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Abstract. Shadows can lead to malfunctions in computer vision, mak-
ing shadow removal an essential task for restoring underlying informa-
tion. For a long time, researchers have proposed hand-crafted methods
based on observing shadow formation models. Then, deep-learning-based
solutions have further advanced performance in restoration quality. How-
ever, existing datasets have several limitations, such as lacking occlud-
ers, restricted camera angles, and inconsistency. In this paper, a novel
benchmark called the Advanced Dataset for Shadow Processing (ADSP)
is introduced. Through the synthesizing strategy, the ADSP becomes the
first dataset containing outdoor images with occluders. Statistical anal-
ysis and experiments demonstrate that the ADSP has the advantages of
lower domain shifting, matching real-world scenarios, and sufficient gen-
eralizing capability. Moreover, as a reference for the removal task, we also
propose the Segmented Refinement Removal Network (SRRN), which in-
cludes three subnets for shadow removal, color adjustment, and boundary
smoothing, respectively. It achieves state-of-the-art performance and can
be set as a reference for shadow removal.

Keywords: Shadow Removal · Dataset Creation · Restoration

1 Introduction

Shadows are cast when objects occlude light and then generate the corre-
sponding regions with relatively low intensity. In the shadow regions, most im-
age features (edge, textures, color, etc.) are weakened, resulting in challenges on
many computer vision tasks, such as recognition [51], detection [5,39], segmen-
tation [34,38], tracking [4,24,7], intrinsic image decomposition [28,11], dehazing
[37], and etc. [53]. Intrinsic diversity of shadows [1] aggravates the difficulty of
shadow removal. The shadow comes from multiple interactions between the en-
vironment and occluders and has complicated properties. For example, its shape
depends on the profiles of occluders, and its intensity depends on the light source
and the aperture for image acquisition. The sunlight in the evening may appear
yellowish due to atmospheric refraction. A coarse surface will lead to non-smooth
shadow edges.

This ACCV 2024 paper, provided here by the Computer Vision Foundation, is the author-created version.
The content of this paper is identical to the content of the officially published ACCV 2024

LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/accv
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2 C. Hsieh and J. Ding

Fig. 1: Samples from the proposed ADSP benchmark. From top to bottom are shadow
image, shadow mask, the corresponding shadow-free image and the occluder mask.

Shadow removal aims to recover the lost information from a shadow image.
Moreover, shadow detection, which predicts the shadow mask, is often an aux-
iliary task of shadow removal. Early shadow removal/detection works adopted
physical models [50,43,17,16,1,25,9,30,8], which rely on the prior information of
shadow. Recently, with the large-scale datasets [35,45,42,41,36,22], the shadow
detection/removal problem can be formulated as a regression model and adopted
learning-based networks as solutions [55,26,20,27,33,12,49,44,14,3]. Most of them
applied supervised learning. Although some works adopted unsupervised learn-
ing [21,32,40] and used unpaired datasets for training, supervised learning with
paired data is still the mainstream for shadow removal. In addition, due to the
importance of the shadow position information, some datasets contain shadow
masks as well, which makes them able to be used for shadow detection and results
in the development of multi-task training. Collecting a shadow removal dataset
takes significant effort and time. Therefore, most existing datasets have similar
limitations on contents and diversity, like (1) little visible occluder in shadow
images, (2) unignorable inconsistency problems among non-shadow regions, and
(3) the restricted range of the camera depression angle. In Fig. 2, examples from
two existing benchmarks, the SRD [35] and the ISTD [45], are presented.

In this paper, a novel benchmark, named the Advanced Dataset for Shadow
Processing (ADSP1), is proposed. Through the new synthesizing strategy, the
visible occluder can be extracted singularly by carefully labeled masks and gener-
ates the shadow-free ground truth to form paired data. In addition, well-labeled
shadow masks allow the proposed ADSP to be utilized in most shadow tasks,
e.g . shadow detection and generation. Figure 1 provides examples of image pairs
in the ADSP. The proposed ADSP provides shadow image pairs with highest
quality and resolution currently, which can be adopted to tackle the situation in
which both the occluder and the corresponding shadow are visible in the out-
door scene. To our knowledge, it is the first benchmark designed explicitly for
such situation. We also propose a novel shadow removal network, the Segmented

1 https://github.com/ElucidatorRay/ADSP
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(a) ISTD[45].From top to bottom are shadow images, shadow masks, and the corresponding shadow-
free images, respectively.

