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Abstract. As recent advances in large-scale Text-to-Image (T2I) dif-
fusion models have yielded remarkable high-quality image generation,
diverse downstream Image-to-Image (I2I) applications have emerged. De-
spite the impressive results achieved by these I2I models, their practical
utility is hampered by their large model size and the computational bur-
den of the iterative denoising process. In this paper, we propose a novel
compression method tailored for diffusion-based I2I models. Based on
the observations that the image conditions of I2I models already provide
rich information on image structures, and that the time steps with a
larger impact tend to be biased, we develop surprisingly simple yet effec-
tive approaches for reducing the model size and latency. We validate the
effectiveness of our method on three representative I2I tasks: Instruct-
Pix2Pix for image editing, StableSR for image restoration, and Con-
trolNet for image-conditional image generation. Our approach achieves
satisfactory output quality with 39.2%, 56.4% and 39.2% reduction in
model footprint, as well as 81.4%, 68.7% and 31.1% decrease in latency
to InstructPix2Pix, StableSR and ControlNet, respectively.

Keywords: Diffusion model compression · Image-to-Image translation

1 Introduction

In the advent of large-scale text-to-image (T2I) diffusion models such as DALL-
E [50], Stable Diffusion [53], and Imagen [56], there has been a dramatic improve-
ment in image generation quality. This achievement has consequently opened up
new opportunities across diverse applications, including image restoration [35,
69], image composition [16, 41, 58], image editing [6, 20, 51, 67, 70], conditional
image synthesis [3, 17, 44, 74, 76–78], panorama generation [5, 80], personalized
generation [55], creature generation [52], and even 3D generation [9, 33, 48,
68]. While these applications employing T2I models demonstrate unprecedented
high-quality results, the extremely large parameter size combined with an itera-
tive denoising process necessitates substantial computational resources, thus lim-
iting their practicality. For instance, typical restoration networks generate images
with fewer than 80 million parameters in a single feedforward pass [7, 8, 71, 72].
Meanwhile, StableSR [69], which utilizes Stable Diffusion [53] for higher-quality
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image restoration, requires approximately 916 million parameters and at least
40 times longer latency, which is an unaffordable trade-off in many cases.

Recently, numerous diffusion model compression approaches have been ac-
tively explored to reduce the memory and computational requirements of dif-
fusion models. These approaches can be roughly categorized into two topics:
reducing the number of denoising iterations [31,37,40,43,57,63,73] and reducing
model footprint [14, 27]. By focusing on the innate characteristics of diffusion
models, these studies have proposed diverse task-agnostic optimization tech-
niques. However, their compression performance remains insufficient for practi-
cal use in downstream tasks, and the potential for more effective compression
methods applicable to I2I tasks has yet to be explored at all.

In this work, we introduce a novel approach to reduce both memory footprint
and latency of diffusion models for downstream Image-to-Image (I2I) applica-
tions. While T2I diffusion models are designed to synthesize images including
both their structures and details from random noise, downstream I2I transla-
tion tasks, such as image restoration, use input images that provide substantial
guidance on the structures of output images. This offers significant potential
for more aggressive compression of diffusion models beyond what existing task-
agnostic methods offer, yet this potential remains unexplored so far. Therefore,
we explore such potential, and present a practical solution for I2I tasks that
provides significant benefits in both latency and memory footprint over existing
task-agnostic techniques while requiring a minimal cost.

Our approach comprises two surprisingly simple but effective components:
depth-skip pruning and time-step optimization for reducing model size and la-
tency, respectively. Regarding depth-skip pruning, we first empirically verify that
coarse layers of the denoising U-Net of a diffusion model, which primarily corre-
sponds to coarse-grained features, contribute less to the output of downstream
I2I operations. Based on this, depth-skip pruning carefully prune less contribut-
ing coarse layers and fine-tune the model to effectively reduce the model size.

