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Abstract. Single-modal depth estimation has shown steady improve-
ment over the years. However, relying solely on a single imaging sensor
such as RGB and near-infrared (NIR) cameras can result in unreliable
and erroneous depth estimation, particularly in challenging lighting con-
ditions such as low-light or sudden lighting change scenarios. Thereby,
several approaches have leveraged multiple sensors for robust depth es-
timation. However, the effective fusion method that maximally utilizes
multi-modal sensor information still requires further investigation. With
this in mind, we propose a multi-modal cost volume fusion strategy
with cross-modal attention, incorporating information from both cross-
spectral and single-modality pairs. Our method initially constructs low-
level cost volumes that consist of modality-specific (i.e., single modal-
ity) and modality-invariant (i.e., cross-spectral) volumes from multi-
modal sensors. These cost volumes are then gradually fused using bidirec-
tional cross-modal fusion and unidirectional LiDAR fusion to generate
a multi-sensory cost volume. Furthermore, we introduce a straightfor-
ward domain gap reduction approach to learn modality-invariant features
and depth refinement techniques through cost volume-guided propaga-
tion. Experimental results demonstrate that our method achieves SOTA
(State-of-the-Art) performance under diverse environmental changes.

Keywords: Depth Estimation · Sensor Fusion · Cross-modal Attention

1 Introduction

Depth estimation is an essential technique in various real-world applications,
such as robotics, augmented reality, and autonomous driving. There are various
approaches including monocular depth estimation [8, 9, 1, 17], stereo depth esti-
mation [2, 38, 25, 35, 36, 34], and multi-modal depth estimation [22, 26] to name
a few. Among them, stereo and multi-modal methods often demonstrate robust
performance compared to the monocular method in various environments.
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RGB NIR LiDAR LS [4] MMDNet [22] Ours

Fig. 1. Depth estimation results in changing environments. Top row: KITTI
MMD, middle row: MMDCE day, and bottom row: MMDCE night. Note that the
highlighted red box in the NIR image is shifted to match the reference view.

However, relying solely on a single imaging sensor such as RGB and near-
infrared (NIR) cameras can result in unreliable and erroneous depth estimation,
particularly in challenging lighting conditions like low-light or sudden lighting
change scenarios (e.g., driving at night or entering a tunnel). Therefore, previous
studies have attempted to utilize diverse sensors for reliable and robust depth es-
timation against challenging lighting conditions, such as RGB-LiDAR fusion [5,
4] and RGB-NIR-LiDAR fusion [22]. These methods resolve sensor-fusion related
issues, such as far-depth value [5], sensor misalignment [4], and redundancy of
depth basis [22]. However, they have overlooked the potential benefits of exploit-
ing multiple sensors in terms of reliability and precision. For example, learning
modality-invariant features from heterogeneous sensors may allow a network to
predict a reliable depth map less affected by lighting conditions. Additionally,
diverse baselines between sensors enable the network to cover short-, middle-,
and long-distance depth range searching.

In this paper, we propose a novel metric depth estimation framework that
maximally exploits cross-modal cost volumes by learning modality-invariant fea-
tures and considering diverse baselines. The proposed framework consists of
cost volume generation module, multi-modal cost volume fusion module, and
cost volume-guided propagation module. Given stereo RGB, stereo NIR, and Li-
DAR data, the framework constructs modality-specific cost volumes from each
stereo pair and modality-invariant cost volumes from cross-spectral images. After
that, a multi-sensory cost volume that includes modality-specific and modality-
invariant properties is aggregated by the proposed cross-modal attention block.
Lastly, the cost volume-guided propagation module predicts a reliable and pre-
cise depth map from the multi-sensory cost volume against challenging lighting
conditions, as shown in Fig. 1. Our contributions are summarized as follows:

– We propose a novel framework that maximally exploits cross-modal cost
volumes along with single-modal cost volumes by learning modality-invariant
features and aggregating cost volumes constructed by diverse baselines.

– We design a cross-modal attention block that integrates modality-specific
and modality-invariant properties of multiple sensors. (e.g., RGB, NIR, and
LiDAR).
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– We introduce a simple yet effective modality-invariant feature learning method
that is less affected by lighting conditions by utilizing structure consistency.

– The proposed network achieves state-of-the-art results on the KITTI MMD [29,
7] and MMDCE datasets [22] containing diverse environmental changes.