(b) SRD[35]. First row are shadow images and the second are shadow-free images.

Fig. 2: Samples from two existing shadow removal benchmarks.

Refinement Removal Network (SRRN). It achieves state-of-the-art performance
on the ADSP and can be set as a reference for shadow removal.

In summary, the contributions of this work are as follows:

– We proposed the ADSP, a new benchmark that contains 1220 image pairs
of shadow-affected images, shadow-free images, shadow masks, and occluder
masks. It provides excellent supervision for shadow removal.

– Statistical analysis shows that the proposed ADSP outperforms existing
datasets by more challenging data and fewer inconsistency problems. On
the other hand, domain shift experiments prove that the ADSP provides
excellent generalization capability with fewer data pairs.

– We proposed the SRRN for single-image shadow removal. It has three sub-
nets representing distinct stages, which perform preliminary removal, color
adjustment, and boundary smoothing. Comprehensive experiments show
that the SRRN achieved state-of-the-art performance on shadow removal.

2 Related Works

Shadow removal is a challenging task in computer vision. In this section, we
review the development history of shadow removal methods and describe existing
(1) large-scale benchmarks, (2) prior-based methods, and (3) deep-learning-based
methods.
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2.1 Large-scale Benchmarks

The success of deep-learning-based methods relies on large-scale datasets to
provide supervision. Therefore, researchers had proposed various benchmarks
[35,45,41] for training supervised shadow removal.

Qu et al. [35] proposed the SRD, a large-scale shadow removal dataset. The
authors captured corresponding shadow-free images by passively waiting for sun-
light variation or actively removing objects. They placed the camera with a
tripod, shot with a wireless remote controller, and fixed exposure parameters
to mitigate the inconsistency. The SRD exhibited great diversity and quantity.
However, the visible occluder was infeasible during active acquiring, or there
would be remaining shadows, as in the left three columns of Fig. 2b. Moreover,
there is some inconsistency, as shown in the fifth column in Fig. 2b.

Wang et al. [45] proposed the ISTD, which is the first triplet dataset consist-
ing of shadow/shadow-free images and shadow masks. It enabled the multi-task
training strategy, which had been proven helpful in many works [56,12]. However,
it also lacked the visible occluder. In addition, most of the scenes have restricted
view, either on the ground with a high camera depression angle or on a vertical
plane, as shown in Fig. 2a.

Recently, Vasluianu et al. [41] proposed the WSRD, which was built fully
around a set of controllable conditions, including a directional light for casting
shadow and a diffusive light to generate uniform light distribution. Image pairs
were collected by turning the directional light on and off during shadow/shadow-
free acquisition. The WSRD is a diverse benchmark, however, such a setup is not
available for outdoor collection. Furthermore, it still suffers from inconsistency
problems and relatively unrealistic semantic information.

Besides the above benchmarks, some datasets focused on other aspects of
shadow but did not conform to the requirement of supervised shadow removal.
Datasets such as SBU [42], UIUC [16], UCF [54], and CUHK-Shadow [22] were
designed for shadow detection, lacking the shadow-free ground truth. Wang et al.
[46] introduced the novel Instance Shadow Detection and the SOBA benchmark,
including masks and bounding boxes of shadow-object pairs but no shadow-
free images. Shadow-AR [29] and DESOBA series [19,31] focused on generating
reasonable shadows for objects in the scene and contained partial-shadow-free
information. Sen et al. [36] constructed a private SFHQ with high-resolution
data, and Hu et al. [21] collected the USR with unpaired images.

2.2 Prior Based Methods

Early shadow-removal works were mainly based on the priors, which uti-
lized the underlying information behind shadow and physical models. They used
the properties of shadow, like gradients [8,30,9], illumination [10,48,50], color
[43], regions [16,17,43], texture [25,43], and intensity [1] to build shadow detec-
tion/removal formulation. Prior-based methods usually have weaker robustness
and lower generalizability due to the strong hypothesis on shadow.

