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Abstract. Low-light image enhancement (LLIE) is essential for numer-
ous computer vision tasks, including object detection, tracking, segmen-
tation, and scene understanding. Despite substantial research on improv-
ing low-quality images captured in underexposed conditions, clear vi-
sion remains critical for autonomous vehicles, which often struggle with
low-light scenarios, signifying the need for continuous research. How-
ever, paired datasets for LLIE are scarce, particularly for street scenes,
limiting the development of robust LLIE methods. Despite using ad-
vanced transformers and/or diffusion-based models, current LLIE meth-
ods struggle in real-world low-light conditions and lack training on street-
scene datasets, limiting their effectiveness for autonomous vehicles. To
bridge these gaps, we introduce a new dataset “LoLI-Street” (Low-Light
Images of Streets) with 33k paired low-light and well-exposed images
from street scenes in developed cities, covering 19k object classes for
object detection. LoLI-Street dataset also features 1,000 real low-light
test images for testing LLIE models under real-life conditions. Further-
more, we propose a transformer and diffusion-based LLIE model named
“TriFuse”. Leveraging the LoLI-Street dataset, we train and evaluate our
TriFuse and SOTA models to benchmark on our dataset. Comparing
various models, our dataset’s generalization feasibility is evident in test-
ing across different mainstream datasets by significantly enhancing im-
ages and object detection for practical applications in autonomous driv-
ing and surveillance systems. Complete code and dataset is available on
https://github.com/tanvirnwu/TriFuse.

Keywords: Low-light image enhancement · LoLI-Street dataset· Con-
ditional noise diffusion · Diffusion denoising · Transformers

1 Introduction

Low-light environments can pose significant challenges for various computer vi-
sion tasks in our daily lives. For most computer vision tasks, models are typi-
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(a) (b)

Fig. 1: Comparison between our TriFuse and SOTA models using a sample real
low-light test image. (a) Qualitative comparison: Visually, PairLIE and RQ-
LLIE produce brighter outputs but lack realism. In contrast, TriFuse ensures
high visual quality with realistic enhancements. (b) Quantitative comparison
based on the no-reference metric BRISQUE (↓) and inference time (↓).

cally trained on datasets collected during the day with sufficient lighting, making
them less effective in dark or low-light environments. This limitation poses a sig-
nificant challenge as the underlying datasets do not account for the variations
and complexities in real-world low-light conditions. Thus, as daylight fades into
night, the reduced visibility can hinder the ability to perform even the most
basic tasks for computer vision systems. This is a matter of convenience, safety,
and efficiency. To address these practical challenges, advancements in computer
vision technology are crucial. Such systems can significantly assist in low-light
conditions, enhance the vision capabilities of autonomous vehicles [39, 33], and
improve safety and security measures [33]. The importance of computer vision in
mitigating the effects of low-light conditions highlights its potential impact on a
wide range of applications [46]. For instance, recent advancements in image pro-
cessing and machine learning have led to sophisticated algorithms that enhance
image clarity [31], detecting [40] and recognizing [49] objects in near-darkness.

Additionally, with the rise of deep learning [44, 55, 41], transformers [50, 36, 6,
50], and diffusion methods [59, 27, 58, 51], its feature representation capabilities
led to the rapid adoption of LLIE. Moreover, researchers are exploring the latest
transformer and diffusion-based methods for LLIE by utilizing synthetic datasets
and reporting significant improvements in LLIE. However, the models struggle
in practical applications, a huge gap that leaves the scope to develop robust
methods for effective LLIE in real-world scenarios. Thus, the full potential of
these methods for LLIE has not yet been fully explored and requires further
research. Furthermore, these learning-based methods heavily rely on high-quality
labeled data for training to perform accurately in real-world scenarios.

In literature, different datasets are available with different scene types of im-
ages under various low-light conditions [52, 35, 10, 11, 32, 14]. Despite having sev-
eral LLIE datasets, there is still a lack of datasets, especially for urban street im-
age scene types, which can be used to train the LLIE models for autonomous ve-
hicles to use navigation and surveillance cameras in urban street scenarios where
accurate object detection, recognition, and navigation are crucial for safety.

To address these gaps in this paper, we contribute as follows:
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– We introduce a unique and challenging dataset named LoLI-Street consisting
of 30,000 train, 3,000 validation, and 1,000 real low-light test (RLLT) images
featuring street scene types, which are rare among the existing datasets and
feature three intense levels (high, moderate, and light) of low-light effect.

– We propose “TriFuse” that reduces the number of sampling steps in the
diffusion process by using the transformer as an accurate noise predictor.

– Benchmarking our proposed TriFuse method against SOTA LLIE models on
LoLI-Street real low-light testset and mainstream datasets, we found it excels
in LLIE and object detection, as shown in Fig. 1 and detailed in Section 5.

