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Abstract. In recent years, there has been a increasing demand for
tracking protein molecules with the focus on immune system researches.
However, machine learning-based single-particle tracking (SPT) faces
the challenges in accuracy due to the rapid and random movement of
molecules as well as detection errors. To address these issues, we use
frame interpolation to pseudo-decrease the speed of movement and per-
form two-stage matching to achieve stable tracking. We also use an
optimization algorithm that connects short tracks. This approach has
achieved higher performance on the CD47 dataset and the PTC dataset
than conventional baselines.

Keywords: single-particle tracking · multi-object tracking · optimiza-
tion algorithm

1 Introduction

Single-Particle Tracking (SPT) is crucial for analyzing molecular trajectories by
tracking multiple particles within microscope images. Traditional methods often
detect molecular positions using techniques like Otsu’s binarization [20], followed
by tracking algorithms based on particle properties. However, these conventional
methods su!er significantly from decreased accuracy due to variations in obser-
vation equipment and particle behavior, often necessitating manual corrections
for analysis.

Fig. 1 illustrates the appearance of observed particles, which manifest as
bright spots with intensities that fluctuate randomly over time. Additionally, due
to the high density of protein molecules (100-500 molecules per video), occlusions
where objects overlap and frequent tracking ID switching occur.

These detection errors often happen in a single frame, with fewer errors span-
ning multiple frames. Additionally, protein molecules move almost randomly,
making their motion unpredictable and tracking challenging. In our experiments,
we used a protein molecule called CD47, which moves approximately 7-15 pixels
within one frame, presenting a considerable tracking challenge due to its rapid
movement.

This ACCV 2024 paper, provided here by the Computer Vision Foundation, is the author-created version.
The content of this paper is identical to the content of the officially published ACCV 2024

LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/accv
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2 S.Kamiya et al.

Fig. 1: Appearance
of a protein molecule

Fig. 2: Particle detection using UNet involves generating a
probability map where the model is trained to predict the
positions of object centers where the probability is highest.
By identifying local maxima in the probability map, cells or
molecules can be detected.

On the other hand, Machine Learning-based Multi-Object Tracking (MOT)
has shown success in human and vehicle tracking. Machine learning-based track-
ing typically employs neural network architectures such as Convolutional Neural
Networks (CNN) [15] and Transformers [24]. CNNs excel at extracting local
information from input images using convolutions, enabling detailed position
acquisition [12]. The prevailing method is "tracking by detection," where CNNs
detect object positions, followed by algorithms for object tracking. Object de-
tection involves enclosing features obtained from CNNs into various shapes of
bounding boxes (bbox) and compressing them into a single feature vector using
region of interest (RoI) pooling [10]. The confidence in the presence of an object
within the enclosed area and precise position inference are then determined. This
method enables the simultaneous detection of multiple objects and fast inference.
Subsequently, common methods [3, 8, 26, 28] for tracking involve techniques like
Kalman filters [13] for motion prediction. However, existing tracking methods
struggle with detecting small objects and tracking rapidly moving or irregularly
moving objects, leading to decrease the accuracy, especially when dealing with
small bright spots like protein molecules that move irregularly.

This paper proposes three methods to address the challenges of tracking pro-
tein molecules. The first method employs frame interpolation to detect molecules
between frames, artificially reducing their movement speed to simplify tracking.
The second method uses a two-stage matching process to correct single-frame
detection errors. Finally, an optimization algorithm is employed to connect short-
term tracks and refine the entire tracking process. The first two techniques en-
hance tracking accuracy at the local time scale, while the optimization algorithm
allows for the correction of tracking errors at the global time scale.

We conducted experiments on CD47 protein molecule dataset and PTC
dataset, comparing our approach against three conventional methods. Across
all staining methods (GFP, TMR, SF650), our approach achieved higher accu-
racy compared to conventional methods. Furthermore, on the PTC dataset with
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Tracking Correction Method for Protein Molecules Movement 3

100 fluorescent spots, the IDF1 score improved from 75.4% to 92.7%. In the case
of 500 fluorescent spots, the IDF1 score increased from 58.7% to 75.8%.