1031



ADSP 5

2.3 Deep Learning Based Methods

Since deep learning achieved outstanding performance on many CV tasks,
most of the recent works on shadow removal applied multiple networks to recover
shadow-free images from corrupted ones.

Qu et al. [35] proposed an end-to-end automatic DeshadowNet that applies
high-level semantic information. Wang et al. [45] introduced a multi-task per-
spective, which jointly learned both detection and removal models simultane-
ously. Le et al. [26] viewed a shadow-free image as the linear combination of
shadow and relit images and adopted image decomposition for shadow removal.
Hu et al. [20] analyzed the image context in a direction-aware manner and de-
veloped a direction-aware module for shadow detection and removal. Fu et al.
[12] formulated shadow removal as an exposure fusion problem and restored the
shadow-free image by fusing the image with several over-exposure ones. Yu et
al. [49] proposed the CNSNet to restore the shadow-free image. Wan et al. [44]
considered the style consistency of de-shadowed and non-shadow regions and ap-
plied a two-stage removal process. Guo et al. [14] proposed the ShadowFormer,
a transformer-based network, to exploit the global correlation between shadow
and non-shadow regions. They also proposed ShadowDiffusion [15], which was a
diffusion-based network, and integrated image and degradation priors.

In addition, some works aimed to deal with the problems of limited datasets.
Hu et al. [21] proposed the Mask-ShadowGAN, which was based on a mask-
guided cycle-consistency constraint. However, it needs that the shadow and
shadow-free images should share similar statistical properties, which is hard
to satisfy. In order to deal with it, Le et al. [27] proposed to crop two kinds
of patches from a single shadow image and introduced a patch-based shadow
removal system. Liu et al. [33] further proposed the G2R-ShadowNet containing
three sub-networks focusing on generation, removal, and refinement, respectively.
It can avoid the requirements of strict physics-based constraints, high computa-
tion, and carefully cropping, etc.

3 Methodology

3.1 Advanced Dataset for Shadow Processing (ADSP)

We summarize the following requirements that an advanced benchmark for
shadow removal must fulfill. First, it should contain the visible occluder since
shadow images with whole or parts of the occluder are universal scenarios in
practical applications. Thus, the visible occluder helps to improve the robust-
ness of models to in-the-wild scenarios. Second, it should be composed of at
least triplet data because the multi-task training strategy and mask-enhanced
removal have become increasingly popular. Furthermore, additional attributes
about shadow, like position, expand the potential of the proposed dataset. Third,
the image inconsistency problem should be considered at the acquisition stage
because data with lower deviation helps to train unbiased models and accurately
evaluate performance.
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Fig. 3: The adopted construction process of the proposed ADSP, where ⊗ is the
Hadamard product and ⊕ is the element-wise addition.

To achieve these requirements, unlike existing datasets that directly shoot
two kinds of pictures to form a pair, we propose the synthesizing strategy and
formulate a series of rigorous steps for data acquisition. The process for con-
structing a single data pair is as follows:

1. We first determine a shooting scene without any shadow in advance. To max-
imize diversities, we choose it based on the surface texture and the direction
of the light source.

2. Then, we collect the pure scene Iscene (w/o shadow or occluder). Iscene is
highly maneuverable for post-processing.

3. Next, we add occluders into the environment to cast shadows and collect the
shadow-affected image Is (w/ shadow and occluder).

4. After image shooting, we label the Is with LabelMe and get the shadow
mask Ms and the occluder mask Mo.

5. With the position indicated by Mo, we crop the occluder from Is, paste it
onto Iscene, and synthesize the shadow-free image Isf .