2 Related Works

2.1 LLIE Datasets

The ExDARK dataset [35] includes 7,363 annotated images across 12 classes,
crucial for low-light object detection. The LLVIP dataset [26] provides 15,488
pairs of visible and infrared images, essential for image fusion and pedestrian
detection. The MIT-Adobe FiveK dataset [3] offers 5,000 indoor and outdoor
images for various enhancement tasks. The SICE [4] dataset synthesizes 589
images across varied illumination conditions, while the SID [10] dataset pairs
5,094 short-exposure images with long-exposure references. Additionally, the
LIME [17] dataset features 10,000 images for LLIE in low-light conditions, and
the DPED [24] dataset enhances mobile photo quality. The LOLv1 [53] and
LOLv2 [56] datasets contain paired high and low-light images, and the LSRW
dataset [19] includes paired low-light images. These datasets have indoor and
outdoor scenes, as presented in Table 1a. To the best of our knowledge, there is
no dataset that presents the street scene types, unlike our proposed LoLI-Street
dataset, which is crucial for autonomous vehicles under real-world low-light street
scenarios. Moreover, our LoLI-Street provides a test set of 1000 street scene-type
images under real-life low-light conditions for testing the LLIE methods.

2.2 LLIE Methods

Transformer-based LLIE. Initially proposed for natural language process-
ing [47], transformers have recently shown remarkable performance in computer
vision tasks, such as image classification [1, 2, 13], semantic segmentation [7, 54,
63], and object detection [8, 12]. They have also proven effective in low-level vi-
sion tasks like image restoration [6, 50] and image synthesis [23, 28, 61]. Recent
studies highlight transformers’ effectiveness in LLIE by utilizing illumination-
guided multi-head self-attention mechanisms to improve interactions between
regions of different exposure levels [6].

Diffusion-based LLIE. Diffusion-based models have shown significant poten-
tial in LLIE by leveraging their generative capabilities to handle various degra-
dations, including noise [60], low contrast [37], color correction [9], and medical-
image denoising [16, 43]. Recent advancements include Diff-Retinex [58], which
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combines Retinex with generative diffusion networks for enhanced detail and
noise reduction. Integrating generative networks with physical models has led to
effective restoration of scene structures [22]. Other recent research has introduced
a conditional diffusion model incorporating multi-scale patch-based training [42]
and a wavelet-based conditional diffusion model [27], improving visual quality.
Also, CLE Diffusion [59] offers controllable light enhancement using classifier-
free guidance, while ExposureDiffusion [51] combines a diffusion model with a
physics-based exposure model for enhanced performance and reduced inference
time. And, LDM integrates a denoising diffusion probabilistic model with a light
enhancement network, achieving state-of-the-art performance for LLIE [37].

Despite recent advancements, existing LLIE methods struggle with real-world
low-light images, especially on our challenging LoLI-Street dataset, making them
unsuitable for autonomous vehicles and surveillance cameras. Our proposed
model, TriFuse, leverages this street-scene dataset to achieve significant improve-
ments over SOTA models testing on the RLLT.

3 Methodology

3.1 Our Dataset: LoLI-Street

We introduce the benchmark dataset “Low-light Images of Streets (LoLI-Street)”,
containing three subsets: train, validation, and test. The train and validation sets
consist of 30k and 3k paired low and high-light images, and the real low-light
testset (RLLT) contains 1k images under real-world low-light conditions, totaling
33k images. We collected high-resolution videos (4K/8K at 60fps) from various
cities under low-light conditions, extracting and manually reviewing frames to
create the Real Low-light Testset (RLLT) of our LoLI-Street dataset, ensur-
ing high quality and excluding any with motion blur. As shown in Table 1b,
LoLI-Street encompasses three levels of low-light intensity, resulting in differ-
ent quantitative metrics. Sample images are presented in Fig. 2a, and Fig. 2b

(a) (b)

Fig. 2: (a) Sample images of LoLI-Street. Green: train and validation sets, Red:
real low-light test set. (b) Distribution of the low-light images of our LoLI-Street.
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Table 1: Quantatitive comparison of mainstream datasets and our LoLI-Street.

(a) Datasets comparison.

Dataset Venue # of
Name Images

LOLv1 [53] BMVC’18 1,500
SICE [5] TIP’18 5,389
ExDARK [35] CVIU’19 7,363
LOLv2 [57] CVPR’20 3,576
LLVIP [26] ICCV’21 15,488
LSRW [19] JVCIR’23 11,300

LoLI-Street ACCV’24 34,000
(Ours)

(b) Quantitative analysis of our LoLI-Street dataset.

