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Abstract. Modern deep neural networks often suffer from miscalibra-
tion, leading to overly confident errors that undermine their reliability.
Although Knowledge Distillation (KD) is known to improve student clas-
sifier accuracy, its impact on model calibration remains unclear. It is
generally assumed that well-calibrated teachers produce well-calibrated
students. However, previous findings indicate that teachers calibrated
with label smoothing (LS) result in less accurate students [45]. This pa-
per explores the theoretical foundations of KD, revealing that prior results
are artifacts of specific calibration methods rather than KD itself. Our
study shows that calibrated teachers can effectively transfer calibration
to their students, but not all training regimes are equally effective. No-
tably, teachers calibrated using dynamic label smoothing methods yield
better-calibrated student classifiers through KD. We also show that trans-
fer of calibration can be induced from lower capacity teachers to larger
capacity students (aka reverse-KD). The proposed KD based Calibration
framework, named KD(C), leads to a state-of-the-art (SOTA) calibration
results. More specifically, on CIFAR100 using WRN-40-1 feature extrac-
tor, we report an ECE of 0.98 compared to 7.61, 7.00, and 2.1 by the
current SOTA calibration techniques, AdaFocal [9], ACLS [41], and CPC [5]
respectively, and 11.16 by the baseline NLL loss (lower ECE is better).
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1 Introduction

Calibration. Deep neural network (DNN) models have become increasingly preva-
lent in critical applications such as healthcare [21, 33], and autonomous driv-
ing [3]. In such applications, it is crucial for DNN predictions to not only be
accurate but also trustworthy [7, 38]. Yet, it has been shown that the softmax
probabilities (referred to as predicted confidence in this paper) produced by DNNs
come with no formal probabilistic guarantees [10]. Calibration refers to the align-
ment between a DNN model’s predicted confidence and the actual frequency of
the event it represents. Calibration indicates model’s ability to provide reliable
uncertainty estimates, and many modern DNNs are shown to be miscalibrated.
Reasons for Miscalibration and Our Investigation. Mukhoti et al. [36]
have shown that a DNN model overfitting on NLL loss is the main reason behind
⋆⋆ Equal contribution
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2 R. Hebbalaguppe et al.

Fig. 1: Motivation. We examine a binary classification problem, using red and blue
bars to show prediction confidence for dogs and cats. (Left): An uncalibrated teacher
provides overconfident guidance, leading to student errors on challenging samples.
(Mid): Static calibration methods like Label Smoothing (LS) [47]) excessively reduce
confidence, potentially confusing students. (Right): Advanced calibration techniques
(e.g., MDCA [13]) capture sample-level uncertainty, providing appropriate guidance
and producing accurate, well-calibrated student models.

Fig. 2: Calibration via KD. We compare calibration performance (ECE, lower is bet-
ter) of a student model (WRN-40-1) when directly calibrated (blue bars) versus trained
via KD from a calibrated teacher model (WRN-40-2). KD-based calibration consistently
outperforms direct calibration, except with NLL (no calibration), TS, and LS (sample-
agnostic techniques). Our main contribution is a KD-based calibration framework com-
patible with various teacher models and sample-specific uncertainty calibration meth-
ods. Combined with MDCA, our approach achieves SOTA calibration performance.

highly overconfident predictions, leading to miscalibration. Further, [22] shows
theoretically that DNNs with ReLU activation are susceptible to overfitting on
NLL loss function. In this work, we explore if access to label uncertainties during
training can prevent such overfitting and generate a calibrated classifier. Knowl-
edge distillation (KD) has been used for transferring learned representations from
a (typically large) teacher model to a (usually smaller) student model in the
multitude of works. In this work, we investigate specifically if access to learned
calibrated confidence through a teacher model also helps in the calibration of a
student model.
Our Proposal: KD for Calibration. Unfortunately, existing explanations of
the process of KD rarely go beyond simple qualitative statements attributing im-
proved performance to learning from soft labels of the expert classifiers. Phuong
and Lampert [42] provide first theoretical insight into the working mechanism
of KD, albeit from an optimization viewpoint. Allen-Zhu and Li [1] elucidate the
effectiveness of ensemble learning and KD in enhancing the test accuracy, but do
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Calibration Transfer via KD 3

