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Abstract. The YOLO series detection models play a crucial role in
target detection tasks. However, these models are typically trained on
datasets with standard angles. For datasets like Visdron2021 and Tinyper-
son, there are challenges related to small, dense, and numerous objects
that conventional object detection models struggle to detect effectively.
Therefore, we propose a universal structure for all YOLO series models to
enhance their capability to detect small objects. We first use a large-scale
feature map as a new detection branch to address the issue of feature
loss with small objects. Secondly, we have developed a detail-guide-block
(DGB) to enhance the model’s ability in detailed detection, along with a
feature-refine-module (FRM) aimed at mitigating the problem of feature
flattening caused by upsampling. Finally, we removed the fourth detec-
tion branch that did not significantly improve detection accuracy, which
can to some extent improve the execution speed of the model and reduce
its complexity. We have ported our structure on YOLOX, YOLOv7, and
YOLOv8, and conducted extensive experiments on Visdrone2021 and
Tinypeson datasets. The experimental data demonstrate that our im-
proved models consistently outperform the original model in terms of
performance.

Keywords: YOLO Series Model · Small Object Detection · Universal
Structure

1 Introduction

Object detection is an important research direction in the field of computer
vision and is also the foundation for other complex visual tasks. In some high-
level visual tasks such as scene understanding, object tracking, image description,
and event detection, the application of object detection is often involved. Despite
significant breakthroughs in object detection algorithms, the detection of small
objects still needs improvement. Compared to conventional-sized targets, small
objects often lack sufficient visual information, making distinguishing them from
background or similar targets difficult.

This ACCV 2024 paper, provided here by the Computer Vision Foundation, is the author-created version.
The content of this paper is identical to the content of the officially published ACCV 2024

LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/accv
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Fig. 1: (a). Explanation of the characteristics of the dataset. (b). From left to right,
represent the predicted results of feature maps with 8-fold downsampling, 16-fold down-
sampling, and 32-fold downsampling, respectively.

In recent years, deep convolutional neural networks have made significant
progress in object detection tasks. Some benchmark datasets such as MS COCO
[22] and PASCALVOC [6] have greatly promoted the development of object de-
tection applications. These datasets are usually based on the human perspective,
and many excellent detection models [21,25,29,32,41] have been proposed based
on the above datasets. However, these models are not suitable for some spe-
cial scenarios, such as drone aerial photography [2] and satellite remote-sensing
images [35]. In these datasets, the following challenges are often faced: 1). Few
available features. Small targets occupy too little size in the image, lacking suffi-
cient visual information. Low-resolution small target visualization information is
limited, making it difficult to extract discriminative features and easily affected
by environmental factors, which in turn makes it difficult for detection models to
accurately locate and recognize small targets. 2). High positioning accuracy re-
quirement. Due to the small coverage area in the image, even a single pixel offset
in the prediction boundary box during the prediction process can have a signif-
icant impact on the location of small targets. 3). Object aggregation. In these
datasets, the probability of object clustering is high. When object aggregation
occurs, the small targets adjacent to the aggregation region will be aggregated
into one point after repeated downsampling to the deep feature map, resulting
in an indistinct detection result. Which are intuitively illustrated by some cases
in Fig. 1(a).

Looking back on the history of object detection models, the YOLO series
of detection models [1, 8, 13, 14, 29–31, 34] has played an indelible role of great
significance. The core idea of YOLO [29] is to transform object detection into a
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regression problem, using the entire image as input to the neural network to get
the position and category of the bounding box. To further improve the model’s
prediction accuracy, subsequent work adopted multi-scale detection similar to
SSD [25] to perform object detection on 8-fold, 16-fold, and 32-fold downsam-
pling feature maps, respectively. This design enables the model to better detect
targets of different sizes. However, on some special datasets [2,39], feature maps
with 32-fold downsampling are almost unable to predict the correct target. We
present the test results in Fig. 1(b).

Based on the above observations, we propose a universal YOLO model struc-
ture. It can be used in any YOLO series model to improve prediction accuracy
for small targets. In our models, we use a 4-fold downsampling feature map
instead of a 32-fold downsampling feature map for detection. And use special
convolution methods to prevent model speed from decreasing. Fig. 2(b) shows
the structure of our models. Our main contributions are summarized as follows:

– We propose a universal model structure for small object detection, which
can be used in any YOLO series model to improve the recognition ability of
small objects.