Contribution of this paper are as follows.

– In the detection using 3D UNet as described in Sec. 3.1, the training en-
hancements illustrated in Fig. 3 enable us to obtain detection results for
non-existent frames. This method allows end-to-end detection and frame
interpolation without additional annotations.

– We propose a two-stage matching based on frame di!erences in Sec. 3.2. This
method primarily aims to address temporary detection errors.

– We propose a tracklet association algorithm in Sec. 3.3. Conventional meth-
ods only considered object splitting events and ignored fusion events. Our
approach introduces fusion events by assuming that overlapping objects due
to occlusion are in a pseudo-fusion state. Additionally, we propose an opti-
mized process score suitable for protein movements.

2 Related Works

Recently, anchor-free object detection methods that do not use RoI pooling have
been proposed. FCOS [23], YOLOX [9], and CenterNet [29] are representative
anchor-free methods that achieve detection by predicting the size of bounding
boxes and distinguishing between background and objects in all regions.

However, it is known that bbox-based object detection models have lower ac-
curacy in detecting small objects, making them unsuitable for very small objects
like protein molecules [1, 27]. To address this, Nishimura et al. [19] successfully
developed a Cell Detection model using UNet [21], which can obtain detailed po-
sition information. In this method, UNet is trained to output probability maps
of objects, enabling anchor-free detection. The prediction flow is illustrated in
Fig. 2. In this paper, we further improved detection accuracy by incorporating
temporal information into the method, achieving enhanced tracking accuracy
through temporal sequence interpolation.

In recent years, the research of Multi Object Tracking (MOT) has been ac-
tively pursued. Tracking-by-detection algorithms, which utilize detections and
perform tracking using Kalman filters [13], have gained popularity. Well-known
examples include SORT [3], DeepSORT [26], and StrongSORT [8]. Recently,
ByteTrack [28], an improved version of SORT, was proposed as a method ca-
pable of high-speed and high-precision tracking. ByteTrack employs a two-stage
matching approach based on detection scores to e"ciently utilize the detected
objects, achieving high accuracy in human tracking. However, ByteTrack re-
lies on linear prediction using Kalman filters, making it unsuitable for tracking
protein molecules with nonlinear motion.

Recently, end-to-end methods using Transformers [24] have gained attention
in MOT, with various approaches like TrackFormer [18] and TransTrack [22]
being proposed. Transformer-based methods utilize neural networks to perform
tracking using surrounding object information and positional data, allowing for
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4 S.Kamiya et al.

capturing nonlinear motion. However, these methods often su!er from the com-
pression of spatial features in the feature maps, making it di"cult to obtain
precise positional information and e!ectively track small objects.

ByteTrack and TransTrack focus on real-time MOT, prioritizing inference
speed and the ability to process data in real-time without correcting past tracking
results. Recently, tracking has been increasingly employed for data analysis in
research, leading to a growing demand for tracking methods that prioritize the
accuracy over inference speed. SUSHI [5] achieved high accuracy by performing
both short-term and long-term tracking using past tracking data. Additionally,
Bise et al. [4] proposed a method to generate improved tracks by connecting
track fragments after completing tracking for the entire video. These methods
are known for their robustness against occlusions and tracking interruptions
caused by detection errors.

Cell tracking methods, such as those employing graph theory by Ben-Haim [2]
and the Moving Point Model (MPM) [11], have been proposed. However, cell
tracking di!ers significantly from tracking protein molecules. Cells have dis-
tinct shapes, sizes, and intensities, making individual identification possible.
Conversely, protein molecules are observed as bright spots with limited individ-
ual di!erences, making their tracking challenging. Moreover, protein molecules
exhibit irregular motion, making movement prediction di"cult and causing de-
creased accuracy in methods like MPM that rely on predictable trajectories.

In this paper, we propose a tracking method with three key components:
particle detection using frame interpolation, a two-stage tracking process be-
tween real frames and interpolated frames, and a global tracking algorithm that
connects short-term tracks. The first two components enable robust tracking at
local timescales, allowing the method to accommodate rapid protein movements.
Furthermore, the third component corrects tracking errors and produces reliable
tracking outputs through global optimization across the entire video sequence.