The time-step optimization method reduces the latency by searching for a
reduced sequence of time steps of denoising iterations. Specifically, the time-step
optimization method searches for an optimal time-step sequence that produce
high-quality outputs for a given number of time steps. Unfortunately, finding an
optimal time-step sequence is a challenging optimization problem as it involves
integer variables, a nonlinear objective function, and a huge search space. To
overcome this challenge, AutoDiffusion [31] adopts the genetic algorithm, but it
costs a huge amount of search time of a few days, and is prone to local minima.
Xue et al. [75] mathematically derive a highly simplified approximation of the
objective function, which can be optimized efficiently to find an approximate
solution. However, due to the simplicity of the approximation, their approach
tends to find less optimal solutions.

For effective search for an optimal time-step sequence, our approach is based
on the following intuition: depending on the I2I task, the distribution of the time
steps with large impacts tend to be biased towards either the beginning or end
of the iterative diffusion process as will be further discussed in Sec. 3.3. Based
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on this intuition, we propose an extremely simple approach that aggressively
reduces the search space to efficiently find an optimal time-step sequence. Despite
its simplicity, our experiments show that our approach achieves higher-quality
results than previous approaches.

To reduce both memory footprint and latency, we apply depth-skip pruning
and time-step optimization sequentially. Our experiments show that the combi-
nation of the proposed depth-skip pruning and time-step optimization achieves
satisfactory output quality with 60.8% of parameters and 18.6% of latency in
InstructPix2Pix (IP2P) [6], 43.6% of parameters and 31.3% of latency in Sta-
bleSR [69], and 60.8% of parameters and 68.9% of latency in ControlNet [78]
with canny-edge image as a condition input, respectively.

2 Related Work

I2I Downstream Tasks based on T2I Diffusion Models Thanks to the rich
generative power of large-scale T2I models, transferring their generation capabil-
ity to downstream I2I tasks have achieved state-of-the-art performance in various
domains such as image inpainting [53], depth-conditioned generation [53], image
restoration [35, 69], image editing [6], and conditional image synthesis [44, 78].
These downstream methods utilize the entire parameters and the complete de-
noising process, despite the relative simplicity of their tasks compared to the
pure generation task that starts from Gaussian noise without any guidance im-
ages. In this paper, we explore the compression potential of these I2I models,
taking into account both model footprint and denoising iterations.

Model Pruning of Diffusion Models Research on model pruning has primar-
ily focused on pruning the architecture of monolithic end-to-end neural networks
for image classification such as Convolutional Neural Networks (CNNs) [18, 19,
29,39] and Vision Transformer [10,24,45,65,66,83]. Thus, applying these methods
directly to diffusion models is challenging due to the intricate dynamics between
the denoising network and time steps inherent in diffusion models. Recently, a
couple of works dedicated to diffusion models have been proposed [14, 27]. Diff-
Pruning [14] proposes a channel pruning method for diffusion models, which
prunes a fixed amount of channels from each layer of the denoising network
without considering the impacts of different layers, which can be different for
different tasks. BK-SDM [27] analyzes the impact of different network blocks of
Stable Diffusion [53], and proposes three different versions of manually pruned
models. However, they do not propose an automatic pruning scheme that can
be applied to other diffusion models with other metrics. In contrast to these
approaches, our depth-skip pruning is designed with a focus on downstream I2I
tasks and offers a more principled approach to identifying redundant network
blocks based on the quality constraints of a target task.

Acceleration of Diffusion Models For fast sampling, alternative ODE or
SDE samplers have been proposed [4,37,40,63,79], achieving a dramatic reduc-
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tion in the number of iterations to fewer than a hundred. For further acceleration,
parallel sampling methods [61, 82] have been proposed, but these methods can-
not be directly applied to pretrained foundation models. OMS-DPM [36] and
T-stitch [46] present model scheduling methods that are applicable only when
multiple pretrained diffusion models of varying sizes are available. One notable
branch is step distillation techniques [32,38,42,43,57,59], which achieve feasible
output quality with significantly small step numbers. Despite their effectiveness,
they require a substantial amount of training time, approximately in the order
of hundreds of V100 GPU days, to distill the pretrained knowledge of an original
diffusion model to an accelerated model.