2 Related Work

2.1 Depth Estimation

Stereo Depth Estimation. Stereo depth estimation [2, 38, 25, 35, 26, 36] is a
fundamental task in computer vision, involving the calculation of disparity from
two images captured from the different viewpoints. In recent years, this technique
has been extensively researched due to its broad applications [31]. PSMNet [2]
employs a stacked hourglass to iteratively refine the cost volume in an end-to-end
manner. AANet [38] proposed an effective intra- and cross-scale cost aggregation
algorithm, achieving fast inference times. PCW-Net [25] introduced a multi-scale
cost fusion method to cover diverse receptive fields and efficient warping volume-
based disparity refinement. These depth estimation methods depend on a single
modality, typically relying on RGB cameras to generate depth maps. While
these stereo depth estimation networks perform well in general situations, they
struggle to handle challenging lighting conditions.
Stereo-LiDAR Fusion. To address this limitation, several methods incorpo-
rate multi-modal sensors for depth estimation. LS [4] proposed an unsuper-
vised depth estimation network based on noise-aware LiDAR and stereo fu-
sion. VPN [5] developed a volumetric propagation network that can perform
long-range depth estimation based on a stereo-LiDAR fusion network. Moreover,
MMDNet [22] incorporated multiple sensors (i.e., RGB-NIR-LiDAR) with adap-
tive cost volume to minimize computational cost and depth basis redundancy
for robust performance. While these methods have shown promising performance
in multi-modal depth estimation, they often struggle to effectively identify and
utilize the most crucial factors among the various sensors in different scenarios.
To address these challenges, we propose a novel multi-sensor stereo matching
network that integrates single- and cross-spectral modalities with a single-scan
LiDAR sensor. Our framework estimates depth values across short to far dis-
tances by leveraging diverse sensor configurations.
Spatial Propagation Network. Spatial Propagation Network (SPN) [3, 23, 20,
42, 32, 40, 15] is a widely adopted method in depth completion to refine initial
depth maps through iterative propagation procedures. SPNs utilize affinities
between neighboring pixels, where these affinities are typically extracted from
geometric cues in visual information from RGB images. Consequently, they are
not directly applicable to stereo matching and show poor performance on a NIR-
LiDAR sensor configuration under nighttime conditions [22]. To address these
limitations, we propose a cost volume-guided propagation method that does not
rely on specific sensor characteristics, making it more versatile for refining depth
in diverse scenarios.
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2.2 Cross-Attention Algorithm

Recently, cross-attention algorithms [14, 12, 24, 17, 16] have been extensively re-
searched and achieved high performance in various applications. In stereo depth
estimation, several stereo matching networks have attempted to employ cross-
attention algorithms. STTR [18] combined the benefits of CNNs and Transform-
ers, using cross-attention to compute correspondences between epipolar lines
in image pairs. ChiTransformer [27] introduced a pattern retrieval mechanism,
employing cross-attention between features from two different views instead of
traditional stereo matching. Xu et al. [37] simply utilized cross-attention in the
feature extraction stage. However, these methods did not focus on cost volume
generation, which is a crucial factor in stereo matching. Since the cost volume
representation is closely related to the depth regression coefficients [2], accurate
cost volume construction is essential for high-quality depth estimation. There-
fore, we propose a novel cross-modal attention block that integrates modality-
specific and modality-invariant cost volumes, incorporating reliable and crucial
cues from various sensor pairs. This enhancement enables our network to achieve
significantly higher performance across real-world changing environments.

2.3 Domain Gap Reduction

Several methods [19, 11, 44] have been proposed to reduce domain gaps in cross-
spectral stereo matching. Liang et al. [19] and Guo et al. [11] attempted to
minimize the domain gap using GANs [10] in an unsupervised manner. Zhi et
al. [44] introduced a material-aware loss function to translate RGB images to
pseudo-NIR images. However, these approaches primarily focus on enhancing
visual similarity, while structural similarity is more critical for depth estima-
tion. Therefore, we opt for a simpler approach, maintaining consistency between
different modalities using SSIM [33] loss to create cross-modal cost volumes.
This approach ensures the generation of modality-invariant cost volumes from
cross-spectral images.

3 Method

In this section, we first provide an overview of our network architecture and de-
scribe the proposed cross-modal attention block designed for both low-level and
high-level cost volumes. Next, we introduce a straightforward approach to re-
duce the domain gap while learning modality-invariant features for cross-spectral
matching. Finally, we present a cost volume-guided propagation method to refine
the initial predicted depth map for improved versatility across diverse scenarios.