3 Proposed Method

Fig. 3 shows the overview of our method. The method consists of three main
components: detection using frame interpolation described in Sec. 3.1, a two-
stage matching method detailed in Sec. 3.2, and an optimization technique to
connect short-term tracks and correct the overall tracking results. The global
tracking algorithm is described in Sec. 3.3.

3.1 Detection Using Frame Interpolation

The objective of the proposed method is to reduce the movement distance be-
tween frames using frame interpolation, thereby simplifying the tracking process.
Instead of a standard 2D UNet, the model employs a 3D UNet [7]. Utilizing a
3D UNet allows for capturing temporal information in video sequences, thus
improving detection accuracy. The detection method is based on the approach
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Fig. 3: Overview of our method: Firstly, we generate detection maps for 2N frames
using a 3D UNet [7], applied to N frames of video data for molecular detection. Next,
we employ a two-stage matching process for each frame using the expanded detections.
Finally, we apply global optimization to rectify short-term tracking errors and derive
the tracking results.

Fig. 4: Training and inference with 3D UNet: The training data consists of video
sequences captured at 30 frames per second (fps). During training, video sequences at
15 fps is fed into the model and the model learns to output detection results at 30 fps.
During inference, a video captured at 30 fps is fed into the model, which then outputs
detection results at 60 fps for tracking purposes.

proposed by Nishimura et al. [19], with adjustments made to facilitate the de-
tection of maximal positions. In conventional methods, there was a problem of
detecting all maximal positions when multiple local maxima existed for the same
molecule, leading to false detections. However, the proposed method determines
non-overlapping regions when detecting maximal positions, and it controls the
detection process so that only one object is detected in each region.

Fig. 4 illustrates the overview of training and inference with the 3D UNet. A
video of N frames is fed into the 3D UNet, which is trained to output particle
detection results for 2N frames. To interpolate the video from N frames to 2N
frames, convolutional processing is used for frame interpolation. The 3D UNet
is trained to output high confidence scores at the central positions of molecules.
During inference, the positions of maximal confidence correspond to the molec-
ular positions. Since the video contains molecules with various velocities, the
trained model becomes robust to di!erent molecular speeds. Consequently, detec-
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Fig. 5: Two-stage matching algorithm

tion at di!erent frame rates during inference does not pose a problem. Therefore,
training can use video data with similar frame rates to those used in inference,
eliminating the need to create separate data for training purposes.

3.2 Two-stage Matching Based on Frame Di!erence

The purpose of the two-stage matching algorithm is to mitigate tracking inter-
ruptions caused by detection errors. Inspired by ByteTrack [28], our two-stage
matching method is designed to ensure stability and handle detection errors ef-
fectively. While ByteTrack divides tracking into two stages based on detection
scores, our proposed method divides the matching process into two stages based
on frame di!erences.

The tracking algorithm of the proposed method is illustrated in Fig. 5. It
demonstrates the process of detecting and tracking objects for frames 1, 1.5,
and 2 using the approach described in Sec. 3.1. Matching is performed using the
Hungarian algorithm [16] for one-to-one matching, seeking pairs that minimize
the distance between objects.

In the initial matching stage, matching is performed between frames 1 and
1.5, and between frames 1.5 and 2. For unmatched objects, tracking is conducted
between frames 1 and 2. This approach can utilize pseudo-temporal information.
Additionally, it is known that object motion can be approximated as linear over
small time intervals, allowing for the consideration of simple linear movements
even for randomly moving objects like protein molecules [3]. Objects that can-
not be tracked in the 0.5 frame di!erence matching are likely due to detection
errors. Therefore, 1 frame di!erence matching is employed to prevent tracking
interruptions and generate long-term tracks. For tracks matched with 1 frame
di!erence, where there are no detections in between, spline interpolation [17] is
utilized to generate intermediate detections and correct the tracking.