not focus on the transfer of calibration properties. In our work, we view the role
of KD beyond its well-studied role of accuracy transfer and provide theoretical
and empirical insights into the transfer of calibration to student classifiers. We
show, for the first time, that calibrated teachers distill the best-calibrated stu-
dents, and thus, propose a new recipe for producing an accurate and calibrated
classifier using KD and a calibrated teacher model.
Departure from Current Belief: Does KD Conflict with Calibration?
Interestingly, there is an influential prior work investigating the accuracy of a
student model after KD from a teacher model trained using Label Smoothing
(LS) [37]. However, LS was observed to impair KD, i.e., the accuracy of stu-
dent classifiers degrade when teacher classifiers are calibrated with LS [45]. This
discourages the use of KD for calibration. In our work, we show that this impair-
ment is not the artifact of KD but of the LS itself, which when used to calibrate
teacher classifiers and distill their representation to student classifiers at higher
temperatures, ends up over-smoothing a student’s predictions, thereby signifi-
cantly degrading its accuracy [4]. We show that teachers trained via dynamic
label-smoothing methods (e.g., [5, 9, 13]) consistently distil calibrated students
across all temperatures. To this end, we highlight the role of KD in calibrating
classifiers and argue strongly in favor of using knowledge sharing from calibrated
experts to student classifiers as the most promising calibration technique.
Contributions. To achieve calibration of DNNs, we bring together two seemingly
unrelated sub-fields: KD and confidence calibration. Our contributions include:
1. Understanding calibration transfer via distillation: We develop a the-

oretical framework to analyze KD and its ability to transfer the learning of a
teacher to a student classifier and show, arguably for the first time, that cal-
ibrated teachers can distill calibrated students. We corroborate our proposed
calibration framework through theoretical insights of calibration transfer for
linear models backed by exhaustive experiments.

2. Achieving best student DNN calibration: Our experiments demonstrate
that students trained via KD from teachers that are first calibrated using
dynamic/adaptive label-smoothing, exhibit the best calibration compared to
other train-time/post-hoc calibration techniques. (Sec. 4.3). Our framework
is named KD(C) (Knowledge Distillation from a Calibrated teacher).

3. Not all calibration techniques are compatible with KD: It has been
observed empirically that LS impairs KD [37]. This impairment is argued to
be a high-temperature phenomenon [4]. In our experiments, we too observe
a similar behavior when teacher classifiers are trained via static calibration
methods, eg., LS. However, we show that when the teacher classifiers are
calibrated using dynamic LS methods, the distillation produces calibrated
student classifiers consistently across wide temperature regimes.

4. Calibration distillation works both ways: Similar to recent works in
reverse-KD [18], where it has been shown that smaller teacher models can
also distill accurate student models, we show that the same applies for cali-
bration distillation as well, and smaller calibrated models can also yield better
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calibrated larger models. The observation is consistent with our key insight
that the availability of label ambiguities through soft-labels during training is
extremely useful for calibration. This setting is relevant when large calibrated
models or large datasets for training such models are not readily available.
Reverse calibration significantly widens the applicability of our framework.

2 Related Work

2.1 Confidence Calibration

Train-time Calibration. Such techniques integrate model calibration during
the training phase through suitable modification of loss function. E.g., label
smoothing (LS) [47], originally proposed to improve the classifier accuracy by
computing cross-entropy with a weighted sum of one-hot vector and the uniform
distribution, was adopted by [37] for improving calibration. Most train-time
methods for calibration inherently look to smooth confidence scores in a sample-
agnostic manner [13,20,32,35,41].
Post-hoc Calibration. These techniques focus on post-training optimization
using a separate hold-out set. [10], demonstrated that temperature scaling (TS),
smoothing confidence scores by dividing the logits with a scalar T > 1, enhances
its calibration. Other notable contributions in this category also include the
studies by [2, 17, 24, 25, 43]. However, it was observed in [13] that train-time
approaches offer superior performance over post-hoc methods.
Data Augmentation, and Bayesian Techniques for Calibration. Promi-
nent examples of former include [49] and [12], whereas later methodologies are
exemplified by [8, 28, 29, 39, 51]. In the context of our research, train-time and
KD-based approaches are especially pertinent and discribed below.

2.2 Knowledge Distillation (KD) for Calibration

KD [15] was originally proposed to enhance the accuracy of student classifiers
by transferring knowledge from high-capacity teacher classifiers. [40] propose
explanation-based KD for enhanced accuracy. [46] identify several potential fac-
tors contributing to diminished fidelity in distillation, i.e., the student’s capabil-
ity to align with a teacher’s predictions. These factors include student capacity,
network architecture, data domain, optimization methods, among others. How-
ever, recent empirical evidence points to the regularization effects of KD over
student classifiers akin to training classifiers separately via LS [48]. This indi-
cates the potential calibration benefits of KD. It was shown in [53] that when the
temperature parameter during KD is set to unity and the probability distribution
of teacher classifiers are assumed to be uniform, KD via teacher classifier and LS
of student classifier exhibit identical behaviors in terms of gradient propagation.
The observations prompted us to explore the scenario where a teacher classifier
itself is first calibrated via LS and then distills knowledge to a student classi-
fier (i.e., distilling knowledge from an LS calibrated teacher) with the hope of
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doubling the regularization benefits. However, it was observed in [37] that LS
representations interfered with KD, thus nullifying any regularization benefits.

