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Abstract. Unsupervised domain adaptation aims to mitigate the do-
main gap between the source and the target domains. Despite domain
shifts, we have observed intrinsic knowledge that spans across domains
for object detection in urban driving scenes. First, it includes consistent
characteristics of objects within the same category of extracted ROIs.
Second, it encompasses the similarity of patterns within the extracted
ROIs, relating to the positions of the foreground and background during
object detection. To utilize these, we present DuPDA, a method that ef-
fectively adapts object detectors to target domains by leveraging domain-
invariant knowledge to separable objectness for training. Specifically, we
construct categorical and regional prototypes, each of which operates
through their specialized moving alignments. These prototypes serve as
valuable references for training unlabeled target objects using similar-
ity. Leveraging these prototypes, we determine and utilize a boundary
that trains separately the foreground and background regions within the
target ROIs, thereby transferring the knowledge to focus on each respec-
tive region. Our DuPDA surpasses previous state-of-the-art methods in
various evaluation protocols on six benchmarks.

Keywords: Unsupervised Domain Adaptation · Object Detection · Ur-
ban Scene · Domain-invariance · Objectness Decoupling

1 Introduction

Object detection is essential for autonomous driving, involving the detection of
various objects such as cars, pedestrians, and traffic signs. However, the domain
shift problem remains a significant challenge due to variations in lighting and
weather conditions. These variations cause a degradation of the detection perfor-
mance. To overcome this issue without the necessity of labeling datasets for each
new domain, unsupervised domain adaptation (UDA) has emerged as an effective
solution [9,11]. The UDA aims to minimize the discrepancy between the labeled
source and the unlabeled target domain, enhancing the performance of the lat-
ter. A prime example of utilizing UDA can be seen in object detection within
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2 T. Kim et al.

Fig. 1: DuPDA leverages domain-invariant regional and categorical knowledges to ef-
fectively train the target domain. We recycle each object’s category-specific character-
istics and utilize each region’s proportion within ROI’s position.

urban driving scenes. When trained with daytime driving scenes, often fail to
perform under nighttime or adverse weather conditions. However, it is observed
that the intrinsic characteristics of each object in driving scenes maintain their
consistency, regardless of the domain changes; i.e., vehicles are typically found
on roads and people on sidewalks, exhibiting predictable patterns. Moreover, the
aspect ratio of objects, such as the horizontally elongated form of vehicles and
the vertical orientation of people, remains unchanged whether day or night time.

For these characteristics, we introduce the dual prototype-driven objectness
decoupling (DuPDA), which is applicable to two-stage object detectors in driv-
ing scenes. As in Fig. 1, our DuPDA is based on two key concepts. First, objects
that need to be detected in urban scenes include consistent and unique character-
istics in various domains. This necessitates the detector consistently extraction
and recognizing objects of the same category, regardless of the domain. There-
fore, effective training of the invariant characteristics of objects can facilitate
adaptation to detection tasks across various domains without labels. Second, a
two-stage detector is designed to extract a large number of Regions of Interest
(ROI) from images, accommodating the variable number of objects to be de-
tected. For this reason, most of these ROIs correspond to background regions
rather than to the objects themselves. Although the source domain can easily
identify these regions using its own labels, the absence of labels in the target
domain makes it challenging for the detector to recognize them. Therefore, if
the model can successfully distinguish both regions in the target domain, it can
focus more on the target features corresponding to the actual objects.

In each observation, we construct two prototypes - categorical and regional -
by capturing domain-invariant knowledge of objects to guide the training of the
unlabeled target domain. Typically, the prototype encapsulates the common rep-
resentative characteristics of each object. However, previous works [19, 45] only
use category-wise prototype, which is solely accumulated by labeled source do-
main, to determine the category of each object in the target domain. In contrast,
DuPDA uses two different prototypes to train the unlabeled target domain more
effectively. Our categorical prototype adaptively differentiates the foreground re-
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gions of the target ROIs. It helps assign each ROI target to its respective cat-
egory by computing similarity. Furthermore, we introduce a regional prototype
that plays a crucial role in controlling ROI regions. It regulates according to the
statistical characteristics of the foreground and background regions within the
extracted target ROIs, based on their positions and proportions. Note that we
collectively named across both regions as ‘objectness’.