6. Last, we integrate four images (Is, Isf ,Ms,Mo) to form the quadruplet data.

The entire construction process has three stages: image acquisition (steps 1
to 3), labeling (step 4), and synthesizing (steps 5 to 6). In stage 1, we used the
camera Nikon D60 with lenses of Nikon DX SWM ED Aspherical 0.28/0.92ft
52. We also adopted a tripod and a wireless controller to avoid inconsistency
caused by non-expected movement. Furthermore, since a clear presentation of
background information is more critical than the shadow itself, between steps 1
and 2, we conduced multiple trial shots to determine the optimal shutter speed
to produce a visually pleasant result. Such operation also led to a broader in-
tensity range of the shadow region. We will analyze this later in Section 4.1.
Subsequently, we switched the camera temporarily to the automatic mode for
auto-focusing and then back to the manual mode to guarantee an identical set-
ting. To ensure consistency, we consciously gathered more Iscene randomly for
the later synthesizing stage.

In stage 2, we labeled Is and achieved pixel-level accuracy on both masks. In
stage 3, we performed synthesizing to generate Isf . Figure 3 presents the process
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of the proposed synthesizing strategy. Notably, for each scene, there was a set
of candidate Iiscene, where i is the index of each photo. We selected the optimal
I∗sf based on the non-shadow region error between Iisf and Iiscene.

Currently, using the synthesizing strategy is inevitable to collect the out-
door shadow scenes with occluders. Without a controllable environment, actively
gathering Isf by disabling directional light like WSRD [41] is not feasible for out-
door scenes. In addition, passively waiting for sunlight change and acquiring Isf
will result in severe inconsistency problems. More specifically, compared with
Is, the non-shadow region of Isf would be darker, as shown in Fig. 2. In gen-
eral, the advantages of using the synthesizing method are apparent. First, the
complex interaction between the occluder and the environment is simplified, and
the shadow cast by any movable object is collectable. Second, Is and Isf can
be acquired under the same illumination condition, mitigating the inconsistency
problem. Furthermore, without the limitation of no occluder, the camera de-
pression angle has a higher degree of freedom. Compared with existing outdoor
datasets, the scenes in the ADSP dataset are not restricted to the top view or
with shadows on the vertical plane.

Overall, the ADSP dataset was constructed using the synthesizing strategy.
Shadow-free occluder photos are available, providing semantic information that
is more practical and realistic. Two kinds of masks with pixel-level accuracy
make it a quadruplet dataset. At the same time, the rigorous collecting process
ensures excellent consistency. It contains 1220 high-resolution (2592 x 3872 px)
image pairs. Figure 1 shows some samples of the proposed ADSP dataset.

3.2 Segmented Refinement Removal Networks (SRRN)

Inspired by Chang et al. [2], we built the removal model with multi-stage
processing and expanded the regular two-stage network (i.e. removal and refine-
ment) into a three-stage one. We first observed that two factors decrease the
reliability of removal results. The first one is the boundary effect around the
edge of shadow and the second one is the bias of color in the shadow region. To
address these problems, we divided the refinement stage into two more special-
ized steps and proposed the Segmented Refinement Removal Network (SRRN).
The SRRN contains three subnets aiming at (i) preliminary shadow removal,
(ii) shadow area color adjustment, and (iii) shadow region boundary smoothing,
respectively. Distinct loss functions were applied to supervise three subnets.

Figure 4 presents a schematic overview of the proposed SRRN. In the initial
stage, we used the ShadowFormer [14] as the backbone of the removal subnet
θsr. It comprises a linear projection layer and several channel attention modules
in the encoder and decoder sections to capture multi-scale hierarchical global
features. Within the bottleneck layers, the Shadow-Interaction Module [14] was
employed to recover shadowed areas with the assistance of contextual features
from non-shadow regions. θsr is constrained by the Charbonnier Loss.

On the other hand, for the second and third stages, the color adjustment
θca and the boundary smoothing θbs subnets, we adopted the two-stage SG-
ShadowNet[44] as the backbone. The θca is structured as a U-net [18]. It is

1034



8 C. Hsieh and J. Ding

Fig. 4: Overview of the Segmented Refinement Removal Network (SRRN). The re-
moval subnet (the top red region) applies the ShadowFormer[14] as the backbone
for preliminary removing. The color adjustment subnet (the bottom-left green re-
gion) and the boundary smoothing subnet (the bottom-right blue region) uses the
SG-ShadowNet[44] as the backbone for refinements.

equipped with the regular reconstruction loss and the shadow area loss to cor-
rect the color bias in the shadow region. θbs comprises the region style estimator
and the boundary refinement network. The former employs several 1× 1 convo-
lution layers to extract non-shadow prototypes. The second one, which follows
the U-Net [32] architecture, adopts 9 SRPNorm-ResBlocks[44] in bottleneck to
perform smoothing. In this stage, besides the reconstruction loss and shadow
area loss, we also applied the spatial consistency loss [13] and the penumbra
loss to enhance the performance of the penumbra region. In Section 4.3, we will
perform the ablation study to analyze the effect of the added penumbra loss and
discuss its optimal parameter. More details on training will be presented in the
Reproduction section of the supplementary material.