3.3 Global Tracking Algorithm

The global tracking algorithm aims to consider all short-term tracking results and
optimally connect them to perform long-term tracking. For overall correction,
our method is based on the approach proposed in [4], as illustrated in 6. In
this method, short-term tracks have start and end points, and they are either
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Fig. 6: Global tracking algorithm

connected with other tracks or left disconnected to generate longer tracks. This
approach converts these connection decisions into a linear optimization problem
to produce the optimal tracking results.

The conventional method [4] only handles cell division and does not address
fusion events. In the case of small bright spots like protein molecules, they are
observed to pseudo-fuse due to occlusion. Thus, the conventional method does
not account for these pseudo-fusions caused by occlusion. Additionally, in the
conventional method, optimization is performed based on the objects detected
initially in the sequence. Consequently, if the initial detection fails, the entire
tracking process fails, leading to instability. Therefore, our proposed method
addresses fusion events and introduces an optimization technique that evenly
considers all tracks, including fusion events.

In the existing method [4], a tree structure is created with the detections from
the initial frame as the starting points. Each track is then optimized within its
respective tree structure to ensure no overlaps occur between tracks. In contrast,
our proposed method does not create a tree structure; instead, it optimizes all
tracks uniformly.

The optimization method is defined by the process score vector p → RNp , the
process matrix C → 0, 1Np→2NT , and the selection vector x → 0, 1Np as

max
x

p
T
x s.t. C

T
x = [1]2NT , (1)

where Np and NT respectively represent the number of processes and the total
number of tracks. The selection vector x is defined such that its elements are 0
when a process is not selected and 1 when it is selected. There are six types of
processes for each process p: track appearance, track continuation, track split-
ting, track merging, track disappearance, and track discard, where the last one
indicates unused tracks.

The process matrix and scoring method are illustrated in Fig. 7. The left
side depicts a scenario with four tracks, and the resulting process matrix from
applying six processes is shown on the left, while the method for determining
process scores is presented on the right. For example, to represent the process
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Fig. 7: Process matrix and score definition

of track 1 appearing in the process matrix, the left side of the matrix contains
the endpoint numbers of the tracks, while the right side represents the starting
point numbers. The track appearance process, where a track’s starting point is
not connected to any endpoint, results in the first column of the process matrix
being set to 1 for track 1, as its endpoint is not connected. Similarly, the process
matrix for track 2’s disappearance has its endpoint unconnected, leading to the
second column being set to 1 in the first half, and all zeros in the second half. This
representation allows each process to be expressed as a column in the matrix.

Additionally, appearances and disappearances occur as molecules move o!-
screen, with the likelihood of these events increasing as molecules approach the
screen’s edge. Therefore, given the positions of a track’s start and end points as
x and y, the appearance and disappearance scores pinit and pend are defined as
follows:

dedge(x, y) = min(x, y,W ↑ x,H ↑ y) (2)

pinit, pend = max(exp(↑dedge(x, y)

ωinit
), 0.05) (3)

where ωinit represents the temperature parameter, and H and W denote the
dimensions of the input image. The function dedge(·) indicates the shortest dis-
tance from the given coordinate to the screen edge. This approach allows for
tracking while considering objects likely to appear or disappear at the screen
edge. However, in the case of protein molecules, while they often appear or dis-
appear from the screen’s edge, sometimes the activation of a luminous point may
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cause appearances or disappearances from the center of the screen. Therefore, in
the equations above, high scores are assigned to the screen edges, while smaller
values are given to the center to account for these cases.

When connecting short-term tracks, linking the ending points of one track to
the starting points of another is necessary. For instance, when connecting track 1
and track 2 as shown in Fig. 7, the first column is set to 1 for track 1’s endpoint,
and the second column is set to 1 for track 2’s starting point. Additionally, the
connection score is determined based on the distance between the ending point
of one track and the starting point of the next, such that smaller distances result
in higher connection scores pcon.

pcon = exp(↑d(xi, yi, xj , yj)

dmax
) (4)

where d(·) represents the Euclidean distance between two coordinates, dmax is
the maximum displacement of molecules obtained from the training data, and
xi, yi denote the xy coordinates of the i-th track’s endpoint, while xj , yj represent
the starting point of the j-th track. Evaluation of the distance between tracks
helps prevent unnatural connections between them.