However, generating prototypes solely from the source domain can interfere
with bridging the gap with the target domain, causing performance degradation.
To address this issue, we utilized the exponential moving average (EMA) to pro-
pose two moving alignment methods. This methods gradually transitions from
the source to the target domain in both prototypes, making invariant character-
istics within the domain which serve as effective guidance for the target domain.
Using our prototypes, we generate the boundary for distinguishing the target
ROIs into foreground and background regions, training each region through
dedicated loss functions. This process enables the detector to focus more on
each region, thus easily adapting and training effectively for the unlabeled tar-
get domains. We evaluated the effectiveness of our DuPDA in UDA-OD sce-
narios in the driving scene, using established evaluation metrics from previous
research [36]. Our results demonstrate improved performance over existing state-
of-the-art methods in different weather conditions, synthetic-to-real, and scene
adaptation. In summary, the key contributions of our work are as follows:

– Our DuPDA introduces categorical and regional prototypes, each of which
operates through their specialized moving alignments. This method gener-
ates domain-invariant prototypes that serve as a reference for target domain.

– Based on our prototypes, we propose objectness decoupling, which separates
target ROIs into foreground and background regions, thus focusing on each
region for effectively training the unlabeled target domain.

– DuPDA achieves competitive performance with previous works in six UDA-
OD scenarios, with its effectiveness corroborated by a related ablation study.

2 Related Work

Urban Scene Analysis. Urban scene analysis has been actively studied for
autonomous vehicles, and previous studies [6, 23] have mainly focused on the
semantic segmentation of urban scenes. [23] suggested a perspective estimation
network to learn the global perspective geometry of urban scenes. [6] proposed
a reality-oriented adaptation approach to urban scene semantic segmentation
by learning from synthetic data. Among the representative datasets used in
urban scene analysis, the well-known datasets include Cityscapes [7], KITTI [13],
Sim10k [20], and BDD100K [41]. In this paper, we measure object detection
performance in UDA scenarios consisting of these urban scene datasets.

Unsupervised Domain Adaptation. In recent years, unsupervised do-
main adaptation (UDA) has garnered attention in diverse vision domains [9,11,
17,28,30,35]. Within object detection, various UDA methods have emerged. [5]
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Fig. 2: DuPDA separates the target ROIs using prototypes, which are generated
through the proposed alignments. By comparing target ROI features with categori-
cal prototypes using similarity (SIM), we generate pseudo-labels and the separation
boundary between foreground and background (objectness). Using this boundary, we
split the target ROI scores and the regional prototypes and then calculate our proposed
losses for each distinct region. Categorical Moving Alignment: Use EMA between
accumulated ROI features of two domains to generate a categorical prototype for each
object’s category. Regional Moving Alignment: Use EMA between accumulated
ROI scores of two domains to generate a regional prototype for each ROI position.

used adversarial approaches to ensure the consistency of the feature at the im-
age and instance level. [30] focused on global dissimilarity through strong local
and weak global alignments. [47] incorporates auxiliary predictors for classifi-
cation and localization, leveraging their inconsistencies as indicators of domain
specificity. In the context of distillation-based methods, such as [1,15], have incor-
porated similarity measurements and self-distillation techniques. Recent studies
have shown performance improvements in UDA-OD with mean teacher frame-
work [2, 4, 8, 10, 24, 50] and transformer [42, 44, 48]. Contrary to previous works,
DupDA leverages the inherent domain-invariant knowledge. We introduce two
distinct prototypes, which are used to decouple the foreground and background
regions, focusing on each region separately to train the unlabeled target domain.

Prototype-based alignment. The prototype is a representative feature
vector that captures the essential characteristics of a particular object category.
In UDA-OD, prototypes are usually accumulated class-wise features from the
labeled source features and aligned with target features to adapt the detector
in the unlabeled target domain. [49] minimize the distance of the same cate-
gory between both domains using global prototypes. [45] proposed RPN feature
alignment using prototypes to generate pseudo-labels for proposals in target
domain. [19] generate class-wise prototypes to aid contrast adaptation with
unlabeled target features, providing pseudo-classes for the semantic segmenta-
tion. In previous works [19,38,39,45,49], they commonly used a fixed rate when
adding a current feature to the prototype and only using the labeled source do-
main to solely construct the class-wise prototype. However, our method uses not
only categorical but also regional prototype that accumulates statistical features
of the foreground and background regions. We also propose specialized moving
alignments to update each prototype for gradual transition from the source to
the target domain by adaptively adjust the weight to grant domain-invariance.
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Dual Prototype-driven Objectness Decoupling 5

3 Proposed Methods

3.1 Overview

As illustrates in Fig. 2, our DuPDA framework aims to recycle domain-invariant
knowledge for gradual adaptation from the source domain (denoted as S) to the
target domain (denoted as T ). We reuse in two aspects: categorical and regional
knowledge. For categorical knowledge, we observe that the unique characteris-
tics of the object enable differentiation among various categories across different
domains in the urban scene. To achieve this, we propose a categorical proto-
type, recycling ROIs that encompass all the necessary features to define objects.
In addition to utilizing regional knowledge, we observe that the proportion of
foreground and background regions within the extracted ROIs is consistently
maintained across domains in urban scenes. Furthermore, there is a consistent
tendency for the background region to occupy a larger proportion than the fore-
ground. To accomplish this, we introduce a regional prototype which exploits
the characteristics of each position-specific ROI region. Moreover, we employ
EMA to adjust both prototypes, thereby improving their domain-invariance.
Using these refined prototypes, we perform an objectness decoupling procedure
to focus on each specific region within the target domain during training.