3.1 Overall Architecture

Figure 2 illustrates the architecture of our model for densely predicting depth
maps in diverse environments. In this work, we perform stereo matching not only

1423



Exploiting Cross-modal Cost Volume for Multi-sensor Depth Estimation 5

Low-level Cost Volumes (𝑪𝒍)

Single-Domain
Feature Extractor

Single-Domain
Feature Extractor

Cross-Domain
Feature Extractor

Cross-Domain
Feature Extractor

Single / Cross-spectral Cost Volume Generation

ULFBCF

High-level Cost Volumes (𝑪𝒉) Initial Depth Map (𝑫𝒊𝒏𝒊𝒕)

Pseudo-Cost Volume 
Generation

Domain Gap 
Reduction Loss (𝑳𝑮)

Final Depth Map (𝑫𝒇𝒊𝒏𝒂𝒍)

Cost Volume-Guided Propagation

Multi-sensory 
Cost Volume (𝑪𝒎𝒔)

Fig. 2. Overview of the proposed architecture. Given stereo RGB, stereo NIR,
and single-scan LiDAR, domain-specific encoders independently process each modality
to capture the unique characteristics of those sensors. After that, we integrate all cost
volumes through Bidirectional Cross-modal Fusion (BCF) and Unidirectional LiDAR
Fusion (ULF) to extract valuable cues from each domain. Subsequently, the initial
depth map Dinit is obtained from the multi-sensory cost volume and refined through
a cost volume-guided propagation module to predict the final depth map Dfinal.

within the same sensor modalities but also across different sensor modalities. We
generate two low-level cost volumes from the single-stereo pair of RGB and NIR
images, respectively. Additionally, we create two low-level cross-spectral cost
volumes by pairing RGB and NIR images. Each pair of sensor configurations
has a unique depth basis, which results in varying disparity ranges as shown in
Fig. 3. Here, the depth basis D = {dm}Mm=1 represents a set of depth candidate
values with cardinality M , which is closely related to the coefficients for depth
map D regression defined as follows:

D =

M∑
m=1

dm · softmax(Cam), (1)

where Cam is the m-th cost slice of the aggregated cost volume Ca and softmax(·)
is the softmax function. Note that disparity values to calculate each cost slice
are determined corresponding to D [22]. Thus, utilizing various bases, includ-
ing cross-spectral modalities, allows us to capture a broader spectrum of depth
resolution, combining the strengths of each sensor pair to achieve more compre-
hensive and accurate depth estimation. This approach enhances the robustness
of our cost volume generation strategy.

The generated low-level cost volumes are then gradually combined using Bidi-
rectional Cross-modal Fusion (BCF) to construct two high-level cost volumes.
We also generate a LiDAR pseudo-cost volume to leverage the precise depth prior
from point clouds acquired by the LiDAR. After that, we combine the LiDAR
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Fig. 3. Depth range variations. The depth range is determined by the configuration
of stereo sensors, specifically basis value between them. Different sensor pairs have
distinct depth ranges due to their unique sensor configurations. By leveraging these
varying depth ranges, we can integrate the unique characteristics of all sensors without
being limited by their individual mechanical structures.

pseudo-cost volume with the stereo cost volumes through our Unidirectional Li-
DAR Fusion (ULF) to obtain a final multi-sensory cost volume that contains
the combined information from all sensor modalities. Subsequently, following
the standard stereo estimation procedure [38], we go through the aggregation
and estimation process to derive an initial depth map. We further refine the
initial depth map through cost volume-guided propagation. This step involves
non-local spatial propagation [23] with four iterations, leveraging both the initial
depth map and the aggregated cost volume. With this novel architecture that
maximally exploits cross-modal and single-modal cost volumes, our model can
predict reliable and accurate depth maps even in challenging environments.

