled frames), BiEfficient (with 8 sampled
frames) can achieve much higher top-1 accuracy (82.8% vs 76.6%), while only
introducing extra 9M parameters. With the same 32 sampled frames, BiEfficient
also surpasses ST-Adapter [34] (83.4% vs 82.7%), while only introducing extra
8M parameters.

EVL [27] and AIM [60] achieves better results than us, we will analyze them.
Our BiEfficient-B/16 achieves the same top-1 accuracy 82.8% with EVL-B/16
when the number of input frames is 8. EVL adds 12 layers of decoder blocks
for strong temporal modeling, as a result, when the number of input frames
increases, the temporal modeling capability of EVL is fully utilized to achieve
higher performance. However, our BiEfficient is still comparable to EVL (83.4%
vs 84.2%) while tunable parameters reducing 75%. AIM achieves 1.3% higher
top-1 accuracy than us with 11M parameters. Because it reuse image pre-trained
self-attention layers for temporal modeling thus significantly reduces tunable
parameters, and its layer-by-layer jointly spatiotemporal modeling also helps a
lot. Nevertheless, it is worthy to note that, EVL and AIM both use vision-only
framework, which means that the categories will be mapped into a set of one-hot
vectors, the classification head is only optimized for this set of categories while
unable to generalize to new categories. Our method employs the cross-modal
framework, and focus on exploiting the semantic relationship between vision
and language, enhancing the zero-shot capability on new datasets.

Zero-shot Video Recognition is the novel scenario, where videos for training
and evaluating are from different categories. We pre-train BiEfficient-B/16 on
Kinetics-400 with 32 frames, and evaluate it on UCF-101 and HMDB-51. The
results are shown in Tab. 2.
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Table 2: Zero-shot results on HMDB-51 and
UCF-101.

Method HMDB-51 UCF-101

MTE [58] 19.7 ± 1.6 15.8 ± 1.3
ASR [51] 21.8 ± 0.9 24.4 ± 1.0
ZSECOC [35] 22.6 ± 1.2 15.1 ± 1.7
TS-GCN [11] 23.2 ± 3.0 34.2 ± 3.1
UR [68] 24.4 ± 1.6 17.5 ± 1.6
E2E [4] 32.7 48
ER-ZSAR [5] 35.3 ± 4.6 51.8 ± 2.9
ActionCLIP-B/16 [50] 40.8 ± 5.4 58.3 ±3.4
X-CLIP-B/16 [33] 44.6 ± 5.2 72.0 ± 2.3

BiEfficient 41.8 ± 5.2 60.3 ± 3.3

In contrast to the previous
PEFT methods, our method
is able to conduct zero-shot
video recognition task due to
the cross-modal framework. We
evaluate BiEfficient-B/16 across
three splits and report the mean
top-1 accuracy. Our method
demonstrates strong cross-dataset
generalization capability and
outperforms previous methods.
For example, BiEfficient sur-
passes ER-ZSAR [5] by +6.5%
on HMDB-51, and +8.5% on
UCF-101. When compare to
the CLIP-based full-finetuning
methods, such as ActionCLIP-B/16 [50] and X-CLIP-B/16 [33], our BiEfficient
also achieve comparable or even better performance. The results demonstrate
that the proposed cross-modal framework, which leveraging the semantic rela-
tionship between vision and language, leads to improvement of generalization
capability.

Training Cost We compare the training time (GPU hours) and tunable param-
eters (M) of our method and previous full finetuning methods in Tab. 3. As we
can see, compared to UniFormer-B [23] (with 32 sampled frames), our method
(with 16 sampled frames) achieve +0.2% performance improvement with around
33× training time reduction and 3× fewer tunable parameters. Compared to Ac-
tionCLIP [50], which is also pre-train ed with web-scale image-text pairs, our
method still achieve +0.5% performance improvement with around 3× training
time reduction and 9× fewer tunable parameters.