3.2 Categorical Moving Alignment

Utilizing our observation discussed in the previous sections, we generate cate-
gorical prototypes as a criterion to assign a category for ROIs in the unlabeled
target domain. The prototype is obtained by ROI features based on their corre-
sponding object categories. These ROI features are extracted from the detector’s
ROI-Align [14] output on the detector. Since the labeling information is available
only for the source images, we can create a categorical prototype accumulating
ROI features from the source domain that exceed a specified threshold τc, similar
to the methods in [38, 49]. This categorical prototype of the source domain in-
cludes the distinct characteristics of the objects in each category. Therefore, each
unlabeled target ROI can be classified into the most similar specific category, as
also mentioned in previous prototype methods [19, 39, 49]. For this reason, we
first simply generate this categorical prototype that uses only the source domain
PCS

∈ RK×C . Therefore, our DuPDA uses this prototype compared to the ROI
features of the target domain ΦT ∈ RN×C by calculating the similarity map. K
and N denote the number of categories and the number of ROIs, respectively,
and C denote the channel size. The similarity map S ∈ RN×K is as follows:

Snk =
P k
CS
· Φn

T
⊤

||P k
CS
|| ||Φn

T ||
, (1)

where n denote n-th ROI feature (n ∈ N), k denote k-th category (k ∈ K). Using
this similarity to distinguish each unlabeled target ROI, because ROI features
within the same category typically exhibit greater similarity as compared to ROI
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features from disparate categories. Then, we assign a pseudo-label for the n-th
target ROI feature using the similarity map, which is determined by identifying
the index of the maximum similarity value in Sn ∈ R1×K .

However, generating the categorical prototype using only source ROI features
does not fully bridge the domain discrepancy with the target domain, causing
performance degradation. To address this, we introduce categorical moving align-
ment (CMA). This method gradually transitions the categorical prototype from
the source domain to the target domain by updating the confident target do-
main knowledge into the categorical prototype. To implement this, we construct
the categorical prototype of the target domain, denoted PCT

. This is achieved
by accumulating only the target ROI features that have corresponding pseudo-
labels with high confidence above the threshold τc. Subsequently, we apply the
EMA to incrementally update the categorical prototype, thereby ensuring the
domain-invariance of the prototype. The final PCS

is as follows:

PCS
← α · PCT

+ (1− α) · PCS
, (2)

where α represents a hyperparameter for which we gradually increase the de-
cay rate as the training iterations proceed. Since the target domain does not
have labels in training process, it is relatively more challenging for the detector
to extract ROI features compared to the source domain. Consequently, during
the early iterations, there are fewer target ROI features accumulated above the
threshold to the categorical prototype of the target domain than source domain,
making it unstable to represent each target category. Therefore, a smaller value
of α is required to more proportion to labeled source domain’s prototype when
updating the existing PCS

with PCT
. As the training progresses, α is gradually

increased to give more proportion to unlabled target domain’s prototype due to
the greater quantity and accuracy of target ROI features accumulated in PCT

.
This progressive process generates a more domain-invariant prototype. There-
fore, the prototype effectively minimizes the domain gap when calculating the
similarity between the target ROI features and the categorical prototype.

3.3 Regional Moving Alignment

In the two-stage detector, the output ROIs exhibit a consistent pattern across
different positions, regardless of datasets; in particular, the output ROIs often
contain a higher proportion of background compared to foreground ROIs. To
verify this, as shown in Fig. 3, we visualized the averaged background prediction
scores, calculated at each index position for ROIs, from the model trained in
a supervised manner on the source domain. As observed in the green line (i.e.,
source domains), the regions with high average background scores occupy a larger
ROI range compared to the regions with low scores (i.e., foreground) and also
seem clearly distinct. This statistical pattern remains consistent across different
source domain datasets on various UDA-OD scenarios in terms of foreground
and background regions. Note that the number of ROIs extracted by the detec-
tor remains constant [29]. In contrast, the orange line (i.e., target domains) does
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Fig. 3: To verify the consistent pattern related to label usage, we computed the av-
erage background classification scores (y-axis) for each position’s ROI index (x-axis),
extracted from a detector that was trained only on the source domain. It reveals dis-
tinct trend (index ≈ 37) - labeled source domains (green line) exhibit a clear division at
a particular position, which is not observed in unlabeled target domains (orange line).