4 Experiments

We conduct the following experiments to evaluate the proposed benchmark
and the baseline model. First, we performed statistical analysis on the pro-
posed ADSP and three existing datasets, revealing the properties of the proposed
ADSP and verifying that it prevails in both difficulty and consistency. Second,
we applied domain shift experiments on two state-of-the-art (SOTA) algorithms,
the ShadowFormer [14] and the SG-ShadowNet [44], in which the models were
trained and evaluated on different datasets. The results show that the ADSP is
more challenging and capable of generalization. Third, we perform the ablation
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Fig. 5: Histograms of three statistical analyses. Figure 5a represents the average inten-
sity attenuation on the shadow region, Figure 5b shows the average bias on the non-
shadow region, and Figure 5c shows the distribution of the area ratio of the shadow
region. For the SRD, we adopted shadow masks predicted by Cun et al. [6]. For fair-
ness, the occluder region was excluded when computing Figs. 5a and 5b.

Table 1: Distribution of three kinds of oc-
cluder size of images. Where Ro means the
area ratio of the occluder mask.

Size Small Medium Big
Ro ∼10% 10%∼30% 30%∼

ratio 65.98% 31.39% 2.62%

Table 2: Distribution of three kinds of dis-
tance between shadow and camera.

Type of view close middle long
range (m) 0∼2 2∼6 6∼

freq. 17.21% 77.05% 5.66%

Table 3: The appearance count of eight types of occluder. Note that there may be
more than two types in single image.

Type of occluder suitcase keyboard case human camera bag umbrella carton bike Others
frequency 214 288 608 103 536 76 35 13

study on the proposed SRRN, verifying the reasonability of our design. Last,
we compare the SRRN with SOTA models and show that our SRRN achieves
superior performance.

4.1 Statistical Analysis

We give statistical analysis based on (1)the pixel difference, (2)the shadow
mask ratio, (3) the occluder type and size, and (4) the type of view.

First, Fig. 5a represents the average intensity attenuation on the shadow
region, i.e., the density of collected shadow. It reveals that the ADSP is a chal-
lenging dataset with more significant decay, resulting in weaker underlying in-
formation. Note that such stronger degradations stem from both the collecting
environment and the occluder. As mentioned in Section 3.1, we acquired a clear
background via customized shutter speed. Hence, darker shadows are not made
on purpose but come from stronger sunlight. Furthermore, the visible occluder
contributes to the challenge, which will be shown in Section 4.2. On the other
hand, Fig. 5b shows the bias on the non-shadow region, reflecting the incon-
sistency. According to the result, the proposed process has excellent potential
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to reduce biases and suppress the inconsistency. Compared with the ISTD, the
ADSP ensures the correctness of most pairs, i.e., the distribution has a peak
value around zero. Compared to the SRD, it achieves a higher accuracy with
an acceptable precision trade-off. Specifically, our dataset-level difference mean
is about -2.49, better than -2.52 of the SRD. However, the SRD has a lower
standard deviation (about 4.66) than ours (about 5.36). We attribute these to
the fact that we did not customize Iscene for each Is but used a randomly aug-
mented candidates set. Even so, it still verifies that the synthesizing strategy
can generate Isf with stable quality and no exceptional adjustments is needed.