Moreover, there are two starting points to link in track splitting. For example,
if track 1 splits into tracks 2 and 4 as shown in Fig. 7, the first column is set
to 1 for track 1’s endpoint, and the second and fourth columns are set to 1
for the starting points of tracks 2 and 4, respectively. Similarly in the process
of merging, since there are two endpoints to connect to one starting point, the
process matrix resembles the one shown in Fig. 7. The scores for splitting and
merging, pdiv and pcom are evaluated based on the distances between the tracks,
similar to the connection score.

pdiv, pcom = exp(↑d(xi, yi, xj , yj)

dmax
) + exp(↑d(xi, yi, xk, yk)

dmax
) (5)

In the case of track disposal, we require a process matrix indicating "unused".
However, if all elements in the process matrix are set to 0, it would violate the
constraint C

T
x = [1]2NT , indicating that no selections are made. Therefore,

when track 1 is discarded for instance, a process matrix is defined to link track
1’s starting point and endpoint as shown in Fig. 7. The constraint given by
Eq. (1) ensures that once a starting or ending point is used it cannot be reused.
Thus, by defining a process matrix that makes it impossible to use both the
starting and ending points of a track simultaneously, track disposal is e!ectively
represented.

Additionally, the disposal score pdis allows for the evaluation of tracks based
on the length of consecutive frames, helping to determine whether a track is
noise-derived or not [25]. To achieve these objectives, pdis is designed to inversely
correlate with the track’s consecutive frame length. Specifically, shorter tracks
are assigned higher disposal probabilities, as they are more likely to represent
noise or detection errors. This relationship is mathematically expressed as:

pdis = exp(↑ l

ωdis
) (6)
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(a) GFP (b) TMR (c) SF650

Fig. 8: CD47 dataset

(a) vesicle (b) receptor

Fig. 9: PTC dataset

where ωdis is the temperature parameter and l denotes the number of consecutive
frames for a track.

The process matrix and scores are determined as described, with the results
adapted for each individual track depicted in Fig. 6. This figure illustrates a
subset of processes applied to a given set of tracks, visible on the left side. The
process matrix and scores are calculated using the previously outlined methods,
and the selection vector x optimizes process selection to maximize the overall
score. A constraint is imposed on the selection vector x, ensuring that the sum of
selected processes’ column-wise totals in the process matrix equals 1. In Fig. 6,
orange columns summing to 1 represent this constraint, indicating that each
starting or ending point can be used only once. Consequently, the number of 1s
in the rows of the process matrix becomes a critical factor. Processes consuming
multiple starting and ending points, such as splits and mergers, inherently receive
lower scores relative to the number of points they consume. To compensate for
this, pdiv and pcom in Eq. (5) are calibrated to yield higher scores compared to
other processes.

4 Experiments

4.1 Setting

Datasets. In our experiments, we utilize simulated videos of CD47 protein
molecule movement and simulated videos of vesicles and receptors from the Par-
ticle Tracking Challenge (PTC2012) [6]. This approach is necessitated by the
di"culty in assigning ground truth to real protein molecule videos. Fig. 8 il-
lustrates the CD47 dataset. This dataset allow for the adjustment of particle
density and staining methods, including GFP (Fig. 8a), TMR (Fig. 8b), and
SF650 (Fig. 8c). CD47 exhibits alternating periods of random movement and
attachment to other protein molecules, resulting in temporal variations in the
intensity of fluorescent spots. Additionally, protein molecules occasionally be-
come completely invisible for approximately one frame, presenting significant
challenges for tracking algorithms.

Fig. 9 provides the overview of the PTC dataset. Vesicles (Fig. 9a) exhibit
random movement similar to protein molecules but with reduced mobility, and
their fluorescent spots appear smaller than those in the CD47 dataset. Receptors
(Fig. 9b) move linearly, but they are even smaller than vesicles, presenting greater
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challenges for detection. The di"culty of tracking varies depending on the density
of fluorescent spots in the image, with higher densities generally increasing the
complexity of the tracking task.