not relatively exhibit a clear statistical pattern. The source domain supervision
signals enable the detector to precisely recognize the distinction between back-
ground and foreground regions. However, the lack of labeled data in the target
domain makes it challenging to accurately determine whether an extracted ROI
corresponds to a foreground or background region. To address this, we introduce
a regional prototype designed to proficiently guide the detector in associating
specific target ROI with their corresponding regions. By aggregating the ROIs
that surpass the confidence threshold, we accumulate the ROIs retrieved for each
specific position. This process yields the statistical correlation between each po-
sition and a particular region. When generating the regional prototype, We use
the output category prediction scores from the ROI head for cumulative aver-
aging, considering both the spatial positions within ROIs and their sequential
orders. This ROI head, comprised of fully-connected layers, utilizes ROI features
Φ as input, and produces outputs referred to as ROI scores (Ψ ∈ RN×K). First,
we generate a regional prototype for the source domain denoted as PRS

∈ RN×K

and for the target domain denoted as PRT
∈ RN×K . Next, we separately accu-

mulate the ROI scores that surpass the threshold τc for each domain. However,
updating the regional prototype exclusively by accumulating the source ROI
scores may limit the performance in the target domains because of the domain
shift. To address this, we propose regional moving alignment (RMA), akin to
CMA, which gradually increase the proportion of each domain’s regional pro-
totype from the source to the target domain using confident target ROI scores.
Therefore, using RMA, we can statistically determine if each ROI position is
predominantly foreground or background. By using RMA, the final PRS

is as
follows:

PRS
← β · PRT

+ (1− β) · PRS
, (3)

where β is a decay rate for RMA. Similar to CMA in Eq. 2, using RMA initial the
small proportion of the target domain during the early train iterations, due to
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Algorithm 1 Categorical and Regional Prototypes
Require: categorical regional prototype PC ; regional prototype PR; ROI features Φ;

ROI scores Ψ ; threshold τc; domains d;
for d in {source(S), target(T )} do

for j = 1 to number of ROIs do
k = argmax(Ψ j

d)
if softmax(Ψ j

d) > τc then ▷ P k
Cd

is not empty

P k
Cd
← 1

2
(P k

Cd
+ Φj

d)
end if
if softmax(Ψ j

d) > τc then ▷ P j
Rd

is not empty

P j
Rd
← 1

2
(P j

Rd
+ Ψ j

d)
end if

end for
end for
PCS ← α · PCT + (1− α) · PCS ▷ CMA
PRS ← β · PRT + (1− β) · PRS ▷ RMA

the limited reliability of the target ROIs; then gradually increase for easily adapt
to the target domain. As a result, PRS

effectively encompasses domain-invariant
characteristics, representing the distribution of ROI regions by position. Hence,
it serves as a criterion for the proposed background refinement of target ROIs.
The generating process of proposed prototypes are summarized in Algorithm 1.

3.4 Objectness Decoupling

Using our prototypes, we propose the objectness decoupling method that dis-
tinguishes ROIs of the target domain between the foreground and background
regions. As mentioned in the previous sections, we observe that the ratio of each
region within ROI features remains consistent across domains. However, during
the training in the target domain, the labels that help to differentiate each region
are not utilized, unlike in the labeled source domain. This can lead to potentially
ambiguous output for the detector. Therefore, we suggest that providing guid-
ance on the regions in the unlabeled target domain will facilitate easier object
recognition within the target ROIs. In Fig. 3, the green line shows a clear sep-
aration in the distribution of background scores around a specific point, which
we defined as the boundary of objectness, unlike the orange line. This suggests
that the labeled source domain is able to recognize the background well through
their own labels, while the unlabeled target domain lacks this recognition, caus-
ing ambiguity. Hence, if we can train the detector by training from the positions
where the background frequently appears and using the accurate pseudo-labels,
we can potentially reduce the ambiguity in the unlabeled target domain. For
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Dual Prototype-driven Objectness Decoupling 9

this purpose, we introduce similarity-based boundary of objectness and pseudo-
labels, designed to help distinguish between foreground and background regions
for target domain. We first calculate the similarity S between the categorical
prototype and the target ROI features, as defined in Eq. 1. Then, pseudo-labels
ŷT are assigned according to the categories represented by the specific categori-
cal prototype that exhibits the highest similarity to the target ROI features, as
shown below:

ŷiT =

{
argmax(Si), if max(Si) ≥ τp

background, if max(Si) < τp
. (4)

Here, the argmax function returns the index of maximum value in Si, indicating
the similarity map for the i-th target ROI feature. If the specific similarity score
exceeds the threshold, the ROI feature is assigned as the foreground; otherwise,
it is categorized as the background. To set the threshold, inspired by [28], we
adopt an adaptive threshold τp instead of using a fixed value. This threshold is
dynamically determined by the sum of the mean and variance from the similarity
map. Further studies on the threshold are shown in Sec. 4.3.