3.2 Multi-modal Cost Volume Fusion

We propose Bidirectional Cross-modal Fusion (BCF) and Unidirectional LiDAR
Fusion (ULF) blocks to create a cost volume containing reliable information
from various sensors. For these fusion approaches, we design the Cross-Modal
Attention (CMA) block as shown in Fig. 4. Note that we employ geometry-aware
warping [23] when fusing each cost volume for both BCF and ULF.
Cross-Modal Attention (CMA) Block. Our proposed CMA reinforces both
the modality-specific and modality-invariant information of multiple sensors.
The CMA is defined as follows:

Qψ = fQψ (Cψ) , Kψ = fKψ (Cψ) , Vψ = fVψ (Cψ) , (2)

Rψ = softmax
(
Qψ ⊗K⊤

ψ

)
, (3)

Ĉψ = CMA
(
Cψ, Cψ′

)
= Rψ′ ⊗ Vψ + fskipψ (Cψ) , (4)

where ψ denote src or tgt for source and target cost volumes, respectively, and ψ
′

denote the other domain relative to ψ. fQψ (·), fKψ (·), fVψ (·), fskipψ (·), and ⊗ denote
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Fig. 4. Cross-Modal Attention (CMA) block. We extract the key, query, and
value from each cost volume and calculate the correlation score. BCF is bidirectionally
performed for single and cross-spectral modalities’ cost volumes (denoted as solid and
dotted rays). ULF is conducted similarly, using the LiDAR pseudo-cost volume as the
target and the others as sources in a unidirectional manner (denoted as solid rays). We
utilize CMA in a hierarchical manner across three different scale cost volumes.

convolution blocks for query Q, key K, value V , skip-connection, and element-
wise multiplication, respectively. Note that Ctgt is the target cost volume from
the reference view. For example, CMA generates Ĉtgt by first extracting Qsrc
and Ksrc from Csrc and Vtgt from Ctgt using Eq. (2). Then, the relation score
of the source feature Rsrc is calculated using Eq. (3). At the same time, the
feature from skip-connection is extracted by fskiptgt (Ctgt). Afterward, the final
cost volume Ĉtgt containing information from both the source and target cost
volumes is obtained using Eq. (4). Since our stereo matching constructs cost
volumes at three scales, we conduct hierarchical CMA for each scale.
Bidirectional Cross-modal Fusion (BCF). We perform CMA bidirectionally
for single and cross-spectral modalities’ cost volumes. By adopting a bidirectional
approach, we can incorporate the benefits of both cost volumes, allowing for a
more comprehensive integration of reliable cues. Specifically, BCF can enhance
the modality-specific and modality-invariant properties within the single and
cross-spectral cost volumes, respectively. The proposed BCF can be formulated
as follows:

Chcs = CMA(ClNIR−RGB , C
l
RGB−NIR) + CMA(ClRGB−NIR, C

l
NIR−RGB), (5)

Chs = CMA(ClNIR, C
l
RGB) + CMA(ClRGB , C

l
NIR), (6)

where Chcs and Chs denote fused high-level cost volumes generated from cross-
spectral and single-domain volumes, respectively. Cl denotes low-level cost vol-
umes generated by stereo matching in RGB and NIR images (i.e, ClRGB , ClNIR).
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Unidirectional LiDAR Fusion (ULF). We propose the ULF strategy to fuse
cost volumes generated from CMF with the LiDAR pseudo-cost volume CLiDAR.
Given the importance of the LiDAR sensor as a precise depth prior, ULF adopts
a unidirectional fusion strategy. We regard the cost volumes obtained through
BCF from all image sensors as the source cost volume, and CLiDAR constructed
from pseudo-cost volume generation [22] as the target cost volume. The proposed
ULF is defined as follows:

Cms = ULF(CLiDAR, Chs , C
h
cs)

= CMA(CLiDAR, C
h
s ) + CMA(CLiDAR, C

h
cs),

(7)

where Cms denotes the multi-sensory cost volume that incorporates reliable
information from all sensors. Note that in the previous fusion method [22],
geometry-aware warping is solely applied to fuse multi-modal cost volumes us-
ing intrinsic and extrinsic parameters. However, naïve geometry-aware warping
is prone to sensor calibration errors, causing misalignment during the fusion
process. Therefore, we introduce our ULF block on top of geometry-aware warp-
ing to implicitly mitigate these errors through its attention-based suppression
capability of irrelevant information.