4.3 Ablation Analysis

We provide detailed ablation analysis on Kinetics-400 in this section. Unless
specified otherwise, we use ViT-B/16 with 8 frames as backbone and 3 views for
testing. The default settings in the paper is marked in gray in this section.

The Effect of Proposed Components. Tab. 4 demonstrates the effective-
ness of our proposed components in Sec. 3. We can observe that through simply
equipping a 3-layer temporal transformer on top of the frozen CLIP, we can
establish a strong baseline (9M) achieving 80.4% top-1 accuracy. With the pro-
posed Pre-Prompt module, we can obtain +1.6% performance improvement by
introducing 3M tunable parameters. Then, appending the Post-Prompt module
can further improve the accuracy by +0.4%, with extra 3M tunable parameters.
It illustrates that the Pre-Prompt and Post-Prompt can generate discrimina-
tive textual representation for enhancing recognition by leveraging the visual
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Table 3: Training cost comparison on Kinetics-400.

Method Pre-train Top-1 (#views) Training Tunable
(#frames per view) GPU Hours Param(M)

VideoSwin-B [28] (32) IN-21K 82.7 (4) 512 × V100 88
UniFormer-B [23] (32) IN-1K 82.9 (4) 5000 × V100 50
ActionCLIP-B/16 [50] (16) CLIP 82.6 (3) 480 × RTX 3090 142

BiEfficient-B/16 (16) CLIP 83.1 (3) 152 × RTX 3090 15

context. Finally, with the Word-Guided Visual-Prompt, BiEfficient can surpass
the baseline by +2.4%. This shows that the Word-Guided Visual-Prompt can
effectively use textual knowledge for enhancing temporal modeling.

Table 4: Component-wise analysis of BiEfficient. Base-
line refers to the frozen CLIP followed by a 3-layer tem-
poral transformer with no textual prompt.

Method Tunable Top-1Param(M)

Baseline 9 80.4
+ Pre-Prompt 12 82.0 (+1.6)
+ Post-Prompt 15 82.4 (+2.0)
+ Word-Guided Visual-Prompt 15 82.8 (+2.4)

Table 5: Comparison of
different textual prompt.

Method Top-1

w/o prompt 80.6
Hand-crafted prompt 80.9
Learnable prompt [19] 82.0
Pre-Prompt 82.4
Post-Prompt 82.5
BiEfficient 82.8

The Effect of Textual Prompt Tab. 5 demonstrates the effect of different
textual prompt. As we can see, using no prompt leads to the worst result of 80.6%
top-1 accuracy, while using hand-crafted prompt “This is a video about {}” and
learnable prompt [19] (16 prompt vectors+X) results in a drop of 1.9% and 0.8%,
respectively. Using the Pre-Prompt and Post-Prompt mechanism alone achieves
82.4% and 82.5% top-1 accuracy, respectively, demonstrating the effectiveness
of the proposed textual mechanisms. Using the Pre-Prompt and Post-Prompt
mechenisms together achieves the highest performance of 82.8%, demonstrating
that the two textual prompt mechanisms can generate more discriminative text
representation for enhancing recognition.

Optional Designs of Pre-Prompt We provide several optional designs of Pre-
Prompt module in Tab. 6. A1 refers to the case where we directly concatenate
the output of the visual encoder and the context tokens of length M . A2 refers
to the case where we employ an Attention block constructed by the standard
multi-head self-attention and feed-forward network [47], and take the context
tokens as query, the output of visual encoder as key and value. The output of
the Attention block is regarded as the text prompt. A3 refers to the case where
we discard the Adapter block in the Pre-Prompt module. The results of A1
and A2 drop 1.0% and 0.8%, respectively. This demonstrates the proposed Pre-
Prompt module can extracted the related visual context effectively. A3 leads to a
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Table 6: Comparison of optional de-
signs of Pre-Prompt.