For both CD47 and PTC2012 videos, the Signal-to-Noise Ratio (SNR) can
be adjusted, representing the ratio of fluorescent spot intensity to noise inten-
sity. In PTC2012, the SNR is fixed at 7 for all experiments, in accordance with
the original PTC2012 paper. However, for the CD47 dataset, the SNR varies
depending on the staining method employed. We utilize three staining methods:
GFP, TMR, and SF650. GFP staining (Fig. 8a) results in a low SNR, making
fluorescent spot distinction challenging, while SF650 (Fig. 8c) staining facilitates
easier spot identification. The SNR of TMR (Fig. 8b) falls approximately mid-
way between GFP and SF650. We train and evaluate models using videos created
with each of these staining methods. For the ablation study, we utilize the stan-
dard CD47 dataset with GFP staining, which represents the most challenging
dataset.

Implementation details. Our experiments involve tracking using images con-
taining either 100 or 300 spots. Each video consists of 100 frames with an image
size of 512x512 pixels. We prepare five sets of videos, each containing either 100
or 300 spots. Three sets of 300-spot videos are used as training data. One set of
100-spot videos serves as validation data, while the remaining sets (both 100 and
300-spot videos) are used for evaluation. We employ 5-fold cross-validation to
compare the accuracy of each method. Training is conducted for 200 epochs us-
ing Cosine annealing and Adam optimization. For inference, ωinit and ωdis are set
to 3 and 1, respectively. Our comparative analysis includes: TrackFormer [18], a
Transformer-based tracking model, MPM [11], a machine learning model for Cell
Tracking, and PTGT [14], which enables long-term tracking using Transformer
and tracking algorithms.

4.2 Comparisons with Other Association Methods

Tab. 1 presents the tracking accuracy of each method for 100 and 300 tracked
objects. IDF1, IDP, and IDR represent ID F1 score, ID precision, and ID recall,
respectively. "ALL" denotes the average accuracy across all staining methods.
The proposed method achieved superior accuracy compared to other methods
across all staining methods. Tracking accuracy significantly improved as the
staining methods became more favorable for detection. This improvement is
attributed to easier detection, which facilitates better frame-to-frame correspon-
dence, thus reducing pseudo motion with frame interpolation. Tracking becomes
notably challenging with 300 objects, resulting in a higher number of ID switches.
However, the proposed method exhibited the lowest ID switch rate and achieved
high overall accuracy. PTGT also shows a tendency towards lower ID switches,
indicating the importance of mechanisms for correcting tracking interruptions
in protein tracking scenarios. Tab. 1 also demonstrates the detection accuracy
for 300 objects. F1, Pr, and Re represent detection F1 score, precision, and
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Table 1: Comparison of tracking and detection accuracy on CD47 dataset.

Num of objects 100 300
Staning Method IDF1 IDP IDR IDsw IDF1 IDP IDR IDsw F1 Pr Re

GFP

TrackFormer 22.50% 19.29% 27.20% 1095 12.76% 10.00% 17.63% 6240 66.73% 52.29% 92.20%
MPM 43.35% 44.47% 42.28% 557 29.64% 33.34% 26.68% 2718 86.49% 97.20% 77.90%
PTGT 65.46% 51.22% 90.71% 71 46.14% 47.19% 45.14% 462 92.90% 98.43% 87.97%
ours 69.55% 57.36% 92.84% 78 50.22% 55.35% 45.96% 415 92.27% 99.73% 85.84%

TMR

TrackFormer 25.75% 23.97% 28.01% 911 12.69% 9.84% 17.87% 6298 65.78% 51.00% 92.66%
MPM 59.88% 62.18% 57.75% 336 33.07% 37.36% 29.67% 2554 87.62% 98.97% 78.61%
PTGT 66.53% 52.49% 91.88% 72 46.50% 48.72% 44.48% 466 93.22% 98.59% 88.41%
ours 70.85% 57.66% 93.45% 81 56.31% 59.32% 55.48% 389 92.67% 99.59% 86.64%

