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Abstract. Semantic correspondence methods have advanced to obtain-
ing high-quality correspondences employing complicated networks, aim-
ing to maximize the model capacity. However, despite the performance
improvements, they may remain constrained by the scarcity of training
keypoint pairs, a consequence of the limited training images and the
sparsity of keypoints. This paper builds on the hypothesis that there
is an inherent data-hungry matter in learning semantic correspondences
and uncovers the models can be more trained by employing densified
training pairs. We demonstrate a simple machine annotator reliably en-
riches paired key points via machine supervision, requiring neither extra
labeled key points nor trainable modules from unlabeled images. Conse-
quently, our models surpass current state-of-the-art models on semantic
correspondence learning benchmarks like SPair-71k, PF-PASCAL, and
PF-WILLOW and enjoy further robustness on corruption benchmarks.
Our code is available at https://github.com/naver-ai/matchme.

1 Introduction

Learning dense correspondence between image pairs is a fundamental problem
that facilitates many computer vision tasks [15, 18, 23, 27, 33, 51, 55]. In contrast
to classical tasks, where images are captured in geometrically constrained set-
tings such as different views of the same scene [8,31] or neighboring frames in a
video [11, 13, 45], the semantic correspondence task [1, 4, 12, 28] finds pixel-wise
visual correspondences between images containing the same object or semantic
meaning. Due to these unconstrained settings, it should handle the additional
challenges of large intra-class variations in appearance and background clutter.
Recent methods [2, 3, 16, 17, 25, 26, 29, 32, 34, 36, 59] were generally trained to fit
on full-labeled datasets [4, 35] providing limited training pairs with manually
annotated keypoint pairs. The rigorous requirements of pixel-level semantic cor-
respondences lead to considerable time and expense in manual annotation by
experts. This results in a limited quantity of available training data; we call it a
data-hungry problem in semantic correspondence learning.

Various methods have focused on unsupervised strategies [10, 14, 19, 40, 50]
to increase the amount of correspondence supervision on unlabeled data in a
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self-supervised or weakly-supervised way. In particular, the weakly-supervised
methods attempted to solve the problem by using a cycle consistency [19, 50]
or pseudo-labels [10, 14] on real image pairs for unsupervised loss signal, but
they still only rely on image pairs in the training set. The capability of heavy
matching networks hinges on data quantity at first, but the training data re-
mains significantly smaller than other computer vision tasks (e.g., 1.2M images in
ImageNet-1K [42]). Therefore, we argue that previous approaches [10,14,19,50],
attempting to densify points for training, may not be an underlying solution for
the data-hungry problem.

In this paper, we present a fundamental approach dubbed MatchMe focus-
ing on overcoming the insufficiency of both image and point pairs. We utilize
unlabeled image pairs, having potentially rich semantic information that has re-
mained unannotated. The unlabeled images newly supplied can be utilized to
generate a bunch of novel pairs with originally labeled (Fig. 1(a)) or other un-
labeled images (Fig. 1(b)); the newly created keypoint pairs densify labels for
training (Fig. 1(c)). We adopt machine annotators [24,37,47,53] to acquire den-
sified labels for simplicity as well. We conjecture that a machine annotator could
offer reliable labels based on the findings from [53, 56]. Additionally, our frame-
work allows for improved label quality by iteratively updating the annotator
with the current trained model in successive training cycles.

Our proposed method is demonstrated by applying it to recent matching
architectures [2, 3] to show applicability. Experimental results prove that our
method is effective and achieves state-of-the-art performance on every bench-
mark, including PF-PASCAL [4], PF-WILLOW [4], and SPair-71k [35]. MatchMe
achieves state-of-the-art performance on all semantic correspondence bench-
marks, showing accuracy gain of 2.0% and 2.4% on PF-WILLOW and SPair-71k
(PCK@α = 0.1).

2 Background

2.1 Task Definition

The semantic correspondence task aims to predict the matching probability P
between a semantically similar image pair. Given a training image pair S with
source image Is ∈ RHs×Ws and target image It ∈ RHt×Wt , a matching function
f with the network parameters θ predicts Ps,t = f(Is, It; θ) ∈ RHsWs×HtWt by
considering the feature similarities across all the points in Is and It. It minimizes
the following problem with image pairs S and supervision P̂s,t ∈ RHsWs×HtWt

between two images (Is, It):

LS =
1

|S|
∑

(Is,It)∈S

HtWt∑
i=1

M̂s,t(i)D(Ps,t(·, i), P̂s,t(·, i)), (1)

where (·, i) indicates the i-th column of a matrix and D(·, ·) is a distance function.
M̂s,t ∈ BHtWt denotes a binary mask vector, in which M̂s,t(i) corresponds to the
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(a) Sparsely-labeled keypoint pairs

(c) Mined abundant keypoint pairs 
from previously untapped images(b) New  images with no keypoints

Fig. 1: Untapped annotation gems. Semantic correspondence learning usually suf-
fers from data hunger, so few sparsely paired keypoints drawn by yellow lines in labeled
data inherently limit the performance. (a) Labeled images in the SPair-71k bench-
mark [35] contain sparse manually annotated keypoint pairs. (b) Unlabeled images
would become hidden supplementary sources for potentially increasing the density of
pairs. (c) Newly expanded image pairs can provide abundant densified points to allevi-
ate the underlying data-hungry matter. (c) illustrates that a wealth of novel machine-
annotated keypoint pairs (indicated by blue-type lines) are generated by simply incor-
porating new unlabeled images.

existence of P̂s,t(·, i); we have

M̂s,t(i) =

{
1, if ||P̂s,t(·, i)||∞ > 0,

0, otherwise.
(2)

In a supervised learning framework, (Is, It) is tied together, so minimization in
Eq.(1) gives a matching function f under the fixed and limited image pairs S.