Method Param Top-1.(%) Top-5.(%)

A1 - 81.0 95.8
A2 3M 81.2 95.8
A3 3M 81.7 96.0

Pre-Prompt 3M 82.0 96.1

Table 7: Ablation study on the effect
of frame meanpooling.

Method Top-1.(%) Top-5.(%)

w/o meanpooling 82.5 96.3
w/ meanpooling 82.8 96.3

Table 8: Ablation study on different
source of top-1 word embeddings.

Top-1 Word Embs Top-1.(%) Top-5.(%)Source

Word Emb. 82.5 96.3
Class Emb. 82.8 96.3

Table 9: Compar-
ison of varying val-
ues of α.

α Top-1.(%)

1 82.1
0.1 82.4
0.01 82.3

Table 10: Com-
parison of varying
values of β.

β Top-1.(%)

1 81.8
0.1 82.8
0.01 82.5

drop of 0.3%, which illustrates that the Adapter block can align the meta-token
carrying visual information with the text tokens.

The Effect of Meanpooling Video Embs. We discuss the effect of mean-
pooling video embeddings in this section. From Tab. 7, we can see that, in the
case of without meanpooling, where the word-guided temporal modeled video
embeddings are taken directly for classification without combined with the mean-
pooling video embeddings, the top-1 accuracy drops 0.3%. We conjecture this is
because the video embeddings obtained from meanpooling contains more robust
representation which can help recognition.

How to obtain the top-1 word embeddings? In order to demonstrate how
to obtain the top-1 word embeddings in the Word-Guided Visual-Prompt, we
disscuss two approaches. As we depict in Sec. 3.3, we can get two sets of embed-
dings through the category embedding: z ∈ RB×D is a set of class embeddings,
which can be regarded as category-level representation, and w ∈ RB×N×D is a
set of word embeddings, which is fine-grained representation. Also, we can get
the meanpooling video embedding v̄. For the first approach, we calculate the
cosine similarity of each class embedding in z ∈ RB×D and v̄ to obtain the top-1
word embeddings. For the second approach, we calculate the similarity of wi and
v̄ by

∑N
n=1 s (w

n
i , v̄), where i = 1, 2, . . . , B, to get the top-1 word embeddings.

We show the results for two approaches in Tab. 8. We can see that using the
category-level class embeddings for similarity calculation works better.

The Parameter Analysis of α α refers to the parameter that controls the
combination of the original category embeddings and the visual-enhanced cate-
gory embeddings in the Post-Prompt module. We provides the results of different
initialization values of α in Tab. 9. As we can see, when α is initialized with 1
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and 0.01, the top-1 accuracy drops 0.3% and 0.1%, respectively, demonstrating
that too much or too little visual information both reduce recognition capability.
Overall, the initialization value of 0.1 leads to better performance.

The Parameter Analysis of β β refers to the parameter that controls the
combination of the original meanpooling video embeddings and the text-enhanced
video embeddings in the Word-Guided Visual-Prompt module. We provide re-
sults of different initialization values of β in Tab. 10. We can observe that when
the initialization value of β is 0.01, the result drops 0.3%. In addition, when β is
initialized with 1, the result get a significantly drop of 1.0%. Overall, the initial-
ization 0f 0.1 leads to a better combination of the meanpooling video embeddings
and the text-enhanced video embeddings.

5 Conclusion

In this work, we propose a parameter-efficient finetuning method call BiEfficient
for video recognition, which uses bidirectional prompting mechanisms to lever-
age the semantic connections of vision and language. In the Vision-to-Language
direction, we propose the Pre-Prompt and the Post-Prompt mechanisms to gen-
erate discriminative text representation leveraging the visual context of each
input video. In the Language-to-Vision direction, we propose the Word-Guided
Visual-Prompt mechanism to enhance the temporal modeling for videos leverag-
ing the textual knowledge. Extensive experiments on three datasets across two
benchmarks has demonstrated the effectiveness and efficiency of our proposed
method.
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