– We propose DGB, which can effectively enhance the model’s detection ability
for small target objects.

– We propose FRM, which can effectively alleviate the problem of feature
flattening caused by upsampling.

– We provide useful skill kits and filter out some useless techniques for small
object detection tasks.

– We validated on YOLOX, YOLOv7, and YOLOv8, and achieved stable ac-
curacy improvements on the Visdrone2021 and Tinyperson datasets.

2 Related Work

General Object Detection Object detection is one of the core tasks of com-
puter vision and has wide applications in various fields of society. The first
attempt to use deep learning for object detection was R-CNN [9]. R-CNN uses
Convolutional-Neural-Network(CNN) on region proposals generated by using se-
lective search. Although it has achieved good detection results, it cannot meet the
real-time requirements of many tasks. Because each proposed area needs to pass
through CNN sequentially, which is very time-consuming. Faster R-CNN [32]
specifically proposes to generate refined proposals by designing a region pro-
posal network. It only performs one feature extraction stage for all region pro-
posals, making it faster than R-CNN. R-FCN [3] was introduced to efficiently
perform region-wise full convolutions compared to the computations of heavy
region-wise CNN during a pooling operation. Mask R-CNN [11] proposes adding
a mask prediction branch to improve the performance of object detection and
instance segmentation.

The above methods all have a Region-Proposal-Network(RPN) for generating
candidate target boxes and a network for classifying and regressing the bound-
ing boxes of these boxes. According to their structural characteristics, they all
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belong to two-stage object detection methods in classification. Although they
have high detection accuracy, they are usually unable to complete real-time de-
tection tasks. To meet the requirements of real-time performance, researchers
have begun to study more efficient algorithms and proposed one-stage object
detection algorithms. Contrary to two-stage methods, one-stage methods were
proposed to detect objects by directly conducting classification and localization
with the predefined anchor boxes. SSD [25] introduces multi-scale object detec-
tion based on multi-layer pyramid features, with shallow and deep feature maps
used for detecting small and large objects, respectively. RetinaNet [21] proposed
a focal loss algorithm to address the imbalance between foreground and back-
ground classes. RFBNet [5] was introduced to combine multiple branches of
multi-scale receptive fields for enhancing feature representation. To address the
complex scale changes in object detection, some methods [18, 26] have explored
the exploration of multi-scale pyramid features These methods include addi-
tional top-down paths and horizontal connections, and detect objects at each
scale from the corresponding layers of these pyramids.

Small Object Detection In small object detection tasks, the targets that need
to be detected generally have the problem of small coverage area and high target
density. To address the above difficulties, some methods improve the model’s
recognition of small targets by introducing custom components. These works
cover several aspects such as super-resolution schemes [17], loss function opti-
mization [23], feature fusion [40], and multi-scale feature learning [18].

Since the detection of small targets mainly benefits from large-scale feature
mapping, some previous small target detectors have adopted super-resolution
(SR), which can be roughly divided into image-level SR and feature-level SR.
For image-level SR, Hu and Ramanan [12] proposed using bilinear interpola-
tion to achieve large-scale input images. Fooks et al. [7] introduced a method of
generating super-resolution facial images using generative adversarial networks.
However, these methods increase inference time because the input image is large-
scale and not end-to-end trainable. Unlike image-level SR, feature-level SR di-
rectly performs super-resolution processing on features. Perceptual GAN [17]
proposed to enrich the small objects’ features by narrowing the difference in the
presentation of small and large objects. EFPN [4] proposes an extended feature
pyramid network to utilize additional high-resolution pyramid features for de-
tecting small objects. Although existing methods using additional networks for
adversarial training can improve the detection performance of small targets to a
certain extent, adversarial training is not stable. The optimization of loss func-
tion can help detect small objects. Liu et al. [23] proposed a feedback-driven loss
function, taking loss distribution cues as feedback signals, which can be used
for balance training of the model. Leng et al. [15] designed a context-guided
inference network (CRNet) to explore the relationships between objects and use
easily detectable objects to help understand difficult objects. They also pro-
posed PRDet [16], which distinguishes hard regions from ordinary regions under
reverse attention guidance and refocuses hard regions with the help of region-
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Fig. 2: Comparison diagram between the model structure of YOLO series models and
our model structure. Only the flow and size changes of the data in the model are
displayed.

specific context. Feature fusion can fuse features from different levels and improve
the detection accuracy of the model. FA-SSD [19] uses attention modules and
feature fusion to integrate features at different levels. In addition, multi-scale
feature learning is also an important means of detecting small targets. SSD [25]
utilizes multi-layer features to predict objects of different sizes, which to some
extent improves detection accuracy. FPN [20] uses a top-down architecture and
horizontal connections to integrate features at different levels to better detect
small targets.