The above view was shown as incomplete [45] with an argument that such
an impairment is only a high-temperature phenomenon. While this interplay
between LS and KD provided some insights into the regularization benefits of KD,
its role as a potential calibrator of student classifiers has not been studied so far.

In our work, we look beyond just the vanilla LS of teacher classifiers and
provide direct theoretical and empirical evidence towards the benefits of work-
ing with calibrated teachers and how they distill student classifiers via KD with
SOTA calibration performance. We also systematically analyze various calibra-
tion techniques for the teacher classifiers so that the resulting student classifiers
exhibit significantly improved calibration performance over directly calibrating
them via train-time or posthoc methods. We observe that dynamic LS meth-
ods, such as the MDCA [13], consistently exhibit better accuracy and calibration
trade-off across wider temperature ranges.

3 Proposed Methodology

3.1 Theoretical Results

In this section, we analyze the mechanics of obtaining calibrated models via KD
from a theoretical standpoint. We want to underscore that our primary objective
is not the creation of a novel neural network or the formulation of a theoreti-
cal framework for KD representation learning. Rather, our aim is to gain insight
into the calibration transfer behavior proposed in KD and then leverage the in-
sights to develop a SOTA calibration framework. Hence, to keep the exposition
simple, we focus on linear teacher and student networks in a binary classifica-
tion problem. Such linear classifiers, which were initially explored in [42] to gain
a general understanding of KD, have not been previously investigated for their
potential to transfer learned representations, particularly calibration, to student
networks. Furthermore, the authors in [42] utilized a simplified version of the KD
loss function, which did not consider the significance of distillation weights and
quadratic temperature scaling. These factors play a crucial role in showcasing
the transfer of calibration to student models. It may be noted that our analy-
sis can also be broadened to accommodate more than two classes, necessitating
the substitution of the binary cross-entropy loss function with the multi-class
cross-entropy loss and the replacement of the Sigmoid activation with Softmax
activation. Nonetheless, for the sake of simplicity in mathematical treatment, we
confine our focus to binary classification.

Definition 1 (Confidence Calibration). Given a data distribution D of
(x, y) ∈ X × {0, 1} and let c be the predictive confidence, the predictor f : X →
[0, 1] is said to be calibrated [6], if: E(x,y)∼D

[
y | f(x) = c

]
= c, ∀c ∈ (0, 1)

Notation. We represent an ith training instance by xi ∈ Rd, and the set of all
training examples by X ∈ Rd×N . We use zi,s and zi,t to represent logits of the
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6 R. Hebbalaguppe et al.

student and teacher networks for the ith training instance, respectively. These
logits can be converted into valid probability distributions pi,s and pi,t, respec-
tively, using Sigmoid activation function. In knowledge distillation, the output
probabilities of the teacher network are softened using inverse temperature scal-
ing of the logit, leading to prediction probabilities {p̃i,t}. The true class labels are
denoted by {yi ∈ {0, 1}}. Since, the teacher and student networks are assumed
to be linear networks, an arbitrary deep network can equivalently be represented
using a single layer network. We use Ws and Wt to represent weight matrices of
the student and teacher networks, respectively. Finally, we use T ∈ R+ to depict
temperature parameter for temperature scaling, while α ∈ [0, 1) represents the
relative importance of the student’s binary cross-entropy loss. Below we list the
key assumption before presenting our theoretical results.

Assumption 1 The student and teacher networks are represented by linear net-
works.

Remark 1. Assumption 1 ensures that both student and teacher networks can be
compactly represented as single-layer linear networks. Though the assumption
implicitly enforces the student network to be of the same capacity as that of the
teacher network, as we show through our experiments, it helps us understand the
mechanics of the KD, and design appropriate techniques which improve calibra-
tion even when the assumptions do not necessarily hold true. We wish to point
out that the assumption in this work is the same as used in most contemporary
works, including [42]. Note: We wish to emphasize that the incorporation of
nonlinear activations makes the KD-loss function non-convex, and despite empir-
ical visualization techniques discussed in visualizing the loss landscape of neural
nets [31], there is currently no theoretical work, addressing KD for calibration in
a general non-convex setting.

KD Problem Formulation. In KD, a student model minimizes the weighted
combination of the binary cross-entropy ( LBCE), and KD loss (LKD), given by:

LBCE = −
∑N

i=1
[yi log pi,s + (1− yi) log (1− pi,s)] ,

LKD = −T 2
∑N

i=1
[p̃i,t log p̃i,s + (1− p̃i,t) log (1− p̃i,s)] ,

and Ltot = (1− α)LBCE + αLKD. (1)

Here pi,s := σ(W⊤
s xi), σ(·) denotes the Sigmoid function,

p̃i,s := σ

(
W⊤

s xi

T

)
, and p̃i,t := σ

(
W⊤

t xi

T

)
.