Another line of work is time scheduling approaches such as DDSS [73], Au-
toDiffusion [31] and Xue et al. [75]. These approaches aim to identify an optimal
sequence of time steps within a predetermined number of denoising iterations.
Such approaches offer a couple of benefits over the step distillation methods.
They are computationally more efficient and simpler to implement, and cru-
cially, preserve the full capabilities of the original model as they do not need to
retrain a diffusion model, but allow to use the original model with a reduced
time-step sequence. This preservation significantly broadens its applicability to
various downstream tasks unlike step distillation approaches. Specifically, step
distillation transforms the objective of a diffusion model from progressive de-
noising into tracking the mean posterior, which can impair the functionality of
Classifier-Free Guidance (CFG) [23] that is a vital control parameter in some ap-
plications such as IP2P [6]. It is also incompatible with certain downstream tasks
that depend on the original denoising process of diffusion models [35,44,69,78].
Our time-step optimization scheme also employs the time scheduling approach
to support various downstream tasks.

3 Methods

In this section, we first briefly review the T2I diffusion model and transferred
I2I model in Sec. 3.1. We then introduce our depth-skip pruning for effectively
reducing the model size in Sec. 3.2, and our time-step optimization method to
find an optimal time-step sequence in Sec. 3.3. To reduce both model size and
latency, depth-skip pruning and time-step optimization can be performed in any
sequence, as the order has a negligible impact, as shown in the Supplemental
Document (Tab. S2). In our experiments, we initially perform depth-skip prun-
ing, followed by time-step optimization.

3.1 Diffusion Models

Diffusion models [22, 62, 64] are a class of generative models designed to con-
vert Gaussian noise into a desired sample through iterative refinement using a
denoising process guided by a neural network. In T2I diffusion models, a noise
prediction network ϵθ is employed to estimate the noise component within the
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(a) Outputs after block-removal
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(b) Outputs using 5 steps

Fig. 1: Motivations of our approach. (a) Even after removing the network layers be-
neath a certain depth, IP2P [6], a downstream I2I model, still produces a plausible
result. (b) By focusing on earlier time steps, a feasible output can be obtained using
only five denoising steps.
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Fig. 2: (a) Depth-skip pruning eliminates all layers deeper than a certain depth level,
effectively reducing the model size. (b) Given a fixed number of time steps, our time-
step optimization finds differently biased time step sequences for different I2I tasks.

input image xt conditioned on time step t and text prompt P. For downstream
I2I tasks utilizing T2I models, the model is retrained using a loss function:

L = ||ϵθ(xt, cI ,P, t)− ϵ||2, (1)

where cI represents an additional input image. To accommodate the additional
input, these approaches either fine-tune the diffusion model with minor modi-
fications to the input network block [6, 53] or train a feature injection network
while keeping the diffusion parameters fixed [44,69,78].

3.2 Depth-Skip Pruning

Our depth-skip pruning approach assumes that the denoising network of the tar-
get diffusion model is based on the U-Net [54] architecture. In image generation
tasks, the coarse layers of the U-Net are primarily responsible for creating the
image structure [25,26,28]. However, in I2I tasks, the image structure is already
provided as input, such as a low-resolution image in image restoration task. As
a result, we hypothesize that the deeper layers of the U-Net [54] in the I2I model
have a reduced impact on the final output.

To validate this assertion, we conduct an experiment in which we gradually
remove the deepest network layers of IP2P [6] and evaluate the output quality.
Fig. 1(a) presents the image editing results obtained by the IP2P models after
removing the four and five deepest layers of the U-Net, which are indicated in
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Table 1: Comparison between the single- and muti-depth search schemes on Sta-
bleSR [69]. The PSNR values are measured against the outputs obtained without
depth-skip pruning.

Baseline (Single depth) (a) Fix param. & Min time (b) Fix time & Max quality (c) Fix quality & Min time
( ∆PSNR < 0.2 dB ) ( ∆Time < 1% ) ( ∆PSNR < 0.2 dB )

Depth PSNR Time(%) Param(%) ∆Time(%) ∆PSNR ∆Param(%) ∆Time(%) ∆Param(%)
11 32.86 89.91 79.17 -3.46 +0.02 +9.47 -3.46 +0.00
10 32.34 85.70 69.70 -2.62 +0.34 +9.47 -4.59 +9.47
9 31.39 82.78 60.77 -4.27 +1.08 +18.40 -5.72 +8.93
8 28.65 72.59 43.58 -2.23 +1.53 +26.13 -6.29 +26.13

blue and red, respectively. Note that the models are not retrained after removing
their layers. As the result shows, even if we simply remove deep layers beneath
a certain depth, the output quality remains comparable to that of the original
model. This trend persists across different tasks, which indicates that the deep
layers have little impact on the output quality. Inspired by this, we introduce a
depth-skip pruning which effectively reduces the model size.