Metrics Train Validation TestLight Moderate Dense Light Moderate Dense

PSNR↑ 28.35 27.88 27.89 28.44 27.91 27.87 -
SSIM↑ 0.8564 0.6045 0.3528 0.8767 0.6196 0.3398 -
MS-SSIM↑ 0.9531 0.7943 0.5854 0.9422 0.7818 0.5621 -
LPIPS↓ 0.0410 0.1547 0.2988 0.04199 0.1563 0.2490 -
MSE↓ 106.14 95.71 105.99 106.79 94.77 108.02 -
MAE↓ 204.51 166.09 137.21 206.09 169.68 142.15 -

BRISQUE↓ 21.99 24.82 33.46 15.80 18.00 26.34 30.99
NIQE↓ 11.045 12.119 13.352 10.49 10.49 10.49 12.334

shows the average pixel distribution across subsets. Inspired by [45, 21], we used
Photoshop v25.0 to generate the synthetic images of our dataset and examined
the distribution of the images. As evident from Fig. 2b, the distribution of our
dataset varied across the subsets, which is crucial for generalizing LLIE models.

3.2 Our Proposed Method

Our proposed TriFuse integrates a custom vision transformer, wavelet-based con-
ditional diffusion denoising, and an edge-sharpening module detailed as follows:

Discrete Wavelet Transformation (DWT). We use DWT to decompose a
given low-light image Ilow ∈ RH×W×C in various low and high-frequency com-
ponents. The 2D-DWT with Haar wavelets [18] decomposes the image into four
sub-bands: Alow

1 , V low
1 , H low

1 , and Dlow
1 , as illustrated in Fig. 3. The mathemat-

ical formulation for the 2D-DWT is provided in Eq. (1):

{Alow
1 , V low

1 , H low
1 , Dlow

1 } = 2D-DWT(Ilow), (1)

where Alow
1 is the approximation coefficient presenting the low-frequency infor-

mation, and V low
1 , H low

1 , and Dlow
1 are the coefficients presenting the vertical,

horizontal, and diagonal high-frequency information, respectively. Focusing the
diffusion process on these components, especially the average coefficients, Tri-
Fuse enhances the model’s ability to handle global image structures effectively.

TriFuse. TriFuse integrates a transformer, CNN, Encoder, and Decoder block,
involving the diffusion process for predicting noise at each timestamp, form-
ing the cornerstone of our conditional noise generation for diffusion denoising.
This approach leverages the power of transformers to accurately predict and ad-
just noise at each diffusion timestep of denoising diffusion probabilistic models
(DDPM) [20], enhancing the denoising process, which eventually improves LLIE.

In the forward diffusion process in Eq. (2), the input image x0 is progressively
corrupted into a noisy version xT over T steps, governed by a variance schedule
{β1, β2, . . . , βT } as follows:
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Fig. 3: Overview of our TriFuse model, featuring the Conditional Noise Mod-
ule (CNM) and Edge Sharpening Module (ESM) for effective LLIE. The CNM
generates noise, refined through forward and backward passes by the diffusion
process. The ESM sharpens the output image’s edges. The process starts with
predicted noise, undergoes wavelet transformation and denoising within TriFuse,
and results in a visually enhanced image.

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (2)

where Xt is noisy data at timestep t, and βt is the variance schedule.
The reverse diffusion in Eq. (3) involves learning to denoise the noisy image

xT back to a clean image x0 through a series of Gaussian denoising transitions:

pθ(x̂0:T ) = p(x̂T )

T∏
t=1

pθ(x̂t−1 | x̂t), pθ(x̂t−1 | x̂t) = N (x̂t−1;µθ(x̂t, t), σ
2
t I). (3)

Here, µθ is the predicted mean, and σt is the variance, are learned parameters.

Conditional Noise Module (CNM) for Diffusion Denoising. The CNM
is designed to predict the noise ϵt at each timestep t, utilizing a transformer-
based architecture to grasp the intricate patterns in noise and image details. Our
model utilizes self-attention mechanisms to capture long-range dependencies and
contextual information, unlike traditional diffusion models that rely on random
Gaussian noise at each timestep. By conditioning the noise on the input image
and the timestep, our CNM significantly enhances the denoising process.

The CNM architecture begins by encoding the input image into a higher-
dimensional space using convolutional layers, which extract features. These en-
coded features are flattened and processed through a series of transformer blocks

1255



LoLI-Street: Benchmarking Low-Light Image Enhancement and Beyond 7

where the self-attention mechanism enables the model to assess the importance
of different image parts, effectively predicting the noise to be added or removed.
After transforming the features through self-attention and feed-forward layers,
the output is reshaped to the original feature map dimensions and passed through
a decoder, which reconstructs the predicted noise map, guides the diffusion.

The CNM’s ability to model complex dependencies and incorporate contex-
tual information results in superior image restoration, particularly in challenging
low-light conditions. By accurately predicting and controlling the noise at each
diffusion step, the CNM ensures an effective and precise denoising process, pre-
serving fine details and maintaining contextual awareness.