Using the generated ŷiT , we set the boundary of objectness HT , where 0 <
HT < N , thereby allowing the segregation of target ROIs into foreground
(foreground ∈ RHT×K) and background (background ∈ R(N−HT )×K) regions.
In other words, HT is generated based on the ROI index of the target that
is consistently classified as background, using the generated ŷT as a reference.
This guarantees that HT dynamically adjusts to the target ROIs. Hence, the
adjusted boundary enables the detector to focus on each region per each image
individually, thereby mitigating confusion using proposed losses for each region.

3.5 Objectness Decoupled Loss

To separately train in foreground and background regions using HT , we introduce
an objectness decoupled loss. This loss consists of the foreground attraction loss
and the background refinement loss, allowing separate training of each region
within the target domain. For the foreground region of the target ROIs, we
compute the foreground attraction loss, LFG, using the following formula.

LFG = −
HT∑
i=1

ŷiT log
(
softmax

(
Ψ i
T

))
. (5)

The ΨT ∈ RN×K denotes the output of the classifier using the target ROI feature
as input. Therefore, we train by aligning the foreground regions of the target
ROI, which are derived from confident similarity-based pseudo-labels. For the
background region, we employ the regional prototype as reference to compute the
background refinement loss, LBG. Prior to computing the loss, we first extract
the background from the target ROI scores and the regional prototype using the
boundaries HT and HPR

, respectively. Here, HPR
is identified as the boundary

in the regional prototype where the background category appears consecutively
for each ROI position. This is possible because the regional prototype applies
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Table 1: Comparison results (%) in three scenarios using VGG-16. (a) Weather adap-
tation on the Cityscapes, (b) Synthetic-to-real (S→C) and scene adaptation (K↔C).

Method Detector bus bike car mtor prsn rider train truck mAP

SIGMA [22] FCOS 50.7 41.4 63.7 34.7 46.9 48.4 35.9 27.1 43.5
OADA [40] FCOS 48.0 39.5 62.8 34.6 47.3 45.6 49.4 30.7 44.8
MTTrans [42] Def DETR 45.9 46.5 65.2 32.6 47.7 49.9 33.8 25.8 43.4
DA-DETR [43] Def DETR 45.8 46.3 63.1 31.6 49.9 50.0 37.5 24.0 43.5
MEga-CDA [33] FRCNN 49.2 39.0 52.4 34.5 37.7 49.0 46.9 25.4 41.8
TIA [47] FRCNN 52.1 38.1 49.7 37.7 34.8 46.3 48.6 31.1 42.3
CIGAR [26] FRCNN 50.0 40.4 61.6 31.9 45.3 45.3 51.0 32.1 44.7
CSDA [12] FRCNN 33.3 50.5 44.7 42.9 43.1 58.4 37.3 50.0 45.0
PT [4] FRCNN 56.6 48.7 63.4 41.3 43.2 52.4 37.8 33.4 47.1
CMT [2] FRCNN 63.2 53.1 64.5 40.3 47.0 55.7 51.9 39.4 51.9

SWDA [30] FRCNN 36.2 35.3 43.5 30.0 29.9 42.3 32.6 24.5 34.3
Ours+SWDA FRCNN 53.8 41.0 53.3 35.0 38.1 48.0 52.5 32.0 44.2
AT [24] FRCNN 56.3 51.9 64.2 38.5 45.5 55.1 54.3 35.0 50.9
Ours+AT FRCNN 62.1 52.8 64.7 42.6 46.3 54.8 52.1 41.1 52.1

(a) Foggy Cityscapes

Method S→C K→C C→K

DAF [5] 39.0 38.5 64.1
MAF [16] 41.1 41.0 72.1
RPA [45] 45.7 - 75.1
MeGA-CDA [33] 44.8 43.0 75.5
TIA [47] - 44.0 75.9
TDD [15] 53.4 47.4 -
SIGMA [22] 53.7 45.8 -
CSDA [12] 56.9 48.6 -
CIGAR [26] 58.5 48.5 -
NSA-UDA [50] 55.6 56.3 -