Algorithm 1: Depth-search
Input: input image cI , prompt P,

maximum depth dmax,
metric function M

Output: Optimal depth d
d← dmax

xT ∼ N (0, I)
repeat

d← d− 1
x← SamplerDDIM (xT , cI ,P; d)
m←M(x)

until OverThreshold(m);

The key idea of the proposed
method is to skip certain network
blocks located beyond a predetermined
depth of the skip-connection of the
UNet. For example, in a depth-8 model,
denoted as D8, the network compo-
nents beyond the 8th skip-connection
are bypassed, as shown in Fig. 2(a).
It is noteworthy that coarse-level net-
work blocks typically have numerous
channels, leading to substantial mem-
ory consumption. Depth-skip pruning
removes these bulky blocks and allows
us to effectively reduce the memory footprint while minimizing performance loss.

Our depth-skip pruning consists of two steps: depth-search and fine-tuning.
In the depth-search step, we identify the target depth level for pruning by per-
forming depth-skip from the deepest level upwards, using a predefined metric
and threshold, until the quality threshold is met, as described in Alg. 1. Then,
we fine-tune the pruned model to enhance its quality further.

Single- vs. multi-depth search Since we apply the same target depth level for
all time steps (single-depth search), one might argue that our approach overly
restricts the search space, potentially missing out on additional performance
gains that could be achieved by using different depth levels for different time
steps (multi-depth search). Here, we demonstrate that our single-depth search
can find a near-optimal solution in a highly efficient manner compared to the
multi-depth search.

To prove this, we compare the performances of our single-depth search scheme
and the multi-depth search scheme. For the multi-depth search, we find its op-
timal solutions using exhaustive search. To mitigate the search overhead in this
analysis, we confine the depth-skip levels from 7 to 12, and use 10 denoising
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iterations, and use the same depth levels for every two time steps, i.e., two con-
secutive time steps use the same depth level.

While the primary goal of depth-skip pruning is to reduce the model size, it
also affects the latency and output quality. As a result, the multi-depth search
may potentially find a solution that is more optimal in either quality or latency
while having the same model size as the solution of the single depth-search
approach. Similarly, it may also find a superior solution in terms of model size
or latency while having the same quality. Thus, we analyze the performances in
all the three aspects for a comprehensive analysis.
Optimizing quality or latency while fixing model size. As diffusion models use a
single denoising UNet for all time steps, the pruned model size is determined
by the deepest depth across all time steps. Having this in mind, to achieve the
highest output quality while maintaining the same model size as the single-depth
search, the solution of the multi-depth search must be the same as that of the
single-depth search because maximizing the output quality necessitates utilizing
as many network blocks as possible for all time steps. On the other hand, we may
find a solution with a smaller latency and the same model size using the multi-
depth search if we accept a certain amount of quality degradation. Nonetheless,
the gain is small as shown in Tab. 1(a). For the quality degradation of 0.2 dB,
the gain in latency obtained by the multi-depth search is at most 4.27%.
Optimizing model size or quality while fixing latency. Another possibility is to
use the multi-depth search to find a solution with a smaller model size or higher
quality and the same latency as the result of the single-depth search. However,
finding a solution with a smaller model size while fixing the latency neither makes
sensor nor is possible, as a smaller model inevitably leads to lower output quality
and a smaller latency. We may find a solution with a higher quality while fixing
the latency using the multi-depth search. However, in this case, the solution
requires a significantly larger model size compared to that of our approach as
shown in Tab. 1(b).
Optimizing model size or latency while fixing quality. We may use the multi-
depth search to find a solution with a smaller model size and the same quality
as the single-depth search. However, again, this is impossible because a smaller
model size inevitably causes lower output quality. Finally, we may find a solution
with a smaller latency and the same quality using the multi-depth search, but
such a solution requires a substantially larger model size as shown in Tab. 1(c).