3.3 Domain Gap Reduction

We opt for a straightforward approach to maintain modality-invariant features
between different modalities (i.e., cross-domain) by using the Structural Similar-
ity Index (SSIM) [33] loss when creating cost volumes. It is effective in capturing
changes in structural information, which is crucial for maintaining feature con-
sistency across different modalities. Our domain gap reduction loss is defined as
follows:

LG =
1

N

N∑
n=1

(
1− SSIM

(
FRGBn , FNIRn

))
, (8)

where n,N, FRGB , and FNIR denote the pixel index, the number of pixels, and
features extracted from RGB and NIR images, respectively. Here, we employ
SSIM loss with a 3×3 block filter inspired by Monodepth [8]. It evaluates the
similarity between two images based on three components: luminance, contrast,
and structure. By minimizing the domain gap reduction loss, we train the en-
coders to extract domain-invariant structural features that appear consistently
across different domains (e.g., strong edges, blobs, and corners). This consis-
tency is crucial for accurate cross-spectral matching, as it aligns the feature rep-
resentations across different sensor types. Using SSIM loss in our approach helps
preserve the structural similarity between the RGB and NIR features, effectively
reinforcing modality-invariant feature learning without requiring additional net-
works (e.g., GANs). We argue that the introduction of LG is computationally
efficient as well as effective in maintaining the fidelity of feature representations
across modalities.
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3.4 Cost Volume-Guided Propagation

To further improve the depth estimation accuracy, we adopt an SPN-based depth
refinement process after the initial depth regression from aggregated cost volume
Ca (cf., Eq. (1)). Ca is generated by the multi-scale cost volume aggregation [38]
using Cms at three different scales. Different from conventional SPNs generating
affinities from visual cues [3, 23, 32], we extract them from the aggregated cost
volume Ca and the initial depth map Dinit. Since the cost volume contains
probabilities for each disparity range (cf., Eq. (1)), it can serve as a crucial cue
for propagation. Our SPN process can be formulated as follows:

W,N = fSPN
(
Ca, Dinit

)
, W,N ∈ RN×V , (9)

where fSPN (·) represents an encoder network, W and N denote the affinity and
indices of non-local neighbors, respectively, and V is the number of neighbors
for each pixel. The propagation process updates the depth prediction iteratively,
which is defined at the time step t as follows:

Dt+1
n = wnD

t
n +

∑
v∈Nn

Wn,vD
t
v, wn = 1−

∑
v∈Nn

Wn,v, (10)

where Dt
n, wn,Nn, v,Wn,v denote the depth value at n-th pixel at the time step

t, the reference affinity, indices of neighbors of n-th pixel, neighbor index, and the
v-th neighbor’s affinity value of the n-th pixel, respectively. After this iterative
refinement process, the final dense depth prediction Dfinal is obtained.

3.5 Loss Function

The total loss function Ltotal for our model is defined as follows:

Ltotal =
∑

l∈{1,2}

(
1

N

N∑
n=1

∥∥DGT
n −Dfinal

n

∥∥
l

)
+ αLG, (11)

where DGT , ∥·∥l, and α denote the ground truth (GT) depth, ℓl norm, and a
balancing hyperparameter, respectively. Note that we utilize the combination of
ℓ1 and ℓ2 norms to balance between average depth accuracy and sharp depth
prediction boundaries [22].

4 Experiment

In this section, we first describe the implementation details and show the effec-
tiveness of our method on the KITTI MMD and MMDCE datasets. We conduct
experiments on these datasets containing environmental changes, following the
same procedure as MMDNet [22]. Additionally, we provide extensive ablation
studies on the proposed CMA, domain gap reduction, and cost volume-guided
propagation approaches. We also analyze the performances of various sensor
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Table 1. Quantitative performance comparison on the KITTI MMD dataset.
(A): 90.0K, (B): 42.9K, and (C): 32.9K images are used for training, respectively.

Method Input RMSE MAE iRMSE iMAE Time
RGB Grayscale (mm) (mm) (1/km) (1/km) (s)

Mono + LiDAR (A)

DDP [41]

✓ -

1310.03 347.17 - - -
NConv [6] 908.76 209.56 2.50 0.90 -
S2D [21] 878.56 260.90 3.25 1.34 0.08
DN [39] 811.07 236.67 2.45 1.11 -

GuideNet [28] 777.78 221.59 2.39 1.00 0.14
NLSPN [23] 771.80 197.30 2.00 0.80 0.22
PENet [13] 757.20 209.00 2.22 0.92 0.03

CompletionFormer [42] 741.44 194.99 2.01 0.84 0.12
DySPN [20] 739.40 191.40 - - 0.16
LRRU [20] 723.40 188.10 1.90 0.80 0.13
TPVD [40] 718.90 187.15 - - 0.15

Stereo + LiDAR

(B) SLFNet [43]
✓ - 641.10 197.00 1.77 0.87 0.16

VPN [5] 636.20 205.10 1.87 0.99 1.41

(C)

LS [4]