SWDA [30] 40.1 37.9 71.0
Ours+SWDA 57.6 49.4 81.9
PT [4] 55.1 60.2 -
Ours+PT 59.7 61.7 83.1

(b) Sim10K & KITTI

an accumulative average to the output ROI scores, which gathering average
predictive statistics for each ROI position; it ensures representativeness at each
position. Hence, HPR

indicate a boundary of the region where the background is
likely to occur in the regional prototype which is suitable for serves as a reference
for the background region in the target ROI scores. The LBG is defined as follows:

LBG =

{∑N
i=HT

||Ψ i
T − P i

R||22, HT ≥ HPR∑N
i=HPR

||Ψ i
T − P i

R||22, HT < HPR

. (6)

Here, the condition of Eq. 6 indicates that by considering only the overlapping
regions between ΨT and PR. Detailed studies about LBG are described in supp
Sec 4. Hence, LBG contributes to reducing false positives and refining the de-
marcation of the estimated background regions. This enables the detector to
recognize the proportion of regions within unlabeled target domain. The reason
for calculating differently from the foreground attraction loss in Eq. 5 is that
Since the target domain lacks labels, objectness decoupling often may lead to
unexpected misclassifications due to inaccurate pseudo-labels; i.e., a specific ROI
that is foreground may be incorrectly classified as background or vice versa. To
alleviate this issue, we use Eq. 6 instead of Eq. 5 to avoid direct classification
by pseudo-labels, while remaining the possibility for re-classification into other
categories in future training, considering their size and proportion among cat-
egories. Note that, in LBG, we do not consider the bounding box, as precise
localization of the background is not required. The total objective function is
defined as:

L = LDet + LDA + λFG · LFG + λBG · LBG, (7)

where LDet represents the detection loss in the source domain, LDA denotes the
domain adversarial loss in our baseline. We adjust the ratios for each LFG and
LBG based on the proportions λFG = λ · (HT /N) and λBG = λ · ((N −HT )/N).
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Table 2: The comparison results (%) of different scenarios in BDD100K. (a) Two
adverse weather adaptations on the BDD100K using ResNet-101. (b) Scene adaptation
from Cityscapes to BDD100K daytime subset using VGG-16.

Daytime-sunny to Night-rainy Daytime-sunny to Dusk-rainy

Method bus bike car mtor prsn rider truck mAP bus bike car mtor prsn rider truck mAP

CoT [46] 22.4 9.7 27.4 0.6 9.3 9.3 13.4 13.1 35.5 20.3 50.9 7.9 21.6 16.1 34.4 26.7
HTCN [3] 22.8 9.4 30.7 0.7 11.9 4.8 22.0 14.6 35.9 21.1 51.1 13.7 24.0 16.6 44.2 31.5
SCL [31] 20.0 9.2 33.2 0.3 11.9 10.6 26.4 15.9 34.8 19.2 50.8 13.2 25.9 18.0 38.1 28.6
DAF [5] 23.8 12.0 37.7 0.6 13.5 10.4 29.1 17.4 43.6 27.5 52.3 16.1 28.5 21.7 44.8 33.5
ICCR [37] 32.5 12.1 36.2 1.3 16.1 17.0 29.3 20.6 43.8 28.5 52.4 22.7 29.2 21.9 45.6 36.9
VDD [36] 31.7 15.3 38.0 11.1 18.2 16.7 30.8 23.1 46.1 31.1 54.4 25.3 31.0 22.4 47.6 36.9

SWDA [30] 24.7 10.0 33.7 0.6 13.5 10.4 29.1 17.4 40.0 22.8 51.4 15.4 26.3 20.3 44.2 31.5
Ours+SWDA 44.7 18.4 43.3 14.3 26.1 20.9 46.8 30.6 44.6 32.1 60.9 23.4 34.8 27.7 50.8 39.3

(a) BDD100K Night-rainy & BDD100K Dusk-rainy

Method Detector mAP

EPM [18] FCOS 27.8
SIGMA [22] FCOS 32.7
SFA [34] DefDETR 28.9
MTTrans [42] DefDETR 32.6
MRT [48] DefDETR 33.7
TDD [15] FRCNN 33.6
NSA-UDA [50] FRCNN 35.5

PT [4] FRCNN 34.9
Ours+PT FRCNN 35.7

(b) BDD100K Daytime

4 Experiments

We evaluate our method on various scenarios, that show its efficacy in priorworks.
Weather Adaptation. We evaluate on the Cityscapes [7] and BDD100K [41]

datasets. The Cityscapes and Foggy Cityscapes encompass 8 categories, with
2,975 training and 500 validation, which are used as source and target domains,
respectively. The BDD100K includes more challenging scenes spanning various
weather conditions, containing 7 categories, using subsets of 27,708 daytime-
sunny (source domain), 2,494 night-rainy and 3,501 dusk-rainy (target domains).