Theorem 1. Let X ∈ Rd×N be the data matrix, and Ws and Wt represent the
parameters of the student and the teacher networks, respectively. Then, under
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Assumption 1 and using the gradient-descent algorithm, the parameters Ws of
the student network converge to:

Ws ≈
{
αWt + 4(1− α)X(X⊤X)−1Y1/2, if N < d
αWt + 4(1− α)(XX⊤)−1XY1/2, else ,

where Y1/2 :=
[
yi − 1

2

]N
i=1

is an N -dimensional vector.

Please refer to supplementary material for the proof.

Remark 2. Theorem 1 shows that when α is close to unity, the weights of the
student network are almost identical to those of the teacher network. Thus,
properties of the teacher network transfer directly to the student. For α ̸= 1, the
student also updates its weight from the labeled data.

Calibrated Teachers produce Calibrated Students. It is easy to see from
Definition 1 that if a teacher network, with predicted probabilities {pi,t}, is well
calibrated, then the following holds:∑N

i=1
pi,t =

∑N

i=1
yi. (2)

We now prove that calibrated teachers distill calibrated students. On the con-
trary, if the teacher classifier is not well-calibrated, it is impossible to distill
well-calibrated student classifiers. The result extends our understanding of KD
beyond accuracy transfer and formally characterizes the transfer of calibration
from a teacher to student network.

Theorem 2. Let Assumption 1 hold. Let tc and tuc be two teacher classifiers
with output probabilities {pi,tc} and {pi,tuc

}, respectively. Also, let sc, suc de-
pict two student classifiers trained independently from the corresponding teacher
classifiers tc and tuc through KD, with output probabilities {pi,sc} and {pi,suc

},
respectively. If the teacher classifier tc is well calibrated, then the student classi-
fier sc is also well calibrated. Conversely, if the teacher classifier tuc is not well
calibrated, the corresponding student classifier suc mimics a similar behavior,
i.e., ∑N

i=1
pi,sc =

∑N

i=1
yi, and

∑N

i=1
pi,suc

̸=
∑N

i=1
yi.

Please refer to supplementary material for detailed proof.

3.2 Proposed Algorithm

Based on the theoretical results presented earlier, and the consequent discussion,
we propose a two step procedure to train calibrated student models:
1. Train-time calibration of teachers: We draw inspiration from train-

time calibration techniques that have shown superior performance than post-
hoc calibration and have experimented with the following techniques: ( [5,
13, 27, 35, 37]) to name a few. A simple gradient analysis [41] reveals that
train-time calibration methods, such as MDCA ( [13]) and ACLS ( [41]), act
as dynamic/adaptive label smoothing, which is arguably better than the
traditional static label smoothing [37]
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8 R. Hebbalaguppe et al.

2. Knowledge distillation from calibrated teacher : Once trained for cali-
bration and accuracy, teacher classifiers distil their behavior to student clas-
sifiers through KD loss (c.f. Eq. (1)). As a result, the student classifiers are
both accurate and confidence calibrated (see Theorem 2).

The supplementary material contains a flow diagram illustrating the proposed
KD(C) framework.

Remark 3. We do not strictly advocate a specific dynamic label smoothing cali-
bration technique but rather a KD-style calibration where an expert model helps
enhance the calibration performance of a student. However, based on our em-
pirical observations, we recommend the usage of MDCA [13] and AdaFocal [9] as
calibrators for teachers due to their consistent behavior across diverse tasks.

4 Experiments and Results

Evaluation Metrics:. We benchmark our framework KD(C) against other com-
peting methods using (a) calibration error metrics (lower value is better), Ex-
pected calibration error (ECE) ( [10]), Static Calibration Error (SCE) and Adap-
tive Calibration Error (ACE) [38], as well as (b) Top1 accuracy (higher value is
better), indicative of generalization performance.
Datasets and Baselines. We use widely accepted diverse datasets, CIFAR10
[23], and CIFAR100 [23] for benchmarking. We give results for Tiny-ImageNet [30]
in the supplementary. To test robustness of our approach, we report additional
results on CIFAR100-C ( [14]) in the supplementary. We could not experiment
on ImageNet due to limited computational constraints in our lab. We include
models trained through standard NLL, as well as LS [47], TS [10], MixUp [49],
Adafocal [9], MMCE [26], CRL [35], CPC [5] MDCA [13], MbLS [32], PSKD [20], and
ACLS [41]. Along with this, we include student distilled from an uncalibrated
teacher obtained by training using NLL as one of the baselines, and refer to such
student model as KD(UC).
Training details. The architectures used in the experiments include ResNet [11],
MobileNetV2 [44], DenseNet [16], and WideResNet [54] architectures. The exact
details of training and model hyperparameters, along with the details on com-
pute resources are included in the supplementary material. Due to computational
constraints, we used ImageNet-100 (IN100) as a proxy for ImageNet-1K perfor-
mance. The PyTorch implementation for training ResNets on IN100 is available
at tinyurl.com/mr3cr8rd.