✓
- 832.16 283.91 2.19 1.10 0.34

CCVN [30] 749.30 252.50 1.40 0.80 1.01
MMDNet [22]

✓
673.34 202.56 1.69 0.80 0.12

Ours 622.14 208.26 1.71 0.88 0.17
Bold: The best, Underline: The second-best

pairs to demonstrate the effectiveness of utilizing multi-sensory combinations
with the proposed CMA. Our model is trained with a batch size of 12 for 25
epochs using PyTorch with 4 RTX A6000 GPUs and tested on an RTX 4090
GPU for all datasets. We set α = 0.5 in Eq. (11) to balance the overall loss
functions in all datasets. For the quantitative evaluation, we utilize metrics used
in previous works [29]: RMSE, MAE, iRMSE, and iMAE.

4.1 KITTI MMD Dataset

The KITTI multi-modal depth (KITTI MMD) dataset [29, 7] contains over 37K
pairs of RGB, grayscale, and LiDAR images. We utilize 32.9K images for train-
ing, 3.4K for validation, and 1K for testing, respectively. These samples are
selected from traceable sequences in the KITTI raw dataset to provide the
grayscale stereo pairs required by MMDNet. Note that the test dataset is the
same as the original KITTI depth completion (KITTI DC) dataset [29]. Here,
we utilize grayscale images in place of the previously defined NIR images.

Table 1 presents quantitative comparison results on the KITTI MMD test
dataset. LS [4], CCVN [30], and MMDNet [22] were trained on a dataset with
32.9K samples, while other methods were trained with 42.9K and 90.0K samples.
All datasets have identical validation and test splits because they follow the
original configuration of the KITTI DC dataset. Compared to previous mono-
LiDAR [41, 6, 39, 42, 40] and stereo-LiDAR depth estimation networks [43, 5, 4,
30, 22], our method brings substantial performance improvement in terms of
RMSE. Our network shows significant improvement from 13.5% to 52.5% in the
RMSE metric, compared to other state-of-the-art depth completion networks
(i.e, mono-LiDAR depth estimation). Moreover, our method outperforms the
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Fig. 5. Depth map comparisons on the KITTI MMD, MMDCE day, and
MMDCE night datasets. (a) RGB, (b) NIR or Grayscale, (c) LiDAR, (d) LS [4],
(e) CompletionFormer [42], (f) MMDNet [22], (g) Ours, and (h) GT.

KITTI MMD MMDCE day MMDCE night
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

baseline multi-sensor fusion model MMDNet [22] by approximately 7.6%. This is
because our network effectively utilizes both single and cross-spectral modalities
from multiple sensors. Our approach allows the network to capture a dynamic
range of disparities corresponding to short to long distances for precise depth
estimation. Furthermore, our method also exhibits superior speed compared to
other stereo-LiDAR depth estimation networks except MMDNet and SLFNet.

Figure 5 visually illustrates the remarkable performance of the proposed net-
work. Our network effectively distinguishes edge boundaries by leveraging CMA
block and multiple modalities. In addition, by utilizing only reliable cues and
performing depth refinement through cost volume-guided propagation, we can
effectively separate foreground and background areas.

4.2 MMDCE Dataset

The Multi-Modal Depth in Changing Environments (MMDCE) dataset includes
various day-night scenarios. We utilize 6,628 image pairs, comprising 5,876 for
daytime (Train: 4,344, Validation: 656, Test: 876) and 752 for nighttime (Train:
601, Test: 151) data of RGB, NIR, and LiDAR sensors.

Table 2 provides quantitative comparison results on the MMDCE day-night
dataset. Note that we obtained the model for the nighttime split by fine-tuning
the model initially trained on the daytime images on the nighttime ones due to
the lack of nighttime training data, following previous work [22]. To achieve op-
timal performance in both day and night scenes, it is crucial for the network to
adaptively learn and utilize the most relevant information from different sensors.
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Table 2. Performance comparison on the MMDCE day-night dataset (M:
Mono, S: Stereo, L: LiDAR).