This integration enhances image quality by preserving fine details, contextual
awareness, and providing adaptive denoising. Mathematically, the noise predic-
tion is expressed as ϵθ(x̂t, t) = CNM(X̂T ). After integrating our custom CNM
with the process shown in Eq. (3), it can be expressed as Eq. (4) as follows:

x̂t−1 =
1√
αt

(
xt −

1− αt√
1− ᾱt

CNM(X̂T )

)
+ σtη (4)

where αt and ᾱt are predefined noise schedules, and η represents Gaussian noise.
Overall, this novel approach ensures that the denoising process is both effective
and precise by accurately predicting and controlling the noise at each diffusion
step. The integration of the CNM enhances image quality by ensuring that the
noise prediction is conditional on both the image content and the timestep,
leading to superior restoration of image details in low-light conditions.

Edge Sharpening Module (ESM). ESM plays a critical role in enhancing
the sharpness and clarity of edges in the restored images. It focuses on the high-
frequency components obtained from the DWT, ensuring that fine details and
textures are well preserved during the restoration process.

The ESM comprises several sophisticated components designed to handle
high-frequency information efficiently. Depthwise convolutions capture channel-
wise spatial information effectively, ensuring that the model can focus on in-
tricate details without increasing computational complexity. Dilated Residual
Blocks (ϕ) preserve the input’s spatial resolution while capturing multi-scale
features as provided in Eq. (5). Using dilated convolutions allows the network
to have a larger receptive field, which is essential for capturing contextual infor-
mation at multiple scales without losing fine details.

Y = X+ Conv(ReLU(BN(Conv(ReLU(BN(X))))))), (5)

where X denotes the input feature map that enters the Dilated Residual Block,
and Y is the output feature map after processing through the block. Conv,
ReLU, and BN denote convolution, Rectified Linear Unit, and Batch Normal-
ization, respectively. Cross-attention mechanisms are used to align and integrate
contextual information across different directions (vertical, horizontal, and diag-
onal). The cross-attention mechanism is defined in Eq. (6) as follows:

1256



8 Md Tanvir Islam et al.

Aattn = Softmax
(
QK⊤
√
dk

)
V, (6)

where Q = Conv(X), K = Conv(X), V = Conv(X) are the query, key, and value
matrices, and dk is the dimensionality of the key vectors. The ESM processes
the high-frequency components as given in Eq. (7):

ESM(x) = x+ Conv(Concat(ϕHL(xHL), ϕLH(xLH), ϕHH(xHH))), (7)

where xHL, xLH, xHH are the high-frequency components and ϕHL, ϕLH, ϕHH
are the corresponding dilated residual blocks, respectively. By integrating these
components, the ESM enhances the sharpness of edges and preserves the fine
details in the restored images, addressing one of the critical challenges in LLIE.

Overall, our proposed TriFuse model produces high-quality, sharp images by
combining the ESM and CNM modules in the diffusion denoising process, making
it an efficient solution for LLIE and suitable for various real-world applications.

4 Experimental Setup

Datasets. We use the train set of 30k paired images from our LoLI-Street
dataset to train the models and validate the models’ performance on the syn-
thetic validation set of 3k paired images. Furthermore, we evaluate the models
on the real test set of the LoLI-Street dataset, including 1k unpaired images.
We used the well-known LOLv1 and LOLv2 datasets to evaluate the pre-trained
and trained weights of each model and compare the existing models’ performance

Table 2: Quantitative evaluation of the SOTA models on the validation set of
LoLI-Street dataset using the pre-trained weights of each model.

Models RetinexF. [6] RQ-LLIE [34] CUE [62] LLFormer [50] DiffLL [27] PairLIE [15] FourLLIE [48] SCI [38]

Venue ICCV’23 ICCV’23 ICCV’23 AAAI’23 TOG’23 CVPR’23 ACM MM’23 CVPR’22

Metrics Light

PSNR↑ 27.89 28.11 27.66 28.42 28.16 28.17 28.06 27.62
SSIM↑ 0.1900 0.7382 0.9000 0.9274 0.8932 0.8374 0.8363 0.7877
MS-SSIM↑ 0.4200 0.8506 0.9331 0.9497 0.9148 0.8562 0.8196 0.7890
LPIPS↓ 0.4300 0.1637 0.0603 0.0486 0.1069 0.1574 0.1996 0.2415
MSE↓ 110.33 101.30 111.58 94.49 99.48 99.36 101.99 112.51
MAE↓ 93.01 93.01 45.36 86.41 114.12 70.74 87.12 69.35

Moderate

PSNR↑ 27.73 27.88 28.02 27.99 28.16 28.00 27.96 27.81
SSIM↑ 0.0900 0.5145 0.6389 0.9018 0.8709 0.8651 0.5397 0.8737
MS-SSIM↑ 0.3000 0.7552 0.7964 0.9468 0.8914 0.8764 0.8335 0.9083
LPIPS↓ 0.6000 0.2321 0.1606 0.0530 0.1365 0.1294 0.1831 0.1021
MSE↓ 106.87 106.20 103.98 104.02 99.41 103.09 104.14 107.61
MAE↓ 124.52 124.51 85.66 44.76 119.65 101.05 113.81 48.02