This analysis indicates that our single-depth search scheme identifies solu-
tions that are as effective as those found by multi-depth search, but with a
considerably reduced search overhead.

3.3 Time-step Optimization

Our time-step optimization scheme is inspired by the following observation: ear-
lier time steps are primarily involved in the generation of overall image structures
incorporating the text prompt [2], while later time steps are mainly responsible
for synthesizing image details [11,12]. Based on this observation, we hypothesize
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that later time steps are more influential in image restoration tasks like Sta-
bleSR [69], whereas earlier time steps play a greater role in image editing like
IP2P [6]. To validate this, we conduct IP2P [6] with only five steps at different
intervals. In Fig. 1(b), the black dashed line represents IP2P [6] generation using
a uniform time sequence, while the purple and blue dashed lines represent non-
uniform sequences with a focus on early time steps. As depicted in the figure,
prioritizing earlier time steps yields viable results using only five steps. Although
the impact of early and later time steps depends on tasks, we empirically observe
similar phenomena in other I2I tasks. Inspired by this observation, we design our
time-step optimization method to find a biased sequence of time steps for each
task, as illustrated in Fig. 2(b).

Algorithm 2: Time-step optimization
Input: step size η, metric function M,

signum function sgn, small value ϵ,
GT iteration N , target iteration n,

Output: Optimal time-step Ft(p
s
prev, n)

p← 1 , m←∞ , xT ∼ N (0, I)
xuni ← SamplerDDIM (xT , cI ,P, Ft(p, n))
xpos ← SamplerDDIM (xT , cI ,P, Ft(p+ ϵ, n))
xneg ←
SamplerDDIM (xT , cI ,P, Ft((p+ ϵ)−1, n))

s← sgn(M(xuni, xneg)−M(xuni, xpos))
x∗ ← SamplerDDIM (xT , cI ,P, Ft(p,N))
repeat

mprev ← m , pprev ← p
p← p+ η
x← SamplerDDIM (xT , cI ,P, Ft(p

s, n))
m←M(x∗, x)

until m > mprev;

Specifically, the time-step
optimization aims to find an
optimal sequence of time steps
for a given number of time
steps. To design an effective
and efficient parameterization
for finding a biased sequence,
we exploit the gamma curve
formulation, which is defined
as:

Ft(γ, n) = T · tγ , γ > 0,

t = 0,
1

n− 1
,

2

n− 1
, · · · , 1

(2)
where T represents the last
time step, γ is a parameter to
control the shape of the gamma
curve, and n is the number of
iterations. If γ > 1, the genera-
tion process concentrates on the early time steps of generation, while if 0 < γ < 1,
it focuses on the later time steps. Then, our optimization problem becomes to
find an optimal γ that produces the output closest to the original sampling
results using a small n.

While this simple strategy already provides comparable or outperforming
results to previous state-of-the-art approaches [31,75], it is still limited due to the
fixed nature of the first and last time steps. To further improve the performance,
we introduce a scale-down mechanism for the gamma curve. Specifically, we scale
down the gamma curve toward T when γ < 1 proportional to decrease of γ value,
and vice versa. The formal definition is as follows:

Ft(γ, n) = T · t′γ , t′ =
T · t− tl
tu − tl

(tl, tu) =

{
(0, T + α(γ − 1)), γ ≥ 1

(α(1− 1/γ), T ), γ < 1

(3)
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(b) StableSR(a) InstructPix2Pix
OursInput

-39.2% model size 
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“make it marble roman 
sculpture”

OursInput

(c) ControlNet

-39.2% model size 
& -31.1% latency (20  15 steps) 

OursInput

Fig. 3: Qualitative examples of our depth-skip pruning and time-step optimization on
IP2P [6], StableSR [69], and ControlNet [78].

where α is a coefficient for scale strength. This adjustment allows for greater
flexibility and potentially more effective optimization of the time steps.