Second, Fig. 5c shows the ratio of the shadow area. We ascribed the lower
shadow area ratio to the trade-off of getting a wider camera depression angle.
As mentioned in Section 2.1, the restricted camera view derives from the re-
quirement of no occluder. Therefore, top-view photos with low depression angles
undoubtedly consist of very large shadow areas. Third, as mentioned in Section 1,
the ADSP was designed explicitly for visible occluders, thus we conducted analy-
ses on occluders especially. For the occluder size, we used the ratio of the mask to
the whole image as indicators and dividing them into three major types (Small,
Medium and Big), as Table 1 showed. For the occluder type, we made the col-
lected objects as diverse as possible and split them into eight types, as shown
in Table 3. Fourth, we also analyzed the distance between the shadow and the
camera, hoping that it would be helpful to train the shadow removal algorithms
with specific interest ranges. We subjectively estimate the distances of photos
and classify them into three categories, as shown in Table 2.

4.2 Domain Shift Validation

In Section 4.1, we verified the advantages of the ADSP from the statisti-
cal perspective. Here, we prove it again via domain shift experiments. Cross-
evaluations on distinct sets with different distributions reveal each benchmark’s
difficulty and generalization capability. We applied two SOTA models on three
existing datasets and our ADSP. We used official splitting on the formers and
randomly divided the latter into training (1100 pairs) and testing (120) sets.
The official implementation of each model was re-trained after minimal modifi-
cations. Down-sampled ADSP images were adopted to provide a closer image size
range with existing data. We reported PSNRs of the whole image, the shadow
region, and the non-shadow region, respectively. We also improve the calculation
method of region metrics to prevent unreasonable high values, as shown in the
supplementary material.

Table 4 shows the results of domain shift experiments. According to it, we
summarized four comparisons to prove the proposed ADSP. We use A → B
to represent the experiment, having A as the source domain and B as the
target domain. We use {} to represent the candidates for each domain, e.g .
{A,B} → {C,D} means a collection of four experiments: A → C, A → D,
B → C, and B → D. We first separate these four datasets into two groups
by their content. The proposed ADSP and the DESOBAv2 contain visible oc-
cluder, while the SRD and the ISTD seldom do. We found that experiments of
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Table 4: The quantitative result of domain shift experiments. We evaluated each
model on the validation set of each benchmark and reported PSNR on the entire
image/shadow region/non-shadow region and SSIM of the entire image. Different colors
of underline and cell indicate included values in distinct comparisons, which we did in
Section 4.2. Red and Blue represent the best or second best value among each row,
except for experiments in the diagonal, which were not shifted.

Metrics PSNR:(whole/shadow region/non-shadow region), SSIM:(whole)
Eval\Train SRD [35] ISTD [45] DESOBAv2 [31] ADSP (ours)

ShadowFormer [14]

SRD 30.34/27.07/32.45 18.37/15.70/19.92 22.51/17.12/27.10 22.39/16.96/27.54
0.8885 0.8272 0.7839 0.8228

ISTD 21.79/17.11/23.83 30.48/27.84/31.55 24.71/21.92/25.81 21.18/16.47/23.29
0.8976 0.9273 0.8662 0.9020

DESOBAv2 27.72/13.58/30.29 21.00/13.09/21.55 35.27/24.76/36.67 29.45/18.83/30.72
0.9371 0.9143 0.9606 0.9414

ADSP 25.51/12.57/30.77 20.77/12.78/21.60 28.70/18.28/30.99 32.41/24.90/33.25
0.8985 0.8679 0.8967 0.9190

SG-ShadowNet [44]

SRD 25.69/20.51/29.88 20.94/17.14/23.36 20.92/15.17/27.04 22.73/17.54/26.88
0.8536 0.8224 0.7685 0.8222

ISTD 24.70/22.85/25.20 28.95/26.23/30.10 24.73/21.84/25.89 23.34/19.91/27.74
0.9089 0.9213 0.8647 0.8961

DESOBAv2 26.39/11.90/29.42 24.49/13.66/25.92 32.20/19.29/34.23 27.52/14.57/29.41
0.9328 0.9257 0.9483 0.9346

ADSP 24.98/12.67/29.23 22.41/13.27/24.42 28.21/17.58/30.88 31.61/21.09/33.73
0.8837 0.8699 0.8955 0.9195

{SRD, ISTD} → {ADSP,DESOBAv2} have much lower shadow region PSNRs.
The interval of all eight results is [11.90, 13.66]. By contrast, those of {DESOBAv2
, ADSP} → {SRD, ISTD} is [15.17, 21.92]. It reveals that images with visible
occluder can provide better robustness to deal with diverse shadow images. Sec-
ond, among eight ADSP → DESOBAv2 metrics, there are seven first-place
results. The leftover one also earned second place with an insignificant degrada-
tion of 0.01. It proves that the visible occluder is also one of the critical reasons
causing high difficulty because the metric decay of domain shift experiments
between datasets with similar contents is slighter.