4.1 Quantitative Results

Large calibrated teacher models distilling into smaller models. We now
present compelling evidence supporting the superiority of our proposed KD(C)
method over the SOTA train-time and post-hoc techniques for calibrating smaller
student classifiers. To this end, we leverage distillation to create a smaller model
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Calibration Transfer via KD 9

Table 1: Comparison of calibration performance on CIFAR100 dataset for student mod-
els calibrated using SOTA calibration techniques vs. proposed KD(C) framework employ-
ing a relatively larger calibrated teacher: WRN-40-2 (2.24M) on CIFAR100 dataset. We
use WRN-40-1 [54] (0.56M) and MobileNetV2 [44] (2.25M) as the student models. For
ECE/SCE computation, 15 bins were used by prior work. ACE uses an adaptive binning
strategy. Numbers in bold: best performance; underlined: second best. Gray cells
show the performance of the teacher model alone when trained with the respective
calibrator. Similarly, Beige , and Blue cells show the performance of WRN-40-1 and
MobileNetV2 models respectively, when trained directly with the respective calibrator.
On the other hand, LightCyan cells show the performance when these models were
trained with the proposed KD(C) framework but the teacher model was pre-trained
using different calibration techniques. We observe that the proposed KD(C) framework
consistently gives the best calibration performance. In terms of accuracy, PSKD manages
to slightly improve KD(C), but this is consistent with the observation in the contem-
porary literature [13], where improvement in calibration performance often comes at a
cost of a slight drop in accuracy. Note that the calibration performance (ECE) of PSKD
is much worse than ours.

Architecture → WideResNet-40-2(T) WideResNet-40-1(S) MobileNetV2(S)
Top1 (%) ECE (%) SCE (%) ACE (%) Top1 (%) ECE (%) SCE (%) ACE (%) Top1 (%) ECE (%) SCE (%) ACE (%)

Method↓ ↑ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↑ ↓ ↓ ↓

NLL 74.39 13.04 0.32 13.04 70.04 11.16 0.30 11.19 66.09 7.76 0.25 7.80
LS [47] 75.15 2.32 0.21 2.08 70.07 1.30 0.21 1.49 66.96 4.24 0.23 4.18
CE+TS [10] 74.39 2.68 0.20 2.60 70.04 2.57 0.19 2.50 66.09 2.33 0.19 2.37
MMCE [27] 72.82 5.62 0.22 5.58 69.69 7.34 0.25 7.37 62.90 3.21 0.21 3.15
MixUp [49] 76.23 4.76 0.22 4.63 72.04 2.57 0.21 2.52 67.53 8.69 0.28 9.73
CRL [35] 70.86 11.97 0.32 11.88 65.80 13.91 0.37 13.91 67.05 12.06 0.33 12.06
PSKD [20] 75.22 7.82 0.24 7.82 72.56 3.73 0.20 3.72 69.09 6.95 0.23 6.94
MDCA [13] 74.17 1.57 0.20 1.61 68.51 1.35 0.21 1.34 66.96 1.61 0.20 1.92
AdaFocal [9] 73.12 2.24 0.20 2.28 67.36 2.10 0.21 1.97 65.34 1.83 0.20 1.53
CPC [5] 74.92 10.70 0.27 10.65 69.99 7.61 0.23 7.55 67.30 4.17 0.22 4.07
MbLS [32] 74.79 7.81 0.23 7.78 69.97 5.37 0.22 5.37 67.32 2.27 0.20 2.33
ACLS [41] 74.90 6.03 0.22 6.01 69.92 7.00 0.23 6.99 66.26 3.27 0.21 3.35

KD distilled Student with NLL WRN-40-2 Teacher (KD(UC)) 69.60 15.18 0.37 15.18 67.15 6.05 0.22 6.02

Ours (KD distilled Student with MixUp WRN-40-2 Teacher) 72.48 1.21 0.20 1.17 71.97 2.94 0.24 2.91
Ours (KD distilled Student with AdaFocal WRN-40-2 Teacher) 71.70 1.19 0.19 1.34 69.47 2.44 0.21 2.41
Ours (KD distilled Student with CPC WRN-40-2 Teacher) 70.00 9.02 0.26 9.01 67.78 3.64 0.20 3.66
Ours (KD distilled Student with MDCA WRN-40-2 Teacher) 71.07 0.98 0.20 1.10 68.67 1.52 0.20 1.64
Ours (KD distilled Student with MMCE WRN-40-2 Teacher) 72.08 2.02 0.19 1.95 68.49 1.83 0.19 1.68