SF650

TrackFormer 12.42% 8.97% 20.16% 1916 10.08% 7.40% 15.77% 7036 60.51% 44.44% 94.76%
MPM 55.24% 57.27% 53.36% 372 31.19% 35.49% 27.82% 2582 86.76% 98.70% 77.41%
PTGT 64.19% 49.55% 91.74% 65 46.17% 48.33% 44.20% 432 92.81% 98.59% 87.67%
ours 67.82% 56.12% 94.44% 72 63.19% 66.33% 60.34% 378 94.97% 99.69% 90.68%

ALL

TrackFormer 20.82% 20.90% 23.26% 1054 11.84% 9.08% 17.09% 6525 64.34% 49.24% 93.21%
MPM 42.56% 43.48% 41.95% 782 31.30% 35.40% 28.06% 2618 86.96% 98.29% 77.97%
PTGT 61.24% 47.01% 89.09% 69 46.27% 48.08% 44.61% 453 92.98% 98.54% 88.02%
ours 69.41% 57.05% 93.58% 77 56.57% 60.33% 53.93% 394 93.30% 99.67% 87.72%

Table 2: Comparison of tracking accuracy on PTC dataset.

Num of objects 100 500
Molecule Method IDF1 IDP IDR IDsw IDF1 IDP IDR IDsw

RECEPTOR

TrackFormer 40.14% 34.90% 47.31% 494 42.26% 37.44% 48.53% 2336
MPM 67.13% 69.04% 65.31% 442 60.64% 66.29% 55.87% 1571
PTGT 71.92% 68.46% 75.98% 33 57.12% 44.24% 80.58% 309
ours 93.84% 96.50% 91.33% 38 76.83% 81.21% 72.99% 862

VESICLE

TrackFormer 37.80% 29.42% 52.88% 1207 35.12% 28.60% 45.49% 4655
MPM 65.64% 68.15% 63.32% 517 55.91% 62.51% 50.57% 2291
PTGT 78.87% 81.29% 76.59% 29 60.19% 55.41% 65.89% 195
ours 91.57% 94.37% 88.94% 70 74.68% 81.36% 69.01% 1307

ALL

TrackFormer 38.97% 32.16% 50.09% 851 38.69% 33.02% 47.01% 3496
MPM 66.39% 68.60% 64.32% 480 58.27% 64.40% 53.22% 1931
PTGT 75.39% 74.88% 76.28% 31 58.65% 49.82% 73.24% 252
ours 92.71% 95.43% 90.13% 54 75.75% 81.28% 71.00% 1085

recall, respectively. MPM, PTGT, and the proposed method, employing UNet
models for detection, exhibit remarkably high detection accuracy compared to
TrackFormer, which does not use UNet. Despite both PTGT and the proposed
method utilizing 3D UNet, the proposed method outperforms PTGT in detection
accuracy. This is attributed to the consideration of finer temporal information,
usually overlooked, thanks to frame interpolation. While the di!erence in overall
detection accuracy is less than 1%, the 10.30% improvement in overall tracking
accuracy indicates the e!ectiveness of two-stage matching methods and global
tracking algorithms.

Next, we present the accuracy on the PTC dataset. Tab. 2 shows the tracking
accuracy of each method in videos with 100 and 500 fluorescent spots. "RECEP-
TOR" and "VESICLE" represent receptors and vesicles, respectively. Tab. 2 in-
dicates that the proposed method achieved exceptionally high accuracy and can
track almost all particles e!ectively. In the PTC dataset, particles frequently
appear and disappear, leading to numerous short-term tracking instances. Con-
sequently, methods like MPM, which struggle with predicting movements imme-
diately after appearance, and PTGT which sometimes connect tracking to other
particles after disappearance, experience decreased accuracy. The improved ac-
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Table 3: Ablation study by adding proposed methods such as Detection using Frame
Interpolation(DFI), Two-Stage Matching(TSM) and Global Tracking Algorithm(GTA).
We use the CD47 dataset with 300 fluorescent spots stained with GFP.