3 Method

In recent years, deep convolutional neural networks have made significant progress
in object detection tasks, and many interesting and efficient YOLO series mod-
els have been proposed. However, most of these models are designed for natural
scene images. For some images in special scenarios, as shown in Fig. 1(a), it
is unreasonable to directly apply previous models for object detection. Firstly,
these images typically contain high-density objects, which can lead to occlusion
between objects. Secondly, the target object in the image with a small area is
often overlooked after multiple convolution operations.

3.1 Overview of YOLO Series Models

With the rapid development of deep learning, YOLO [29] has also undergone
several versions of optimization. The maximum change in model structure is
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Fig. 3: Improved model based on YOLOv7. We only modified the structure of the
model and did not modify the special modules of the original YOLOv7 model. DGB
and FRM are special modules we propose.

from YOLO [29] to YOLOv3 [31]. Since YOLOv4 [1], some versions have mostly
adopted a model structure similar to YOLOv3 [31], and have designed some
special modules based on the previous ones to improve model performance to a
certain extent. These models mainly consist of three parts: Backbone, Neck, and
Prediction. Backbone is the foundation of the YOLO series models, typically a
pre-trained convolutional neural network (CNN) such as ResNet, Darknet, etc.
Neck is located between backbone and prediction, and its main function is to
connect backbone and prediction, while enhancing the model’s feature represen-
tation ability. Neck is usually composed of multiple modules, such as FPN [20]
(Feature-Pyramid-Network), PAN [24](Path-Aggregation-Network), etc. These
modules can integrate features from different levels and improve the model’s de-
tection ability for multi-scale targets. Prediction is the final part of the YOLO
series of models, which is responsible for object detection based on the ex-
tracted features. Prediction typically includes multiple prediction layers, each
corresponding to feature maps of different scales. At each prediction layer, the
model generates a series of bounding boxes and their corresponding category
probabilities and confidence levels. We have shown the structure in Fig. 2(a).

3.2 A Universal Structure of YOLO Series Models for Small Object
Detection

To address the issue of insufficient detection capability of existing models for
small targets, we propose a universal neck for YOLO series models. It can be
applied to any YOLO series model to improve the detection accuracy of the
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original model for small targets. To make our model inherit the advantages
of the YOLO series model, we have retained all parts of the original model
except for the neck. After extensive analysis, we have found that the main reason
for the low accuracy of small object detection in existing models. Due to the
small area occupied by small targets in the input image, some high-level feature
maps obtained through multi-layer convolution cannot retain the features of
small target objects, resulting in the model ignoring small targets in the final
prediction.

To improve the above issues, we consider adding a new prediction branch to
the model. As shown in Fig. 2(a), most models adopt feature maps downsampled
at 8x, 16x, and 32x for object detection. The smaller the downsampling rate,
the more image details are retained. Therefore, we consider object detection
on feature maps with 4x downsampling rate. So, we added a new prediction
branch based on the original model. Although the model’s prediction ability for
small targets has been improved, feature maps with excessive size will seriously
affect the execution speed of the model during convolution. This method of
exchanging speed for accuracy is not advisable, as in most industrial tasks, the
execution speed of the model is more important than accuracy. In order to ensure
the execution speed of the model, we refuse to use convolution operations with
a kernel greater than 1 in the new prediction branch. We present our model
structure in Fig. 2(b). In our model, we use the 4x downsampled feature map f4
as the source of detailed features, as it has more detailed information compared to
other levels of feature maps. We also input f4 and f16a into a DGB to guide f16a
in obtaining more detailed features, thereby improving the prediction accuracy
of the model. In DGB, we only used 1×1 convolution operation, so it will not
have a significant impact on the execution speed of the model. Subsequently,
we input feature maps f8a and f4 containing detailed features into a feature-
refinement-module (FRM) to purify and refine feature information. In Fig. 6, we
present the comparison results of the feature maps before and after refinement.
Finally, input the purified feature map f4b into the prediction for detection.