(a) Day

Method Input RMSE MAE
RGB NIR (mm) (mm)

M + L

NLSPN [23] ✓ - 1750.6 709.7
- ✓ 1791.4 831.8

GuideNet [28] ✓ - 1486.7 697.0
- ✓ 1658.6 832.7

CompletionFormer [42] ✓ - 1470.6 587.2
- ✓ 1583.0 734.8

S + L

LS [4] ✓ - 1759.6 939.8
- ✓ 13009.5 8353.5

CCVN [30] ✓ - 2141.4 1046.2
- ✓ 5884.9 2379.0

MMDNet [22]
✓ ✓

1226.2 610.4
Ours 1092.3 507.4

Bold: The best, Underline: The second-best

(b) Night

Method Input RMSE MAE
RGB NIR (mm) (mm)

M + L

NLSPN [23] ✓ - 1755.2 716.8
- ✓ 2126.5 1031.8

GuideNet [28] ✓ - 1864.9 804.3
- ✓ 1892.9 963.8

CompletionFormer [42] ✓ - 1386.0 682.4
- ✓ 2146.7 1058.8

S + L

LS [4] ✓ - 3589.8 1431.8
- ✓ 9289.3 6162.2

CCVN [30] ✓ - 1722.4 727.0
- ✓ 3884.4 1569.2

MMDNet [22]
✓ ✓

1371.3 663.6
Ours 1295.3 627.9

Bold: The best, Underline: The second-best

Each sensor has unique strengths and weaknesses for estimating depth under spe-
cific conditions. While previous depth completion networks and stereo matching
networks do not consider which sensor data is crucial for different scenes, our
network leverages the strengths of each sensor through the proposed hierarchical
CMA strategy. This approach effectively selects and integrates the most valuable
data from each sensor, enabling adaptation to a variety of lighting conditions
and environmental challenges.

As a result, our network achieved high accuracy across all metrics compared
to previous approaches in both scenarios. Specifically, our network achieves
10.9% and 16.9% higher performance than the previous SOTA approach [22]
at daytime scenarios in terms of RMSE and MAE, respectively. Correspond-
ingly, our network also exhibits improvements of 5.5% and 5.4% in RMSE and
MAE for nighttime scenarios. Furthermore, SPN-based depth completion net-
works [23, 42] experience performance degradation in nighttime scenarios when
using NIR-LIDAR sensors. This limitation primarily stems from these networks’
inability to capture pertinent cues from blur artifacts caused by low-light condi-
tions. However, our network achieves high performance even with NIR sensors
by utilizing a comprehensive cost volume that integrates reliable cues for depth
regression and facilitates additional propagation.

Figure 5 showcases qualitative comparisons on the MMDCE day-night datasets,
highlighting the superior performance of our network compared to previous ap-
proaches. Especially in nighttime scenarios, our approach better distinguishes
tiny objects and background areas compared to previous works. Furthermore,
our network produces more sharper predictions without blur effects during day-
time scenarios compared to SPN-based method [42], which suffers from lower
sharpness due to the absence of LiDAR data. Our approach demonstrates ro-
bustness and adaptability across varying lighting conditions and scenarios.
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Table 3. Ablation study results on the KITTI MMD dataset.

(a) Ablation on Model Components

Modality CMA Cross-spectral LG SPN RMSE MAE
(mm) (mm)

RGB-Gray-LIDAR

Base fusion 689.12 233.26
✓ 656.06 223.14

✓ 738.68 236.31
✓ ✓ 650.20 220.92
✓ ✓ ✓ 645.14 220.03
✓ ✓ ✓ ✓ 622.14 208.26

(b) Ablation on Modality Combinations

Modality CMA RMSE MAE
BCF ULF (mm) (mm)

RGB 885.71 335.14
Gray 922.84 336.75

LiDAR 817.25 269.47

RGB-Gray 888.32 327.25
✓ 821.79 306.47

RGB-LiDAR 721.41 247.81
✓ 662.49 225.87

Gray-LiDAR 755.05 255.44
✓ 687.88 225.72

RGB-Gray-LiDAR 689.12 233.26
✓ ✓ 656.06 223.14

Table 4. Ablation study results on the MMDCE Day and Night datasets.