DFI TSM GTA IDF1 IDPr IDRe
(baseline) 43.76% 49.63% 40.26%

↭ 45.12% 50.47% 42.66%
↭ ↭ 47.46% 52.31% 43.43%

(ours) ↭ ↭ ↭ 50.22% 55.35% 45.96%

Table 4: The decrease in detection ac-
curacy due to frame interpolation.

frame F1 Pr Re
all 92.27% 99.73% 85.84%
real 93.01% 99.74% 87.13%

interpolated 91.21% 99.48% 84.21%

Table 5: The influence in tracking ac-
curacy due to the decreased detection
accuracy.

F1 IDF1 IDP IDR ID_switch
92.27% 50.22% 55.35% 45.96% 415
91.27% 50.18% 55.32% 45.96% 415
90.28% 50.21% 55.41% 45.76% 412
89.26% 49.74% 54.77% 43.86% 432

curacy of the proposed method is attributed to consider the overall tracking
results in order to determine optimal connection methods. With 500 fluorescent
spots, conventional methods like MPM exhibit poor accuracy in vesicles due to
movement prediction, whereas they perform better with receptors. On the other
hand, PTGT excels in vesicles due to its strength in handling random movements
but lags behind MPM in accuracy with receptors. The proposed method demon-
strates high accuracy in both scenarios, indicating resilience to the influence of
object movement types. Objects can be approximated with linear movements
when considering short time intervals [3]. Therefore, the detection method with
frame interpolation can capture objects as simple linear movements, enabling
tracking regardless of the object’s movement pattern.

4.3 Ablation Studies

This section aims to validate the e!ectiveness and validity of our method. The
GFP from the CD47 dataset is used for validation purposes because it is the most
challenging dataset. Tab. 3 shows the changes in accuracy due to the presence
or absence of the proposed method. The baseline employs a 3D UNet for detec-
tion and utilizes Hungarian matching for one-to-one tracking. When tracking is
performed using the frame interpolation detection method, there is an improve-
ment in accuracy by approximately 1.36%. Further enhancements are achieved
by incorporating a two-stage tracking method, resulting in a 2.34% increase
in accuracy. Additionally, an optimization technique for connecting short-term
tracks contributes the most to the accuracy, achieving a 2.76% improvement.
This indicates its significant contribution among the proposed approaches.

Although this paper simplifies tracking by detecting objects in frames that
would not naturally exist through frame interpolation, validation examines whether
the detection accuracy of non-existent frames through frame interpolation has
decreased. Validation method obtains detection results of 30 fps from a video of
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Fig. 10: Histogram of the tracking lengths for both predicted and ground truth data.
The horizontal axis represents the length of the tracks, while the vertical axis indicates
the number of tracks. The blue histogram represents the predicted results while the red
one represents the ground truth data. The prediction results by the proposed method
the best match to the distribution of the ground truth data.

15 fps using the model. Subsequently, the detection accuracy of input frames is
compared with that of the interpolated parts to assess the validity of the method.
Tab. 4 shows the detection accuracy by frame interpolation. The overall accu-
racy represents the combined accuracy of the input and interpolated parts. The
di!erence in accuracy between the input and interpolated parts is approximately
1.8%, raising concerns about the validity of this accuracy reduction.

To assess the validity of the decrease in detection accuracy, Tab. 5 shows the
change in tracking accuracy when detection accuracy is decreased. The detection
accuracy is reduced by 1% by randomly removing overall detection results and
adding noise. In Tab. 5, when detection accuracy drops by about 3%, the tracking
results significantly deteriorate while there is little change in accuracy before
that. This is attributed to the correction of areas not detected by the two-stage
tracking method or the global tracking method, which helps to mitigate the
decrease in accuracy. Therefore, the decrease in detection accuracy due to frame
interpolation has minimal adverse e!ects on tracking results, indicating that
detection via frame interpolation is a valid technique.

Fig. 10 show the histograms of the tracking lengths for both predicted and
ground truth data. The prediction distribution by the proposed method closely
matches the ground truth.

5 Conclusion

We present a tracking method by integrating the detection by frame interpo-
lation, two-stage matching algorithm, and global tracking algorithm. The e!ec-
tiveness is confirmed by the experiments on CD47 and PTC dataset.
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