For the previous YOLO series models, most of them were designed with struc-
tures for datasets such as MS COCO [22] and PASCALVOC [6], and feature maps
with 32x downsampling were typically responsible for predicting large targets in
these models. After some experimental analysis, we found that the feature map
with 32x downsampling has almost no effect on detecting small targets. Because
it usually cannot effectively predict the target, as shown in Fig. 1(b). Therefore,
in our model, we only retained three lower-level detection heads, which did not
affect the prediction accuracy of our model. In order to make our model struc-
ture clearer, we ported our structure using YOLOv7 [34] as the basic model. As
shown in Fig. 3, we have presented the complete model structure. Except for the
modifications mentioned above, all others are retained as the original structure
of YOLOv7.
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3.3 DGB: Detail Guide Block

Based on experimental analysis, we found that the feature map f4 with 4x down-
sampling contains more detailed information than other feature maps. Therefore,
its detection ability for small targets is higher than other levels of feature maps.
To spread its advantages to other feature maps, we designed a detail-guide-block
(DGB) to improve the model’s ability to extract small object features. Inspired
by attention-unet [28], we have adopted cross-attention as the main body of DGB
in our design. Through cross-attention, the input feature map f16a can gradually
learn to recognize the detailed features in feature map f4, thereby propagating
the low-level detailed information to the high-level feature map. We show the
structure of DGB in Fig. 4, which has two inputs: the low-level feature map f4
and the high-level feature map f16a. The size of f4 is twice that of f16a, so we
first use a focus [13] operation on f4 to unify the two sizes. In DGB, we only
use convolution operations with a kernel of 1, which not only reduces the impact
on model execution speed but also reduces the influence of irrelevant factors on
detail features. If we represent a convolution operation and a batchnorm with
the symbol CB:

CB(x) = BatchNorm (Conv (x)) (1)

So, the output of DGB can be expressed using the following formula:

FSout = CB(focus(f4)) (2)

RUout = relu(FSout + CB(f16a))) (3)
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DGBout = FSout ∗ sigmoid(CB(RUout)) (4)

where, f4 and f16a represent feature maps at different levels, which can be found
in Fig. 2(b). To verify its effectiveness, we conducted ablation experiments in
Chapter 4 and presented the experimental results in Table. 1.

3.4 FRM: Feature Refine Module

At the end of the model, we need to upsample the feature map f8a after feature
aggregation and add it with f4. However, the upsampled feature map f8a has
local similarity, meaning that other pixel features around a certain pixel feature
will be very similar to it. This is caused by the upsampling method, which leads to
feature flattening. Therefore, we propose a feature-refine-module (FRM) to refine
the feature map. The main idea of FRM is to use a learned weight parameter
to replace direct addition. The basic concept of FRM comes from attention
mechanisms [33]. If the vectors corresponding to pixels in the f4 and f8a branch
feature maps are defined as

−→
V4 and

−→
V8a, respectively, the output of FRM can be

represented as:

FRMout = δ ∗
−→
V4 + (1− δ) ∗

−→
V8a (5)

where, f4 and f8a represent feature maps at different levels, which can be found
in Fig. 2(b). δ represents the learned weight, it can be expressed as:

δ = sigmoid(Fcb(
−→
V4) · Fcb(

−→
V8a)) (6)
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Original Heatmaps  Used DGB  Used FRMImages

Fig. 6: Visualization results of feature maps. From left to right represents the trend of
changes in the feature map.

In order to demonstrate its effectiveness more intuitively, we conducted a detailed
comparative experiment in Chapter 4. Visualize the experimental results through
Fig. 6 and Table. 1.

4 Experiments

In this section, we first introduce the datasets and the implementation details.
Next, we investigate the effects of each component of our proposed method.
Finally, we report the comparison results with other object detection algorithms
on Visdrone2021 and Tinyperson datasets.

4.1 Datasets

Visdrone2021. Visdrone2021 [2] is one of the most popular small object detec-
tion datasets. It is a city aerial image dataset based on drone perspective. The
images were divided into sets of sizes 6,471, 548, and 3,190 for training, valida-
tion, and testing. The dataset contains 10 detection categories, mainly vehicles
and pedestrians that are more common in the city. The images have different
resolutions. But in this paper, we adjusted the size of all pictures to 640×640 in
the experiment.