(a) Day

Modality CMA RMSE MAE iRMSE iMAE
BCF ULF (mm) (mm) (1/km) (1/km)

RGB 1813.7 916.5 11.1 6.5
NIR 1955.2 1064.4 15.1 9.2

LiDAR 1610.5 726.9 10.1 5.6

RGB-NIR 1766.2 912.4 11.5 6.7
✓ 1680.4 843.4 9.5 5.7

RGB-LiDAR 1293.6 605.5 8.3 4.6
✓ 1230.5 598.9 8.1 4.5

NIR-LiDAR 1378.5 655.1 8.6 4.9
✓ 1287.9 612.2 8.2 4.7

RGB-NIR-LiDAR 1230.5 598.9 8.5 4.9
✓ ✓ 1142.3 557.4 8.0 4.6

(b) Night

Modality CMA RMSE MAE iRMSE iMAE
BCF ULF (mm) (mm) (1/km) (1/km)

RGB 2035.9 1119.3 18.1 11.2
NIR 2320.8 1459.5 24.9 16.0

LiDAR 1713.2 763.7 11.6 7.0

RGB-NIR 1986.6 1169.2 18.3 11.8
✓ 1954.3 1086.7 13.4 8.9

RGB-LiDAR 1378.6 695.3 10.7 6.8
✓ 1327.7 651.2 10.0 6.2

NIR-LiDAR 1392.8 740.3 11.2 7.0
✓ 1334.7 648.1 9.4 5.8

RGB-NIR-LiDAR 1364.7 687.7 10.5 6.4
✓ ✓ 1322.3 637.9 9.1 5.6

4.3 Ablation Studies

Effectiveness of the Proposed Framework. We have performed ablation
studies on the KITTI MMD test dataset to provide effectiveness of our proposed
approaches as shown in Tab. 3. First, we evaluate the performance of the base fu-
sion model [22] with ℓ1 and ℓ2 losses. When integrating cross-spectral modalities
with single modalities without additional methods (e.g., CMA and domain gap
reduction), the model fails to replicate the performance of the base fusion model.
This is because simply averaging all cost volumes [22] overlooks the varying sig-
nificance of each cost volume. To address this issue, we employ CMA which can
effectively adjust the importance values among the different cost volumes. As a
result, our network further improves RMSE from 689.12 to 650.20 and MAE from
233.26 to 220.92 compared to the base fusion model. Additionally, we introduce
domain gap reduction loss LG to learn modality-invariant features between RGB
and NIR features. This approach facilitated the minimization of feature discrep-
ancies, leading to a further improvement in RMSE from 650.20 to 645.14. Lastly,
our cost volume-guided propagation method brings 3.7% and 5.3% performance
improvements in terms of RMSE and MAE, respectively. These consistent per-
formance improvements strongly support the assertion that all components of
the proposed framework contribute significantly to robust depth estimation.
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Modality Combination. We evaluate the impact of our fusion strategy for
stereo matching paired with LiDAR sensors across diverse environments as shown
in Tab. 3 (b) and Tab. 4. Throughout the all datasets and modality pairs, uti-
lizing CMA consistently demonstrates significant effectiveness in whole metrics.
Compared with the base fusion model [22] (i.e., RGB-NIR/Gray-LiDAR), adopt-
ing our CMF and MLF exhibits a 3.1% to 7.1% improvement in RMSE and a
4.3% to 7.2% improvement in MAE across the datasets. These results underscore
the efficacy of CMA in enhancing depth estimation accuracy by effectively in-
tegrating information from multiple sensor modalities. In the KITTI MMD and
MMDCE day datasets, employing CMF and MLF yields similar performance
improvements. However, relying solely on images shows minimal performance
enhancement in the MMDCE night scenes. This highlights the varying impor-
tance of different sensor pairs across different scenarios. In essence, utilizing our
proposed CMA with all sensor pairs demonstrates the capability to achieve op-
timal performance across diverse conditions.

5 Conclusion

In this paper, we have proposed a novel multi-modal depth estimation framework
that effectively exploits both cross-modal cost volumes (i.e, modality-invariant)
and single-modal cost volumes (i.e, modality-specific). We also have introduced a
straightforward approach to maintain the structure similarity of features within
cross-modal cost volumes to maximize their invariant characteristics. Further-
more, we have designed a cross-modal attention block that consistently inte-
grates modality-specific and modality-invariant properties with a LiDAR sensor
to construct multi-sensory cost volume. This approach makes our network cap-
ture dynamic depth ranges from short to long distances and facilitates depth
regression using only reliable cues while suppressing redundant and irrelevant
information. To further improve the depth estimation robustness, we have pro-
posed cost volume-guided propagation. It is noteworthy that all the proposed
methods and network architecture represent a pioneering effort in multi-modal
stereo matching. As a result, our network achieves state-of-the-art performance
in the KITTI MMD and MMDCE datasets providing various environmental
changes. In future work, it would be valuable to explore alternative methods for
generating cost volumes from LiDAR sensors instead of relying on constructing
pseudo-cost volumes.
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