Dense

PSNR↑ 27.75 27.87 27.94 28.67 28.56 28.06 28.07 28.16
SSIM↑ 0.0300 0.3498 0.3651 0.9056 0.8744 0.8915 0.8828 0.8758
MS-SSIM↑ 0.2100 0.5987 0.5916 0.9488 0.9322 0.8963 0.8780 0.9633
LPIPS↓ 0.7900 0.2889 0.2971 0.0441 0.0795 0.1016 0.1187 0.0274
MSE↓ 110.89 106.29 104.52 89.01 91.05 101.65 101.52 99.36
MAE↓ 116.85 116.85 111.97 80.34 160.96 144.18 186.56 212.06
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Table 3: Performance comparison of mainstream SOTA models and our proposed
TriFuse on the LoLI-Street validation set using LoLI-Street-trained weights.

Methods RetinexF. [6] RQ-LLIE [34] CUE [62] LLFormer [50] DiffLL [27] PairLIE [15] FourLLIE [48] SCI [38] TriFuse

Venue ICCV’23 ICCV’23 ICCV’23 AAAI’23 TOG’23 CVPR’23 ACM MM’23 CVPR’22 (Ours)

Metrics Light

PSNR↑ 27.92 27.66 28.77 33.40 32.59 28.78 28.06 27.84 32.89
SSIM↑ 0.8767 0.8811 0.6493 0.9648 0.9560 0.9169 0.8363 0.8759 0.9585
MS-SSIM↑ 0.9422 0.9035 0.3177 0.9876 0.9889 0.9372 0.8196 0.9413 0.9899
LPIPS↓ 0.0419 0.1038 0.4194 0.0039 0.0139 0.0625 0.1996 0.0429 0.0107
MSE↓ 106.79 112.01 89.34 30.29 38.55 86.62 101.99 106.87 34.06
MAE↓ 206.09 55.35 125.41 93.59 115.68 84.86 87.12 206.12 107.63

Moderate

PSNR↑ 28.44 27.59 30.58 32.15 31.87 28.42 27.96 28.38 32.15
SSIM↑ 0.6197 0.8829 0.9100 0.9386 0.9352 0.9242 0.8693 0.6192 0.9462
MS-SSIM↑ 0.7819 0.9372 0.9668 0.9837 0.9789 0.9374 0.8336 0.7809 0.9819
LPIPS↓ 0.1563 0.0668 0.0201 0.0061 0.0142 0.0447 0.1831 0.1572 0.0142
MSE↓ 94.78 113.49 57.41 40.14 40.38 93.75 104.14 94.88 43.16
MAE↓ 169.68 44.33 148.72 80.25 138.32 162.81 113.81 169.69 107.29

Dense

PSNR↑ 27.87 29.03 30.58 31.62 31.04 27.66 28.07 27.79 31.67
SSIM↑ 0.3398 0.9167 0.9100 0.9274 0.9165 0.8702 0.8828 0.3394 0.9214
MS-SSIM↑ 0.5621 0.9616 0.9668 0.9738 0.9734 0.9413 0.8780 0.5614 0.9734
LPIPS↓ 0.3037 0.0326 0.0201 0.0131 0.0273 0.0357 0.1188 0.3048 0.0201
MSE↓ 108.02 82.51 57.41 45.39 51.66 111.57 101.52 108.11 45.01
MAE↓ 142.15 107.57 148.72 108.04 123.79 214.17 186.56 142.17 78.88

with our TriFuse model. From LOLv1, we use the validation set, which features
15 paired real low-light images to evaluate the models. Similarly, from LOLv2,
we take the synthetic and real validation subsets of 100 paired images from each
to assess the models. The LSRW dataset features two paired subsets of Huawei
and Nikon camera-captured images, which we combine to get 50 paired images to
evaluate the models’ performance. ExDark and LLVIP unpaired datasets check
the models’ effectiveness under highly dark conditions.

Implementation. We used PyTorch on a server with four NVIDIA RTX 2080
GPUs (24GB each). SOTA models were trained with default settings for fair
comparison. Our TriFuse was trained with a batch size of 12 and a patch size
of 256×256. The initial learning rate of 1 × 10−4 decayed by 0.8 every 5 × 103

iterations. For efficient restoration, the time step T was set to 200, and the
implicit sampling step S was set to 5 for both the training and inference phases.