Synthetic-to-Real Adaptation. We validate in a synthetic-to-real scenario
using the Sim10k [20] dataset, which contains 10,000 synthetic images rendered
using Grand Theft Auto. These dataset serve as the source domain, while the
Cityscapes dataset acts as the target domain, considering only the car category.

Scene Adaptation. We experimented on the KITTI [13] and Cityscapes
datasets, each gathered using distinct camera setups in real-world conditions.
Both datasets served as source and target domains, with bidirectional adapta-
tion. The KITTI dataset contains 7,481 images and we only verified the car cate-
gory, following the protocol described in [5]. We also experimented on Cityscapes
as source and BDD100K as target domain, which also categorized small- to large-
scale adaptation. We used the daytime subset of the BDD100K, which includes
the images, 36,728 for training, and 5,258 for validation in 8 categories.

4.1 Implementation Details.

We adopted the settings from [5] and utilized the Faster-RCNN [29] model with
VGG-16 [32], pre-trained on ImageNet [21]. We also established the default UDA
baseline using SWDA [30]. We set the default values to τc = 0.6 and λ = 0.7.
The decay rates of both moving alignments, α and β, gradually increased from
0.5 to 0.8. We conducted warm-up training for 10k iterations at a learning rate of
10−4 to enable the model to detect objects in the source domain. The model was
trained with learning rate of 10−3 for 50k iterations, then reduced to 10−4. Detail
analysis related to hyperparameters is provided in supplementary materials.
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Table 3: Ablation study(%) of different
training settings with Table 1-(a). * de-
notes larger training and testing scales.

Method model bus bike car mtor prsn rider train truck mAP

EPM* [18] V16 41.5 35.5 56.7 24.6 41.9 38.7 26.8 22.6 36.0
SSAL* [27] V16 50.0 38.7 59.4 26.0 45.1 47.4 25.7 24.5 39.6

Ours V16 53.8 41.0 53.3 35.0 38.1 48.0 52.5 32.0 44.2
Ours* V16 55.6 43.3 54.5 38.1 39.2 51.3 53.7 32.8 46.1

NLTE [25] R50 49.9 39.6 54.8 29.9 37.0 46.9 43.5 32.1 41.8
NLTE* [25] R50 56.7 43.3 58.7 33.7 43.1 50.7 42.7 33.6 45.4

Ours R50 52.5 42.4 57.7 39.0 40.7 51.4 43.0 29.2 44.5
Ours* R50 60.4 44.7 58.3 40.1 40.8 53.2 47.6 33.6 47.3

Table 4: Ablation study(%) of the perfor-
mance changes for weather adaptation on
the Cityscapes.

Objectness Categorical Regional CMA RMA mAPDecoupling Prototype Prototype

Baseline 34.3
✓ 39.9
✓ ✓ 41.2
✓ ✓ ✓ 42.2
✓ ✓ ✓ ✓ 43.1
✓ ✓ ✓ ✓ ✓ 44.2

4.2 Comparison Results.

Weather Adaptation on the Cityscapes. In Table 1-(a), we compare DuPDA
with various state-of-the-art (SOTA) methods using VGG-16 for weather adapta-
tion on the Cityscapes. DuPDA outperforms the default baseline [30], achieving
an improvement of +9.9%. Moreover, DuPDA shows slight performance improve-
ment over previous SOTA methods, achieving 52.1% using the baseline of [24].

Weather adaptation on the BDD100K. Table 2-(a) shows the results on
the BDD100K dataset, which poses more challenging weather conditions than
Table 1-(a). Our DuPDA surpasses the SOTA method [36] in both scenarios, with
improvements from 23.1% to 30.6% (+7.5%) in Night-rainy and from 36.9% to
39.3% (+2.4%) in Dusk-rainy. This result highlights the effectiveness of DuPDA,
which trains the characteristics of objects within the target domain under various
adverse weather conditions.

Synthetic-to-Real adaptation. We provide results of DuPDA in the S→C
column of Table 1-(b). Using our DuPDA with [30] improved performance from
40.1% to 57.6% (+17.5%). We also achieved the highest mAP of 57.6% and
59.7%, when compared equitably with previous methods. This indicates that
DuPDA assists the model in training domain-invariant knowledge of synthetic
car characteristics, which is then successfully applied to the real-world car scene.