(e.g., WRN-40-1/MobileNetV2) from a well-calibrated teacher model (e.g., WRN-
40-2) and compare its performance with models directly subjected to train-
time calibration techniques, as well as the progressive-KD (PSKD) method intro-
duced by [20]. We also report the impact of distillation from an uncalibrated
teacher model, denoted as KD(UC), as a baseline. The summarized results are
detailed in Tab. 1. Notably, KD(C) demonstrates significantly lower calibration
errors (ECE/SCE/ACE) while simultaneously achieving higher accuracy compared
to models calibrated directly using the calibration techniques. Fig. 3 provides a
visual representation of our findings, illustrating the mean and standard devia-
tions of accuracy and calibration errors over three random runs. Notably, KD(C)
variants exhibit (a) the best balance between accuracy and calibration while (b)
displaying higher reliability, as evidenced by their lower variance. Importantly,
our results confirm our theoretical findings discussed in Sec. 3.1, establishing
that calibrated teachers are capable of effectively distilling calibrated students.
This underscores the successful transfer of learned representations, encompass-
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10 R. Hebbalaguppe et al.

Fig. 3: Comparative study of accuracy vs. calibration trade-offs: (Models in
top-left location are best) The mean and one standard scatter error bars for Top1, ECE
and SCE of WideResNet-40-1 trained on CIFAR100 using SOTA calibration techniques.
WideResNet-40-2 was used as a Teacher. KD(C) variants (represented by small filled
dots) achieve the best results in terms of ECE, and SCE, along with slight boosts in Top1
(an inherent KD-property). Further, the lower variances emphasize the reliability of
KD(C) variants. All plots were generated by training WideResNet-40-1 models through
every calibration technique on 3 runs.

ing both accuracy and calibration aspects, from a calibrated teacher model to
a smaller student. In supplementary, we give additional results in showing our
approach consistently yields improved calibration across various model architec-
tures and reliability diagrams corresponding to Tab. 1.

Small calibrated teacher models distilling into large models. In set-
tings where large trained models are not available, it is desirable to be able
to distill the knowledge from smaller models to larger models (referred to as
reverse-KD). [19] have shown that smaller models can also be valid teachers
for large students, however, it was observed that the gains in accuracy were not
significant as compared to distilling from a large teacher comparatively. Our re-
sults for the configuration are summarized in Tab. 2(a), where smaller model
MobileNetV2 is used as teacher network to calibrate ResNet-50. We report a
similar behavior in terms of accuracy, where there is marginal to no improve-
ment in the accuracy. However, even with smaller teacher, we notice a significant
improvement in calibration performance of bigger student model using proposed
KD(C) framework. This shows the potential impact of the proposed technique.
We discuss our thoughts on the reasons why calibration works differently than
accuracy in Sec. 4.3.

Self-distillation. A significant question that arises pertains to the generalizabil-
ity of insights gleaned from the prior set of experiments. Particularly whether
these insights can be extended to produce accurately calibrated classifiers with
identical architecture and capacity. Our research demonstrates that this pro-
cess, referred to as “self-distillation”, results in classifiers that exhibit superior
calibration compared to their teachers. However, similar to reverse-KD, the in-
crease in accuracy is only marginal, likely due to the absence of distillation from
a teacher with greater capacity. Similarly, calibration improvement also follows
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Table 2: Results on CIFAR-10 dataset for (a) reverse-KD from a small model
(MobilNetV2 with 2.25M weights) to a big model (ResNet-50 with 23.53M weights);
and (b) Self-Distillation on MobileNetV2. Even when the accuracy stays more or less
the same, we observe significant improvement in the calibration performance using the
proposed KD(C) framework. Numbers in bold: best, underlined: second best.

Calibration Techniques
(a) Small to Big (b) Self-Distillation

ResNet-50 (T=MobileNetV2) MobileNetV2 (T=MobileNetV2)

Top1 (%) ECE (%) SCE (%) ACE (%) Top1 (%) ECE (%) SCE (%) ACE (%)
↑ ↓ ↓ ↓ ↑ ↓ ↓ ↓

NLL 88.55 6.65 1.39 6.65 89.87 3.30 0.75 3.28
LS [47] 87.73 6.17 1.36 7.69 89.60 7.10 1.78 6.75
CE+TS [10] 88.55 1.91 0.65 2.18 89.90 0.96 0.40 0.77
MMCE [26] 87.73 2.74 0.59 2.58 89.38 1.20 0.51 0.94
MixUp [49] 88.49 5.95 1.63 5.93 89.57 9.42 2.07 9.41
CRL [35] 84.04 10.30 2.14 10.29 90.31 2.92 0.72 2.81
PSKD [20] 88.01 2.13 0.84 1.74 89.21 3.27 0.93 3.25
MDCA [13] 87.16 1.18 0.75 1.27 88.74 0.99 0.46 0.80
AdaFocal [9] 85.07 1.08 0.63 1.17 88.98 0.79 0.44 0.86
CPC [5] 88.30 7.13 1.47 7.12 89.26 3.47 0.79 3.44
MbLS [32] 88.19 6.94 1.43 6.90 89.86 2.83 0.69 2.78
ACLS [41] 87.97 5.83 1.22 5.86 89.53 1.80 0.56 2.66