Evaluation Strategy. We calculated full-reference metrics (PSNR, SSIM, MS-
SSIM, MSE, and MAE) and no-reference metrics (BRISQUE, and NIQE) to
evaluate existing models and our TriFuse model. We assessed SOTA LLIE mod-
els with pre-trained weights on our LoLI-Street dataset to evaluate their quality.
Additionally, we trained these models on our dataset and tested them to deter-
mine its suitability for generalization. Finally, we quantitatively and qualitatively
compared our proposed model with recent SOTA models.
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Table 4: Quantitative comparison of mainstream SOTA models and our TriFuse
on the LoLI-Street real low-light testset using LoLI-Street-trained weights.

Models RetinexF. [6] RQ-LLIE [34] CUE [62] LLFormer [50] DiffLL [27] PairLIE [15] FourLLIE [48] SCI [38] TriFuse

Metrics Pre-trained weights

BRISQUE↓ 54.12 29.76 13.65 12.69 18.54 39.65 15.05 38.05 -NIQE↓ 11.79 12.57 14.36 16.40 12.16 12.28 12.57 12.16

Trained weights

BRISQUE↓ 41.69 29.76 25.97 30.44 30.11 35.25 14.50 30.96 10.32
NIQE↓ 11.83 12.57 12.44 11.84 12.30 11.78 11.89 12.32 10.61

Table 5: Performance comparison between SOTA LLIE models and our proposed
TriFuse testing on the mainstream LLIE datasets.

Dataset Models RetinexF. [6] RQ-LLIE [34] CUE [62] LLFormer [50] DiffLL [27] PairLIE [15] FourLLIE [48] SCI [38] TriFuse
Metrics Full-reference metrics

L
O

L
v1

PSNR↑ 27.89 28.00 27.97 27.77 27.88 27.82 27.93 27.95 28.01
SSIM↑ 0.6299 0.8181 0.8724 0.7778 0.8207 0.7111 0.7074 0.2333 0.8756
MS-SSIM↑ 0.7542 0.8642 0.8562 0.8389 0.8555 0.8313 0.7932 0.4956 0.8578
LPIPS↓ 0.2072 0.1157 0.1418 0.1502 0.1473 0.1448 0.1595 0.4177 0.1410
MSE↓ 106.44 105.14 104.59 109.08 103.02 108.18 105.25 104.42 102.83
MAE↓ 174.08 172.88 176.54 179.50 169.74 179.70 182.58 150.58 145.05

L
O

L
v2

(R
) PSNR↑ 27.82 27.82 28.13 27.72 27.88 27.77 27.62 27.73 27.88

SSIM↑ 0.5650 0.7799 0.8437 0.7670 0.7875 0.7246 0.7473 0.2543 0.8966
MS-SSIM↑ 0.3261 0.8753 0.8951 0.8651 0.8695 0.8612 0.8167 0.5542 0.8823
LPIPS↓ 0.5583 0.0988 0.1057 0.1163 0.1219 0.1021 0.1580 0.3518 0.0888
MSE↓ 107.39 109.26 102.06 110.77 108.32 109.78 112.71 109.94 107.32
MAE↓ 170.48 180.82 174.28 185.34 175.12 199.54 205.84 176.08 170.28

L
O

L
v2

(S
) PSNR↑ 28.02 28.07 28.01 28.03 28.03 28.14 29.61 28.03 28.70

SSIM↑ 0.6511 0.6392 0.6516 0.6759 0.5967 0.8223 0.9623 0.4857 0.8593
MS-SSIM↑ 0.7756 0.7741 0.7905 0.7799 0.7644 0.8623 0.9656 0.7059 0.8236
LPIPS↓ 0.2449 0.2470 0.2397 0.2374 0.2567 0.1697 0.0403 0.2969 0.0727
MSE↓ 103.06 102.03 103.26 103.01 102.85 101.06 76.78 103.17 98.48
MAE↓ 158.50 164.45 159.11 156.94 159.62 167.85 121.24 176.12 175.73

L
S
R
W

PSNR↑ 27.96 28.00 27.93 27.95 27.98 27.94 27.98 27.81 28.03
SSIM↑ 0.6160 0.6590 0.6751 0.6543 0.6099 0.6684 0.7298 0.2938 0.7459
MS-SSIM↑ 0.6832 0.6900 0.6959 0.6958 0.6846 0.7045 0.6970 0.5399 0.6988
LPIPS↓ 0.1873 0.1648 0.1592 0.1685 0.1805 0.1358 0.1748 0.3526 0.1350
MSE↓ 104.56 103.52 102.69 104.77 104.10 105.12 103.77 107.88 100.14
MAE↓ 182.63 176.41 177.46 182.88 172.70 185.33 174.83 172.28 152.92