Scene adaptation. Table 1-(b) shows the results of the scene adaptation
using KITTI dataset. Our DuPDA surpasses the baseline [30] by +11.5% and the
baseline [4] by +4.6% in KITTI to Cityscapes (K→C). Also, achieving +10.9%
using the baseline [30] in Cityscapes to KITTI (C→ K). Compared to the previ-
ous SOTA, DuPDA improves by +5.4% from K→ C and +7.2% from C→ K. We
also conduct experiments on adapting the Cityscapes to BDD100K, as shown in
Table 2-(b). Our DuPDA outperforms various methods in various detectors and
slightly surpasses the previous SOTA [50]. These results show that our DuPDA
can effectively address domain shift problems in various scene adaptations.

4.3 Ablation Studies.

We perform a comprehensive ablation analysis using the SWDA baseline [30]
with VGG-16, within the weather adaptation in the Cityscapes scenario.
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Fig. 4: Background classifica-
tion score distribution in re-
gional prototype of target do-
main across different iterations.

Fig. 5: Comparison of feature similarity between
source and target ROI features for each category, using
models trained: (a) Supervised on the source domain
only, and (b) Using DuPDA.

Consistency of different training settings. In Table 3, we show the
consistent effectiveness of DuPDA by experimenting with different backbone,
depth and input size, unlike the settings in Table 1-(a). We replaced the VGG-
16 with the deeper ResNet-50, leading to a slight performance increase. Following
the settings in [25], the results marked with a * in the table show that a larger
input size led to improved performance compared to the default setting in [30]
(without the * mark). It also outperforms the previous methods under the same
settings. The results show that DuPDA consistently maintains the effectiveness
of adaptation, regarding changes in backbone and input size, without saturation.

Effect of individual components. Table 4 shows the impact of DuPDA’s
components on overall performance. First, to evaluate the basic objectness de-
coupling, we compared it with the baseline [30]. We used batch-specific ROI
features extracted for each domain, without our prototypes and their correspond-
ing moving alignment schemes, achieving +5.6%. This shows that our decoupling
method effectively captures the characteristics of the target domain by focusing
separately on foreground and background regions. However, it cannot be guaran-
teed that all categories are always present within a batch. Hence, the inclusion of
proposed prototypes that accumulate information only from the source domain
led to a +2.3% increase. Finally, using CMA and RMA to gradually transition
prototypes from the source to the target domain leads to a +2.0% improvement.

Effect of objectness decoupling. Fig. 4 shows the distribution of the
background category in the regional prototype of the target domain. The x-axis
denotes the prototype indices (N = 128), the y-axis denotes the average of the
classified background scores. In early iterations, the results reveal an ambiguous
distinction between the foreground and background regions. This is because the
unlabeled target domain can potentially lead to excessive background detection
across all ROI positions, as it makes recognizing the position and proportion of
background regions challenging in early iterations. As training progresses, clear
distinctions emerge, intensifying the separation between the foreground (index ≤
37) and the background (index > 37) regions. These results indicate that DuPDA
effectively mitigates misidentification by guiding the ratio of both regions using
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Fig. 6: Qualitative analysis on the target domains across three different UDA-OD sce-
narios. Top row: Results from baseline [30]. Bottom row: Results from our DuPDA.

our objectness decoupled loss to unlabeled target ROIs. Moreover, compared to
source-only supervised results (orange line) in Fig. 3, DuPDA makes it clearer
to separate both regions at specific ROI position in unlabeled target domain.

Fig. 5 shows a comparison of feature similarity for each category between
ROIs in both domains. (a) shows the results of the model trained only in the
source domain, and (b) presents the results after training with our DuPDA. The
diagonal (blue box) denotes similarity scores between both domains within the
same category, while the remaining areas represent scores across different cate-
gories. As a result, DuPDA enhances similarity at diagonal positions compared
to the source-only model, while reducing similarity at other positions. These
results show the effectiveness of our LFG, which augments the training of the
foreground target ROIs by calculating similarity using our categorical prototype.

Qualitative results. Fig. 6 shows qualitative results for different scenarios
of weather adaptation. The baseline [30] results shows satisfactorily in detect-
ing easily distinguishable objects under adverse weather conditions; however, it
struggles with slightly distorted or obscured objects. In contrast, DuPDA main-
tains consistent detection, enabling it to identify objects where the baseline fails.

5 Conclusions

We introduce DuPDA, a novel framework for UDA-OD, which involves categor-
ical and regional moving alignments, as well as objectness decoupling to train
by focusing on each region within an unlabeled target domain. Our alignments
generate specialized domain-invariant prototypes that serve as a criterion to ef-
fectively training target domain. Additionally, objectness decoupling splits target
ROIs into two regions, enhancing foreground attraction and background refine-
ment through each loss; achieving successful results in six UDA-OD scenarios.
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