The search process consists of two stages. Firstly, we determine whether
γ increases or decreases by evaluating which direction yields better outputs.
Then, we perform a greedy search by progressively increasing or decreasing the
value of γ until no further improvement in quality is observed, as described in
Alg. 2. Our time-step optimization is designed to be highly efficient in terms
of computational cost by aggressively limiting the search space to one dimen-
sion. Despite this simplification, as demonstrated in our experiments (Sec. 4.3),
it achieves higher-quality results than existing state-of-the-art methods like Au-
toDiffusion [31], while being at least 62 times faster.

4 Experiments

In this section, we validate the effectiveness of our compression method by ap-
plying it to IP2P [6] for image editing, StableSR [69] for image restoration, and
ControlNet [78] for image-conditioned image generation. In the case of Control-
Net, we use canny edge maps as input condition in our experiments. The baseline
step numbers used are the same as originally specified in their respective applica-
tions: 50 steps for IP2P [6] and StableSR [69], and 20 steps for ControlNet [78].
When discussing the model size and latency, we only consider those of the dif-

2113



10 G. Kim et al.

Table 2: Latency and the number of parameters including VAE, text encoder, and
adapter network. “U-Net+” indicates the union of the U-Net and additional adapter
network. The compression includes both depth-skip pruning and time-step optimiza-
tion. The unit of latency is seconds.

Latency Parameter
(U-Net+/Total/Iteration) (U-Net+/Total)

Original Compressed Total Reduction Original Compressed Total Reduction
IP2P [6] 6.31/6.54/50 1.17/1.40/10 78.6% 859M/1066M 522M/729M 31.6%

StableSR [69] 2.81/2.94/50 0.88/1.01/20 65.7% 969M/1176M 452M/658M 44.0%
ControlNet [78] 1.57/1.75/20 1.08/1.26/15 28.0% 1220M/1427M 883M/1090M 23.6%

fusion U-Net, excluding the text-encoder [49], auto-encoder [13], and additional
adapter networks [78] unless specified otherwise. We refer the readers to Sec. S1
in the Supplemental Document for more details.

4.1 Qualitative and Quantitative Comparisons

Fig. 3 shows results of the models of different tasks compressed by the proposed
depth-skip pruning and time-step optimization. Compared to the original mod-
els of IP2P [6], StableSR [69], and ControlNet [78], our compressed models use
only 60.8%, 43.6%, and 60.8% of the parameters, respectively, and their latencies
are reduced to 18.6%, 31.3%, and 68.9%, respectively. Tab. 2 reports a quan-
titative comparison of the latencies and model sizes of the original models and
their compressed results. In this comparison, we also report the total sizes and
latencies including those of the VAE, text encoder and adapter networks. As
the results show, despite the much smaller model sizes and latencies, the com-
pressed models successfully produce visually pleasing results, clearly indicating
that our method effectively reduces both model size and latency while preserving
the original generative power required for each task.

4.2 Evaluation of Depth-skip Pruning

We compare the proposed depth-skip pruning with state-of-the-art pruning meth-
ods tailored for diffusion models: Diff-pruning [14] and BK-SDM [27]. For fine-
tuning, we followed the original training strategy except for ControlNet [78],
as the LAION [60] dataset used for ControlNet is no longer publicly available.
Instead, we used the COCO [34] dataset. The optimal depths searched by our
depth-search algorithm are D9 (60.8% of parameters) in IP2P [6] and Control-
Net [78], and D8 (43.6% of parameters) in StableSR [69], respectively. We refer
to Sec. S2 in the Supplemental Document for experimental results involving
extreme depth-skip pruning, such as D6 (15.6% of parameters) models.
Qualitative comparison. Fig. 4 shows a qualitative comparison of depth-skip
pruning with and without fine-tuning, and the previous pruning methods. Fig.
4(a) shows the results of the original models for each task without any pruning.
Compared to the original results, the previous methods often produce semanti-
cally incorrect results with artifacts despite their larger model sizes than ours.
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Fig. 4: Comparison of the depth-skip pruning and previous pruning methods. The
number on the top-right side in each image denotes the pruned model size.