S
IC

E

PSNR↑ 28.02 27.96 27.97 28.02 27.97 28.34 28.14 27.81 27.92
SSIM↑ 0.8078 0.7681 0.7605 0.8092 0.7530 0.8843 0.8796 0.6582 0.8001
MS-SSIM↑ 0.8396 0.8275 0.8279 0.8397 0.8333 0.8462 0.8739 0.8112 0.8240
LPIPS↓ 0.1537 0.1654 0.1679 0.1519 0.1606 0.1252 0.1082 0.1774 0.1587
MSE↓ 102.89 104.24 104.15 102.85 104.02 96.10 101.22 107.85 102.18
MAE↓ 157.14 163.18 155.44 156.13 161.02 116.67 122.22 183.48 118.72

No-reference metrics

ExDark BRISQUE↓ 22.90 33.56 17.81 16.92 22.19 32.29 18.08 38.95 17.29
NIQE↓ 13.93 15.83 10.40 16.250 13.56 14.93 13.844 14.392 13.47

LLVIP BRISQUE↓ 25.09 26.23 17.81 19.86 18.32 34.99 21.55 23.65 10.32
NIQE↓ 10.66 10.79 17.22 10.62 11.37 10.96 10.64 11.78 11.07

5 Comparative Analysis

We compare our TriFuse with multiple SOTA LLIE methods, including Retinex-
Former [6], RQ-LLIE [34], CUE [62], LLFormer [50], DiffLL [27], PairLIE [15],
FourLLIE [48], and SCI [38], covering transformer and diffusion-based models.
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Table 6: Computational complexity comparison of proposed TriFuse and the
SOTA LLIE models. AIT: Average inference time (↓).

Models RetinexF. RQ-LLIE CUE LLF. DiffLL PairLIE FourLLIE SCI TriFuse (Ours)

Params 1.61M 11.38M 0.25M 24.55M 20.09M 0.34M 0.12M 384 26.48M
FLOPS 15.57G 162.07G 157.32G 39.61G 89.60G 89.38G 1.95G 0.14G 147.03G
AIT 0.009s 0.074s 0.104s 0.267s 1.850s 1.4304s 0.120s 0.001s 0.173s

Quantitative Analysis. We present a quantitative analysis of SOTA models
on the LoLI-Street and existing datasets. Table 2 shows the performance of these
models against the validation set using pre-trained weights with full-reference
metrics under various lighting conditions. LLFormer performs robustly across all
subsets, achieving the highest PSNR of 28.67 for the dense variety of our valida-
tion set. Table 3 evaluates SOTA models on the LoLI-Street validation set using
LoLI-Street-trained weights, showing significant performance improvements and
model generalization. Our proposed TriFuse achieves the highest scores in vari-
ous metrics, demonstrating its robustness and effectiveness in LLIE tasks.

The performance of the SOTA models is presented in Table 4 on the real
low-light test set of LoLI-Street, using both pre-trained and trained weights for
each model. The evaluation metrics include BRISQUE and NIQE. Our proposed
model, TriFuse, stands out with the lowest BRISQUE and NIQE scores, indi-
cating superior visual quality and naturalness of the enhanced images compared
to the existing models. Table 5 provides a performance comparison of the SOTA
models and our proposed TriFuse on existing datasets (LOLv1, LOLv2 (real),
LOLv2 (synthetic), LSRW, SICE, ExDark, and LLVIP). As shown, we observed
that our model consistently achieved either the best or second-best performance
across multiple datasets, as indicated by both full-reference and no-reference
metrics. This further validates the effectiveness of our model and emphasizes
its ability to generalize well from the training dataset. Table 6 summarizes the

Table 7: Object detection performance using YOLOV10 on LoLI-Street after
LLIE using different models. MC: Motorcycle, TL: Traffic light, SS: Stop sign.

Models RetinexF. [6] RQ-LLIE [34] CUE [62] LLF. [50] DiffLL [27] PairLIE [15] FourLLIE [48] SCI [38] TriFuse

Metrics Average of mAP for various IoU thresholds for object detection after enhancing images using each model

mAP(0.5) ↑ 0.548 0.602 0.586 0.623 0.650 0.548 0.483 0.650 0.753
mAP(0.5-0.9) ↑ 0.476 0.521 0.510 0.562 0.568 0.476 0.388 0.653 0.692

mAP for varying IoU(0.5-0.9) values detecting some important classes after enhancing images using each model

Person 0.762 0.723 0.736 0.779 0.749 0.737 0.586 0.760 0.791
Bicycle 0.600 0.508 0.584 0.601 0.570 0.541 0.405 0.660 0.650
Car 0.876 0.854 0.858 0.906 0.870 0.858 0.782 0.884 0.891
MC 0.641 0.618 0.646 0.648 0.649 0.642 0.540 0.743 0.750
Bus 0.793 0.722 0.716 0.797 0.825 0.714 0.616 0.820 0.851
TL 0.666 0.580 0.642 0.695 0.621 0.596 0.356 0.652 0.852
SS 0.447 0.343 0.458 0.518 0.635 0.496 0.206 0.821 0.785
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computational complexity, demonstrating our model’s balance between efficiency
and performance with competitive FLOPS and inference time metrics. Overall,
the quantitative analysis establishes that our proposed TriFuse model consis-
tently outperforms existing SOTA models across various metrics and datasets,
proving its effectiveness and robustness for LLIE tasks.