Tinyperson. TinyPerson [39] is a small-scale dataset composed only of ultra-
small objects. The objects in this dataset are all less than 20 pixels. This dataset
contains a total of 1610 images, of which 794 were selected as the training set, 596
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as the testing set, and 220 as the validation set. This dataset mainly involves two
types of detection objects, both of which are humans but are divided in detail
into people on land and people in water.

4.2 Implementation Details

Training Details. We have implemented all of our improved models on Pytorch
1.10.1. All of our models were trained and tested using NVIDIA RTX3090 GPU.
During the training phase, we will use pre-trained weights from the original
model. Since we made improvements to the model in the Neck and Prediction
sections, we only used the weights from the original model backbone. We use
mini-batch stochastic gradient descent (SGD) with momentum 0.9, and weight
decay. The batch size of the Visdrone2021 and Tinyperson datasets is set to 8.

Data Augmentation. In all the experiments, we only resized the images with-
out cropping them. We use mosaic data augmentation to expand the training set.
We set 300 training epochs for all models and used mosaic data augmentation
in the top 70% of the training epochs. We will freeze the weight of the backbone
for the first 50 training epochs and set the batch to 16.

4.3 Ablation Study

In this section, we analyze the effectiveness of each component proposed in our
method.

Effectiveness of DGB. To demonstrate the effectiveness of DGB, we endeavor
to substitute it with Add while maintaining the remainder of the model un-
changed. The results are shown in Table. 1. Utilizing DGB, our models can pro-
vide more detailed low-level features to enhance the recognition of small targets
by high-level features, thereby improving the model’s capability. To get a more
convincing result, we visualized both the DGB-processed feature maps and the
original feature maps. As shown in Fig. 6, the DGB-processed feature maps put
more attention on the target object. This greatly improves our model’s ability
to handle detail. Therefore, our model can be more accurate for small objects.

Effectiveness of FRM. In FRM, we replace traditional feature addition with
a learned weight. This can help our model better handle the features of detailed
positions and reduce the impact of feature flattening caused by upsampling in
the model. To demonstrate the effectiveness of FRM, we use Add instead of
FRM. In Table. 1, using FRM has higher prediction accuracy than using Add
directly. At the same time, we visualized the feature map after FRM and the
feature map after DGB. As shown in Fig. 6, the feature maps processed by FRM
pay more attention to the boundary information of the target object than the
DGB-processed feature maps.
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Table 1: Ablation study of DGB and FRM.

Base Model Resolution
Module1 Module2

AP50(%) mAP(%)
Add DGB Add FRM

yolov7_l [34] 640×640
√ √

39.2 22.8

yolov7_l [34] 640×640
√ √

40.7 23.5

yolov7_l [34] 640×640
√ √

41.8 24.1

yolov7_l [34] 640×640
√ √

43.7 25.6

Table 2: Ablation study of model structure and prediction head nums.

Base Model Resolution
Head Nums

GFLOPs Params/M AP50(%) mAP(%)
Three Four

yolox_l(ours) 640×640
√

135.7
(-24.8)

43.4
(-11.4)

42.9 25.0

yolox_l [8] 640×640
√

160.5 54.8 43.0
(+0.1)

25.0
(+0.0)

yolov7_l(ours) 640×640
√

91.5
(-19.8)

29.85
(-8.65)

43.7 25.6

yolov7_l [34] 640×640
√

111.3 38.5 43.9
(+0.2)

25.7
(+0.1)

yolov8_l(ours) 640×640
√

149.6
(-20.3)

36.8
(-7.7)

46.4 29.1

yolov8_l [14] 640×640
√

170.3 44.5 46.4
(+0.0)

29.2
(+0.1)

Effectiveness of Extra Prediction Head. In our models, we use the 4x
downsampling feature map instead of the 32-fold downsampling feature map in
the original model to detect small targets. Because we found that the 32x down-
sampled feature map cannot effectively predict small targets, so we used the 4x
downsampled feature map with more detailed information. To verify the effec-
tiveness of removing the detection head of the 32x downsampled feature map,
we will compare the use of four detection heads with the use of three detection
heads. As shown in Table. 2, the use of four detection heads hardly improves the
detection accuracy but significantly increases the size and computation of the
model.

4.4 Comparison

In this section, we compare our method with other existing state-of-the-art meth-
ods on the Visdrone2021 and Tinyperson datasets.