KD with NLL 89.01 4.24 0.91 4.22 89.88 0.99 0.43 0.82

Ours(KD with TS) 88.91 1.07 0.44 1.26 90.23 0.51 0.41 0.59
Ours(KD with MMCE) 88.59 1.02 0.52 0.90 89.97 0.85 0.54 0.84
Ours(KD with MDCA) 88.12 0.66 0.45 0.77 88.79 0.48 0.48 0.54
Ours(KD with AdaFocal) 88.71 0.68 0.49 0.70 89.56 0.63 0.41 0.65

Fig. 4: Iterative self distillation CIFAR100 using ResNet56. We use KD with dynamic
label smoothing technique (MDCA) for calibration in this experiment.

a similar trend, with the student model showing significant calibration perfor-
mance improvement using proposed framework, compared to training directly
with a particular calibration technique. Our findings on the CIFAR-10 dataset
are succinctly presented in Tab. 2(b). It is worth noting that, unlike the PSKD
approach proposed by [20], which progressively distills knowledge from the previ-
ous epoch’s model, KD(C) employs self-distillation just once with a fixed teacher
throughout the training process, following a methodology akin to [55].
Iterative self-distillation. We are intrigued by the experiments in [20,34,52],
and perform a similar investigation if KD(C) can iteratively distill more accurate
and calibrated models. Here both teacher and student have identical architec-
tures, and a student in tth iteration (called generation hereon) becomes teacher
for (t+1)th generation. We refer to this as iterative self-distillation. Fig. 4 shows
the self-distillation process for six generations. As expected the gap between
KD(UC) and KD(C) gradually diminishes with each generation. Recall that the
only difference between the two is initialization: generation zero teacher is uncal-
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ibrated in KD(UC) but calibrated in KD(C). Our observation aligns with findings
from [20,55].

Calibration Top1 (%) ECE (%) AECE (%)

NLL 91.75 2.70 2.85
LS 92.02 5.87 5.60
MMCE 89.18 2.37 2.83
PSKD 92.12 1.84 2.33
MDCA 91.22 2.93 2.67
AdaFocal 90.93 5.60 5.33
CPC 91.62 3.23 2.98

Ours (KD with TS) 91.06 1.41 1.86
Ours (KD with MDCA) 90.19 1.90 2.16
Ours (KD with LS) 90.88 5.33 4.69
Ours (KD with CPC) 90.64 1.69 1.62

Table 3: Results for DistilBERT (66.97M) for
Seq. Classification on 20-Newsgroups dataset. For
KD+UC and KD+C variants BERT (109.50M) was
used as Teacher. Observe that KD(C) variants
achieve competitive calibration of DistilBERT
model.

Results on NLP datasets:
Table 3 demonstrates KD(C)’s
effectiveness on NLP tasks,
showing results for DistilBERT
(66.97M) on 20-Newsgroups se-
quence classification, with BERT
(109.50M) as teacher. KD(C)
variants outperform direct cal-
ibrators in this transformer dis-
tillation task.
Other results included in
the supplementary mate-
rial. We report (a) calibra-
tion performance under dataset
drift; (b) ablation study on the
effect of hyper-parameters like
T (temperature) and α (distil-
lation weight) in the supplemen-
tary along with experiments in-
volving other DNN architectures.

4.2 Visualization

Unlike traditional LS, dynamic/adaptive regularization [13, 41] offers sample-
specific label-smoothing. However, not many methods are able to capture inter-
class semantics during the train-time, which become easier to guide in the pro-
posed KD(C) framework through the interplay of teacher-based knowledge trans-
fer and learning directly from data. Inspired from [4], we give the additional
rationale for the superior performance of the proposed KD(C) framework using
“penultimate layer visualizations”.
Penultimate layer visualization. [37] visualized penultimate activations by
projecting them onto a hyperplane defined by weights of three selected classes.
Systematic diffusion. The concept of “systematic diffusion”, introduced by [4],
was developed to address discrepancies observed in prior studies, particularly the
contradictions between [45] and the insights presented in LS literature [37]. This
concept aims to elucidate the compatibility of LS with KD. The findings from [4]
indicate that when KD is conducted at elevated temperatures from a teacher
model trained with LS, it results in a systematic shift in the relationships between
classes. Specifically, for semantically similar classes, the inter-cluster distance
decreases, while for the remaining classes, it increases relatively.
Our observations. In Fig. 5, we provide visual evidence of the limitations
associated with LS-trained teachers compared to MDCA teachers [13] used in con-
junction with proposed KD(C) framework. These penultimate layer visualizations