Based on the same idea, we further focus on the results between two pop-
ular benchmarks (the SRD and the ISTD) and our ADSP. The shadow region
PSNRs interval of {SRD, ISTD} → ADSP is [12.57, 13.27], and that of ADSP
→ {SRD, ISTD} is [16.47, 19.91]. Milder domain shift effect and completely
non-overlapped intervals prove the ADSP has greater difficulty.

Last, from the performance ranking of all metrics, ten of the sixteen ADSP
→ {SRD, ISTD} results achieve the first or second place, confirming that the
ADSP provides excellent generalization capabilities. Although some results do
not behave impressively, we should realize that the ADSP achieves these under
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Table 5: The quantitative result of the ablation study using our models with different
hyper-parameters. Reported metrics were computed in the validation set of the pro-
posed ADSP. Red and Blue indicate the best and second-best results in such metrics.

Model θsr θca/θbs SRRN
Lbs

p % !
λ 0 1 1.5 2 2.5 3 5 10 20

Train on. Combine Combine (θsr)/ADSP(θca/θbs)
psnrall 32.44 29.42 33.20 33.24 33.18 33.19 33.23 33.16 33.18 33.10 33.04
psnrs 25.08 18.56 25.39 25.71 25.70 25.70 25.61 25.73 25.79 25.80 25.82
psnrns 33.23 31.83 34.17 34.14 34.06 34.09 34.15 34.04 34.05 33.92 33.88
ssimall 0.9202 0.9011 0.9280 0.9275 0.9270 0.9271 0.9269 0.9264 0.9263 0.9252 0.9236

the disadvantage of data quantity. Our ADSP has 1100 training and 120 testing
pairs, fewer than the SRD (2680/408) and the ISTD (1330/540). The smaller
scale stems from a more rigorous and complex construction process and the data
diversity, i.e., the novel quadruplet data the ADSP provides. Moreover, for the
DESOBAv2 containing a considerable quantity (20000/296), due to the partial-
shadow-free information, it gains an advantage only on the relatively simple
ISTD, which verifies the potential of the proposed synthesizing strategy.

4.3 Ablation Study

As mentioned in Section 3.2, we applied the penumbra loss in the boundary
smoothing subnet θbs to focus on the penumbra region. The total adopted loss
functions used in stage two training (θca, θbs) are as follows:

L1 = ||Igt ⊗M − Iout ⊗M ||1 (1)

Loverall = Lca
R + Lca

A + Lbs
R + Lbs

A + 10× Lbs
spa + λ× Lbs

p (2)

where the subscripts mean the type of loss functions, the superscripts represent
the target model, ⊗ is the Hadamard product, and LR, LA, and Lbs

p are all
variants of the L1 loss with different masks M , where R means the reconstruction
loss with M1 of one, A means the shadow area loss with the shadow mask Ms,
and spa means the spatial consistency loss [13]. In this section, we tried to
search for an optimal λ, which controls the ratio of the penumbra loss Lp with
a penumbra mask Mp.

Table 5 compares two individual stages and nine ablation studies with dif-
ferent λ. We can see that all results of the complete SRRN outperformed the
two individual stages. Moreover, Lp shows great help on the performance of the
shadow region Rs. Figure 6a show the qualitative results of six different λ. Among
all results, the shadow contours gradually become lighter as the λ increases. Es-
pecially for the λ ≥ 10, they have been imperceptible. We chose the SRRN with
λ = 10 as the final version because it has the best overall performance.
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SRRN w/o LP SRRN ( = 1) SRRN ( = 2.5) SRRN ( = 5) SRRN ( = 10) SRRN ( = 20)

(a) Qualitative results of ablation studies of hyper-parameter λ.