Moreover, Table 7 presents object detection results on the validation set
where TriFuse achieves the highest mAP(0.5) and mAP(0.5-0.9) values, where
0.5 indicates the Intersection over Union (IoU) threshold and 0.5-0.9 represents
the average mAP over multiple IoU thresholds.

Fig. 4: Enhanced images by models picking a random image from the (a) syn-
thetic validation set and (b) real low-light test set of our LoLI-Street dataset.

Qualitative Analysis. In addition to the quantitative analysis, we conducted
a qualitative evaluation of the enhanced images produced by different models
on various datasets. Figure 4 showcases enhanced images from the LoLI-Street
dataset’s synthetic validation set and real low-light test set, demonstrating that
our model consistently provides clearer and more detailed visual enhancements,
especially in shadowed and low-light areas. Figure 5 presents enhanced images
from the LOLv1 and LOLv2 (both real and synthetic), LSRW, and SICE valida-
tion sets, where our model excels in color fidelity and enhancing image details,
as evident in the close-up views, revealing well-maintained texture details and
reduced artifacts. Overall, the comparison highlights TriFuse’s robustness and
superior performance in enhancing low-light images across multiple datasets.
Also, Fig. 6 illustrates the results of YOLOv10 inference on a randomly selected
image from the LoLI-Street test set after enhancement by different models. Our
model improves visual quality and enhances object detection accuracy, detecting
additional objects such as traffic lights and cars with faster inference times com-
pared to other approaches. This qualitative analysis demonstrates our model’s
effectiveness in enhancing low-light images, significantly improving visual quality
and object detection performance in real-world conditions.
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Fig. 5: Enhanced images by SOTA models and our proposed TriFuse picking a
random image from the validation sets of mainstream LLIE datasets.

Fig. 6: The outcome of YOLOV10 inference on a sample RLLT image of LoLI-
Street dataset after enhancement. TL: Traffic light, IT: Inference time (↓).

Ablation Study. We perform a set of experiments as an ablation study with
various combinations of components as presented in Table 8. For the wavelet
transformation scale, we compared the default setting k(1) with k(2) and k(3).
The results demonstrate that the ESM+ CNM+ k(1)+ S(5) configuration achieves
superior BRISQUE and NIQE scores of 10.32 and 10.61, respectively, on the
RLLT dataset, indicating enhanced visual quality compared to other settings.
Evaluating the importance of ESM and CNM, comparisons with configura-
tions excluding these components (w/o-ESM and w/o-CNM) highlight the su-
perior performance of the default TriFuse setup. Analysis of different sampling
steps (S(5), S(10), S(15)) reveals that increasing to S(15) enhances performance,
achieving the highest PSNR of 33.37 and SSIM of 0.9470 on the validation set.
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Nevertheless, S(5) maintains competitive performance with superior computa-
tional efficiency and clarity in real low-light conditions, achieving the lowest
BRISQUE (10.32) and NIQE (10.61) scores on the RLLT among all.

Table 8: Ablation studies performed on TriFuse model with varying wavelet pa-
rameter, component, and diffusion sampling step. The underlined TriFuse rep-
resents the default setting (ESM+ CNM+ k(1)+ S(5)) of our model.

Dataset Metrics Wavlet Scale Components Sampling Steps
k(2) k(3) w/o-ESM w/o-CNM TriFuse S(10) S(15)

RLLT BRISQUE↓ 10.87 11.69 11.03 11.75 10.32 10.65 11.14
NIQE↓ 11.25 11.85 11.58 12.01 10.61 10.95 11.52

Synthetic PSNR↑ 31.02 31.63 31.74 30.87 32.24 32.88 33.37
Validation SSIM↑ 0.9369 0.9312 0.9364 0.9227 0.9420 0.9411 0.9470

6 Conclusion

Identifying the growing need for LLIE solutions, we introduced LoLI-Street, a
novel benchmark dataset featuring street scenes under diverse lighting conditions
designed to enhance images and improve object detection in low-light environ-
ments, which is crucial for autonomous systems. Our proposed LLIE model,
TriFuse, incorporates a unique wavelet-based CNM approach to generate ac-
curate input noise in the diffusion denoising process. This results in effective
denoising for real-world LLIE in lower diffusion sampling steps. Comprehensive
evaluations demonstrate TriFuse’s superiority over existing SOTA models across
multiple benchmarks, achieving top performance in visual quality and object
detection under low-light conditions based on various metrics. Future directions
include optimizing TriFuse for real-time applications and adapting it to diverse
adverse scenarios [29, 25] employing unsupervised techniques [30].
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