524



Calibration Transfer via KD 13

KD

with LS

T=1 T=5 T=20

KD with 
MDCA

Fig. 5: Visualization of penultimate layer’s activations. We train ResNet8 on
CIFAR100 using ResNet56 as teacher. First row shows results for teacher calibrated using
LS (static label smoothing), and the second row shows results for MDCA (dynamic label
smoothing). We follow the same setup and procedure used in [37,45], with two semanti-
cally similar classes (bowl, plate) and one semantically dissimilar class (willow_tree).
A ‘*’ in the plot represents cluster’s centroid. A well-calibrated teacher, with dynamic
label smoothing based MDCA [13], can effectively capture the inter-class relationships.
Observe that the classes: bowl and plate are visually similar and hence the penultimate
visualizations of these classes should be closer than the dissimilar class: willow_tree.
As temperature T is increased the similar classes diffuse into one for the case of KD
with LS while KD with MDCA offers better separation, retaining the semantic similarity
while well separated from the dissimilar class.

reveal that semantically similar classes experience systematic diffusion when us-
ing LS, whereas this phenomenon is not observed with KD when dynamic smooth-
ing regularization based MDCA is used. We notice a trend where distilled student
models are most calibrated when the distillation temperature (T ) is set to 1. We
hypothesize that increasing T leads to the destruction of discriminating features,
as outlined by [4], due to systematic diffusion among highly similar classes as
seen in the penultimate representations. These discriminating features are crucial
for achieving calibration by resolving confusion among similar classes.

4.3 Discussion

We use this section to give our perspective on experimental observations:
Why post-hoc calibration works? Mukhoti et al. [36] identified overfitting to
NLL loss as a major cause of overconfident DNN predictions. This overconfidence
arises from one-hot encoding’s inability to capture subtle inter-class similarities,
such as between similar cat and dog images. Lacking sample-specific uncertainty,
one-hot encoding leads to overconfidence even in overfitted models. Post-hoc cal-
ibration methods like TS address this by adjusting output probabilities through
inverse temperature scaling.
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Why Train-time calibration works better than post-hoc calibration?
Train-time calibration techniques refine target probability vectors for models.
For instance, LS assigns a uniform probability vector as the target, while MDCA
uses batch-wise label frequency alongside the standard one-hot label vector.
Why KD based calibration would work best? Train-time calibration tech-
niques lack sample-specific, adaptive uncertainty during model training. KD ad-
dresses this gap. When a student model is trained via KD from a calibrated
teacher, it learns to align its probability vector with the teacher’s, incorporating
crucial sample-specific, adaptive uncertainty. Our findings show that the effec-
tiveness of calibration techniques depends on the degree of sample-wise, adaptive
uncertainty provided to the student during training, along with accuracy.
Why LS interferes with KD? Penultimate visualizations explain why LS can
interfere with KD and give lower accuracy. LS tends to smooth the output prob-
ability vector, thereby reducing class structure information in the resultant vec-
tor [4]. Since KD relies upon the exact class structure in a teacher’s probability
vector (or logits), excessive LS ends up killing the information needed by KD.
Why Self-distillation is not as effective? Kim et al. [20] propose a self-
distillation technique (called PSKD), which we showed in our experiments is not
as effective as ours. Our theoretical results also indicate why this should be the
case. Until the model is fully calibrated, by nudging the student towards the
previous epoch’s probability vector as a teacher, one ends up giving a rich, but
uncalibrated probability vector to a student model. In contrast, in our proposed
design, one trains a teacher model fully, and then only transfers this calibrated
class representation to a student to match. This explains the reason why despite
PSKD also using distillation as us, is still less effective for calibration.

5 Conclusions

We present a novel calibration technique using KD, validated across diverse sce-
narios including large-to-small, small-to-large, and self-distillation settings with
various architectures and datasets. Our work clarifies misconceptions about us-
ing calibrated teachers with KD, demonstrating that most modern calibration
techniques, particularly MDCA and ACLS, can be effectively combined with KD to
produce SOTA calibrated student models. This approach is supported by a ro-
bust theoretical foundation for transferring calibration and accuracy between
teacher and student DNNs. Our findings are particularly relevant as KD becomes
increasingly important for developing lightweight, trustworthy models for edge
computing, neural architecture search, and model compression.
Limitations and Future Work. (1) We leave a comprehensive and exhaustive
study for explaining the compatibility of calibration techniques, such as CPC [5],
TS [10], ACLS [41] etc., with KD for future work. (2) We acknowledge the need to
broaden our theoretical results and encompass one hidden-layer DNNs with ReLU
activation in our future work, since for such networks in a non-KD setting, the
cross-entropy loss function is found to be locally strongly convex [50].
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