Input (Shadow) SG-ShadowNet BMNet SpA-Former ShadowFormer SRRN ( = 10)

(b) Examples of shadow removal results on ADSP from five best models.

Fig. 6: Qualitative results of ablation study and comparions with state-of-the-art mod-
els.

4.4 Comparison with State-of-the-Art Methods

In this subsection, we compare the proposed SRRN with eight SOTA models.
We followed most settings mentioned in Section 4.2, except for the training set.
We re-trained each SOTA model on the combined dataset (SRD[35], ISTD[45],
and the proposed ADSP) and evaluated it on the testing set of the down-sampled
ADSP. We reported two results with λ equal to 1 and 10 to emphasize that added
penumbra loss is a trade-off between two regions.

Table 6 presents quantitative results of comparison. Two SRRNs surpass all
competing methods among every included metric. Compared with the input
image, our methods recover underlying information on the shadow region and
keep the non-shadow region from generating artifacts. All of the seven metric
values of our methods have positive changes to the original inputs, which some
SOTAs did not. On the other hand, Fig. 6b demonstrates the visual examples of
the best five models. We can also find that despite existing competing methods
being able to reconstruct the original shadow-free image, they usually leave some
visually unnatural areas, e.g ., residual shadows or visible shadow boundaries.
Our method, in contrast, fixes those areas as much as possible and makes them
imperceptible.

5 Limitation

There are still some limitations of the ADSP since it mainly handles the
problems of 1) occluders, 2) limited camera angles, and 3) inconsistency in out-
door scenarios. There are some trade-offs for these goals. First, the outdoor light
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Table 6: The quantitative results of shadow removal using our models and recent
methods on the proposed ADSP. Red and Blue indicate the best and second-best
results in such metrics.

Method RMSE ↓ PSNR ↑ SSIM ↑
Whole shadow non-shadow Whole shadow non-shadow Whole

Input Image 23.552 115.778 8.754 21.68 7.09 31.08 0.8842
Mask-ShadowGan [21] 15.564 61.955 9.268 25.11 13.21 30.10 0.8825
DC-ShadowNet [23] 18.284 61.219 11.444 23.75 13.46 27.95 0.8594

Fu et al. [12] 12.828 42.907 9.635 27.05 16.37 30.03 0.8912
SG-ShadowNet [44] 9.498 31.851 7.688 29.42 18.56 31.83 0.9011

BMNet [56] 8.588 23.116 7.537 30.62 21.34 32.34 0.9086
SpA-Former [52] 13.154 32.640 9.670 26.92 18.72 30.16 0.8988

ShadowFormer [14] 6.988 15.335 6.649 32.44 25.08 33.23 0.9202
SADC [47] 10.263 35.483 8.158 28.80 17.85 31.66 0.9053

Ours (λ = 1) 6.220 14.157 5.821 33.24 25.71 34.14 0.9275
Ours (λ = 10) 6.316 14.066 5.951 33.10 25.80 33.92 0.9252

source is usually the sunlight. Thus, soft or overleaped shadows are unavailable.
Second, the proposed method has higher requirement on environment. Collected
scene images should not contain any intrinsic shadows, which limits the acquiring
on some situation, e.g . non-planar plane or a vertical wall. Third, as mentioned
in Section 4.1, adopting a broader camera angle unavoidably causes shadows to
have a small image ratio. Last, the proposed post-processing construction can
not deal with self-shadows, i.e., the shadow cast on the occluder itself.

6 Conclusion

In this work, a novel benchmark for shadow removal was proposed. With
the synthesizing strategy, our proposed ADSP mitigated the limitation of ex-
isting datasets. The images in the ADSP dataset contain occluders in outdoor
images, have wider camera depression angles, and well avoid inconsistency. We
conducted statistical analysis and domain shift experiments to evaluate the pro-
posed benchmark. Moreover, as a reference for the removal task on the ADSP, we
proposed the SRRN, a novel three-stage network. An ablation study presented
that the newly added penumbra loss could effectively improve the performance
of shadow region recovery. Compared to existing methods, the proposed SRRN
achieved state-of-the-art performance on shadow removal.
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