Visdrone2021. As shown in Table. 3, we demonstrate the detection accuracy
and inference speed of our proposed methods on the Visdrone2021 validation
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Table 3: Comparisons with other state-of-the-art methods on Visdrone2021. - indicates
the method do not publish the results. The model marked with ∗ are tested on our
platform.

Model GPU Resolution GFLOPs Params/M FPS AP50(%) mAP(%)

VAMYOLO [38] RTX 3090 640×640 - 57.53 - 39.8 24.4

DCYOLOv8 [27] RTX 3090 640×640 - - - 41.5 24.7

LVYOLO [36] RTX 3090 640×640 - 36.6 - 41.7 25.6

YOLOERF [37] RTX 3090 640×640 - 5.9 - 42.0 23.6

CSYOLOv8 [10] RTX 3090 640×640 - - - 42.6 25.7

yolov5_x* [13] RTX 3090 640×640 214.0 87.3 62.2 33.1 18.4

yolox_m* [8] RTX 3090 640×640 69.7 25.1 80.1 38.8 22.2

yolox_l* [8] RTX 3090 640×640 150.5 54.0 65.3 40.2 22.9

yolox_l(ours) RTX 3090 640×640 135.7
(-14.8)

43.4
(-10.6)

74.3
(+9.0)

42.9
(+2.7)

25.0
(+2.1)

yolov7_l* [34] RTX 3090 640×640 101.3 37.2 83.3 41.2 23.3

yolov7_l(ours) RTX 3090 640×640 91.5
(-9.8)

29.85
(-7.35)

90.1
(+6.8)

43.7
(+2.5)

25.6
(+2.3)

yolov8_s* [14] RTX 3090 640×640 23.6 11.1 125.2 41.4 25.1

yolov8_l* [14] RTX 3090 640×640 160.3 43.6 66.2 44.0 27.2

yolov8_l(ours) RTX 3090 640×640 149.6
(-10.7)

36.8
(-6.8)

73.5
(+7.3)

46.4
(+2.4)

29.1
(+1.9)

set. We compared our original model in terms of speed and accuracy, and our
model has shown some improvement in speed and accuracy. And our model will
also reduce the size and complexity of the model to a certain extent. We also
compared the prediction accuracy with models used for small object detection
in the past two years and achieved the best results. To compare fairness, we used
the same experimental platform and input size. In Table. 3, our model based on
yolov8− l achieved 29.1% mAP, which has surpassed the prediction accuracy of
all the above models.

Tinyperson. We also compared our models with other models on the Tinyper-
son dataset. As shown in Table. 4, with an input size of 640×640, the prediction
accuracy of our models has been steadily improved compared with the original
models. Our models are consistent across both the Visdrone2021 dataset and
the Tinyperson dataset, so the size and computational complexity of the model
do not change depending on the dataset.

5 Conclusion

In this paper, a universal small object detection model structure is proposed
which is suitable for all YOLO series models. We redesigned the structure of
the Neck portion of the YOLO series model and used a larger 4x downsampling
feature map to predict small targets. In our newly designed Neck, we have used
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Table 4: Comparisons with other methods on Tinyperson. The model marked with ∗

are tested on our platform.

Model GPU Resolution AP50(%) mAP(%)

yolov5_x* [13] RTX 3090 640×640 14.21 4.32

yolox_l* [8] RTX 3090 640×640 16.82 5.43

yolox_l (ours) RTX 3090 640×640 20.22
(+3.4)

6.71
(+1.28)

yolov7_l* [34] RTX 3090 640×640 17.5 5.65

yolov7_l (ours) RTX 3090 640×640 22.43
(+4.93)

7.28
(+1.63)

yolov8_s* [14] RTX 3090 640×640 16.42 5.5

yolov8_l* [14] RTX 3090 640×640 20.65 6.82

yolov8_l (ours) RTX 3090 640×640 24.50
(+3.85)

8.56
(+1.74)

a detail-guide-block(DGB) between 4x downsampling features and 16x down-
sampling features to help our models learn more detail features. Therefore, our
model’s ability to detect small targets has been greatly improved. At the same
time, we used a feature-refine-module(FRM) between the 8x downsampled fea-
ture map and the 4x downsampled feature map to reduce the effect of feature
flattening caused by upsampling. Compared with the original models, our im-
proved models have improved prediction accuracy, inference speed, model size,
and computational complexity. The structure proposed by us can be used in any
YOLO series model to improve the detection accuracy of small targets.
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