On the other hand, our depth-skip pruning shows more visually pleasing results
compared to the previous methods, even with a smaller model size and with-
out fine-tuning. Note that the results of our depth-skip pruning are not exactly
the same as the original results due to the pruned layers and fine-tuning. Nev-
ertheless, our methods produce semantically correct results, showing that the
generative capabilities of the original models are well preserved.
Quantitative comparison. For quantitative comparison, we first compare the per-
formances of the previous approaches and ours on StableSR [69]. To this end,
we use the super-resolution validataion dataset of StableSR, which is generated
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Table 3: Quantitative comparisons of the depth-skip pruning and other pruning meth-
ods for StableSR [69] and ControlNet [78].

Model Steps FID↓ PSNR↑ LPIPS↓ Parameter
Diff-pruning [14] 50 38.70 21.20 0.483 578M (62.4%)
BK-SDM [27] 50 64.46 21.45 0.492 615M (67.2%)
Depth-skip (D9) without fine-tuning 50 28.55 21.54 0.441 557M (60.8%)
Depth-skip (D8) without fine-tuning 50 40.25 21.40 0.467 400M (43.6%)
Depth-skip (D8) 50 30.15 21.48 0.449 400M (43.6%)
Depth-skip (D8) + Time-step optimization 20 32.31 21.82 0.457 400M (43.6%)
Original 50 27.70 21.51 0.437 917M (100%)

(a) StableSR [69]

Model Steps FID ↓ CLIP-Score↑ CLIP-a↑ Parameter
Diff-pruning [14] 20 28.52 28.91 5.01 687M (80.2%)
BK-SDM [27] 20 29.66 29.08 4.87 576M (67.2%)
Depth-skip (D9) without fine-tuning 20 21.18 30.29 5.93 521M (60.8%)
Depth-skip (D9) 20 17.64 30.46 5.88 521M (60.8%)
Depth-skip (D9) + Time-step optimization 15 18.65 30.37 5.87 521M (60.8%)
Original fine-tuned on the COCO dataset 20 17.52 30.57 5.91 857M (100%)
Original 20 19.88 30.42 6.10 857M (100%)

(b) ControlNet [78]
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Fig. 5: (a) Quantitative comparison of the depth-skip pruning and the other methods
on IP2P [6]. “T.O.” denotes the time-step optimization. (b-d) Comparison between the
time-step optimization and uniform sampling.

from the DIV2K dataset [1]. Tab. 3(a) shows the quantitative comparison. We
measure FID [21], PSNR and LPIPS [81] scores for evaluation. As the table
shows, D9 without fine-tuning and D8, both of which are our depth-skip prun-
ing results, achieve the best FID [21], PSNR and LPIPS [81] scores close to the
scores of the original model, significantly outperforming Diff-pruning [14] and
BK-SDM [27] even though they have smaller model sizes and D9 does not use
fine-tuning. The table also shows the effect of the fine-tuning step in the depth-
skip pruning. By comparing D8 before and after fine-tuning, it is evident that
fine-tuning significantly enhances performance, enabling D8 to match the origi-
nal model’s performance with less than half of the original model’s size. Finally,
although time-step optimization results in a minor quality degradation due to
the reduction of iterations by more than half, it still surpasses the performance
of the previous methods.

We also conduct a quantitative evaluation on ControlNet [78]. For evaluation,
we use the COCO validation set [34] for ControlNet. For the input text prompts
required for the ControlNet models, we generate text prompts using BLIP [30].
Tab. 3(b) shows the quantitative comparison. As mentioned earlier, we use the
COCO dataset for fine-tuning instead of the LAION dataset [60]. Thus, we
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also compare the result of the original model fine-tuned on the COCO dataset.
Similar to the results in Tab. 3(b), despite their smaller model sizes, our results
achieve the best scores in all quality metrics regardless of fine-tuning and time-
step optimization.

Finally, we conduct a quantitative comparison on IP2P [6]. For evaluation,
we follow the protocol of IP2P [6]. Specifically, we measure the CLIP image
similarity scores [49] and CLIP text-image direction similarity scores [15]. As
IP2P allows the control of the editing strength using the CFG [23] parameter,
we plot the scores for different image CFG parameter values ranging from 1.0 to
1.8. Fig. 5(a) shows the quantitative comparison. The solid lines in this figure
display the quantitative results where the depth-skip, fine-tuning and time-step
optimization with 10 steps are successively applied, and the dotted lines show
the results of previous pruning method. Our depth-skip pruning without fine-
tuning shows comparable results to other pruning methods. After fine-tuning,
which recovers the quality degradation of model pruning, our pruning method
outperforms the other methods by a large margin.

4.3 Evaluation of Time-step Optimization

We evaluate the performance of the proposed time-step optimization. For eval-
uation of the proposed method, we apply time-step optimization to the original
models without applying depth-skip pruning. Also, we randomly sample 100
images from the training dataset for the search process, and employ a bias coef-
ficient of α = 30.

Fig. 6 shows a qualitative comparison between the results of our time-step
optimization and the uniform sampling strategy that samples evenly distributed
time steps. For all the tasks, our approach produces superior results than the uni-
form sampling strategy. Specifically, in the case of IP2P [6] and ControlNet [78],
our method produces results that are similar to the results of the original models
even with only five steps. On the other hand, the outputs of the uniform sam-
pling scheme quickly degrade as the number of time steps decreases. In the case
of StableSR [69], our results show accurately restored high-frequency details,
while the uniform sampling fails to restore such details.

Fig. 5(b-d) visualizes PSNR values of the time-step optimization and uniform
sampling strategies with respect to different numbers of iterations. The PSNR
values of the outputs from the optimized time steps are measured against the
results of the original models with 50 iterations using DDIM [63] deterministic
process. Also, we measure the metric based on a random selection of 1,000 images
from the validation dataset for each task. Across all the iteration numbers, our
time-step optimization consistently yields higher PSNRs for all the tasks.

Tab. 4 compares the output qualities and search times of our time-step opti-
mization with those of previous state-of-the-art time scheduling approaches for
diffusion models: AutoDiffusion [31] and Xue et al.’s method [75]. As Xue et al.’s
method is based on a highly simplified mathematical approximation for efficient
time scheduling, it takes only a few seconds for five time steps, and less than
a minute for 10 time steps. Nevertheless, due to its approximation, its output
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Table 4: Quantitative comparison of time-step optimization with previous methods.

InstructPix2Pix [6] StableSR [69] ControlNet [78]
# Steps Ours AutoDiff. Xue et al. Ours AutoDiff. Xue et al. Ours AutoDiff. Xue et al.

PSNR 5 22.00 20.64 14.35 27.46 26.58 25.83 17.14 16.83 13.89
(dB) 10 25.86 24.79 20.62 32.46 29.03 27.71 20.05 19.23 16.23

Search 5 38.7m 40.5h 3.2s 9.5m 16.3h 3.2s 14.1m 31.2h 3.2s
time 10 30.9m 75.1h 53.1s 11.1m 27.1h 53.1s 18.0m 65.1h 53.1s

quality is the lowest among the compared methods. On the contrary, AutoDiffu-
sion takes tens of hours to search for optimal time steps due to its reliance on the
genetic algorithm. Despite the lengthy search duration, it still lags behind our
method in output quality, as the genetic algorithm tends to get trapped in local
minima. In contrast, thanks to its constrained yet effective search space, our
method only requires 10 to 40 minutes and consistently delivers superior output
quality for all the cases. More analyses and details can be found in Sec. S3 and
S4 in the Supplemental Document.

5 Conclusion

In this paper, we introduced a novel compression method for downstream I2I
diffusion models, which consists of depth-skip pruning and time-step optimiza-
tion for reducing the memory footprint and latency, respectively. Despite their
simplicity, our experiments show that they significantly outperform previous
state-of-the-art task-agnostic pruning and time scheduling approaches.
Limitation & Future work. Our depth-skip pruning assumes that the denoising
network has a U-Net [54]-based architecture. Therefore, the pruning method
would be unavailable to other diffusion models with different network architec-
tures, such as transformers [47]. Developing a compression method applicable to
various network architectures could be a promising future direction.
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