2.2 Motivation

Previous methods traditionally aimed to design a novel matching network to
gain a high-quality correlation map based on high-dimensional convolutions or
Transformers. However, they leverage complicated learning frameworks with
large models and distinct data augmentations due to relying on limited an-
notated keypoint pairs. Sophisticated learning frameworks [10, 14, 50] or heavy
models [2, 3, 32, 41] with a matching function f , can fit a model to insufficient
data space more; involving data augmentation methods [14] diversify the images
Is and It. However, they do not take into account the cardinality of the image
pairs |S|; still, the recent unsupervised methods that try to densify keypoint
pairs [10,14] in each image pair do not consider the additional image pairs.

3156



4 Kim et al.

We argue using fixed annotated pairs in training inherently restricts perfor-
mance; this is more likely because the annotated pairs are very sparse [4,35] (see
Fig. 1(a)). Furthermore, the available image count is inadequate to offset the
limited number of pairs. Given the constraints, we reframe the issue as a sample
optimization problem instead of Eq.(1) as:

min
θ, S′

1

|S ′|
∑

(Is,It)∈S′

HtWt∑
i=1

M̂s,t(i)D(Ps,t(·, i), P̂s,t(·, i)), (3)

where the objective has a newly added variable S ′ and corresponding supervision.
However, a direct optimization of this problem seems like an NP-hard problem.
Therefore, we relax the problem by managing the image pair variable to be
expanded, having a lower bound of Eq.(1) by simply untying the link between
source and target image pairs:

min
θ

1

|S ′|
∑

(Is,It)∈S′

HtWt∑
i=1

M̂s,t(i)D(Ps,t(·, i), P̂s,t(·, i)), (4)

where S′ ⊇ S. Minimizing Eq.(4) will give the trained weight with a lower value
than minimizing Eq.(1), where a larger cardinality has a lower objective value.
Our concern now moves on to how to acquire additional pair sets in S ′ over the
original paired images S.

3 Method

This section introduces how we enlarge the training pairs by effectively using
unlabeled data that lack annotations, as illustrated in Fig. 2. It is worth noting
that our method serves as a demonstration of the intended purpose, suggesting
that more complex approaches could outperform ours.

3.1 Mining Untapped Annotation Gems

Suppose we have a superset that contains images with or without labels having
C object classes; there are nc samples in each class c. Ideally, nc(nc − 1) pairs
for each class could be utilized for supervised training (with labels). Namely, the
possible image pairs for class c is

Uc = {(Is, It) | s ∈ c, t ∈ c, s ̸= t}, (5)

and the set of entire pairs in a training set is U=
⋃C

c=1 Uc. Due to the impractical-
ity of labeling full-image-pairs in U , sparsely and partially labeled keypoint-level
supervisions are typically available. A set of labeled data Sc for supervised train-
ing consists of image pairs for each class label c, which can be defined as a subset
of Uc:

Sc = {(Is, It) ∈ Uc | ||M̂s,t||∞ > 0}, (6)

3157



MatchMe 5

Labeled 
data

Paired images

Machine-
annotator

GT Flow

z

Machine-
annotator

Model

Unpaired images

Unlabeled 
data

zz

Pseudo 
GT Flow

Labeled 
data

Paired images

GT Flow

z

1. Machine-annotator is trained on labeled data

2. Machine 
labeling 

N
oi
se

3. Training models with 
combined data and noise 

4. Iterative training

Fig. 2: Schematic illustration of our method. Unlabeled images are iteratively
labeled by a progressively evolving machine annotator, where incrementally increasing
noise are injected to challenge the training. Therefore, by learning increasingly chal-
lenging images, the model’s generalization ability continues to improve.

and the total set of image pairs is S={Sc}Cc=1. Prior methods [2,3,16,17,32,36,59]
only trained with training image pairs S under the shared protocol based upon
semantic correspondence benchmarks [4, 35]. This bottlenecks the model’s per-
formance due to insufficient training image pairs to instantiate full dense cor-
respondences under large intra-class variations [3, 21, 36]. Therefore, expanding
the training pairs towards the entire pairs U by mining new annotation gems
is a straightforward yet underlying solution. There can be approaches to pick-
ing which image pairs to use in training, but we alternatively involve the image
set closer to the entire image pairs U to demonstrate that such a simple choice
works. We further conjecture that this is more likely to cover different appear-
ances and difficulty levels between image pairs, enabling the learned model to
have improved generalizability.

To mine correspondence supervisions for novel training pairs having no hu-
man annotations, we utilize a self-training technique [53, 56] using a machine
annotator fT, which is trained on labeled training pairs S, generates rough cor-
respondences P̄s,t = fT(Is, It; θT) ∈ RHsWs×HtWt on newly involved training
pairs where a large fraction of pairs do not belong to the existing training pairs.
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The model f is then trained to learn the novel correspondences with the loss:

LU =
∑

(Is,It)∈U

HtWt∑
i=1

M̄s,t(i)D(Ps,t(·, i), P̄s,t(·, i)), (7)

where Ps,t = f(Is, It; θ) is the predicted correspondence from the model. We use
M̄s,t as the binary mask for gating the correspondence based on a confidence-
based strategy, widely used in [39,44,52,54,57]. By using a matching confidence
C̄s,t(·, i), which defined from pair-wise scores between all locations in Is and i in
It with soft-argmax operation, it is thus formulated as:

M̄s,t(i) =

{
1, if ||C̄s,t(·, i)||∞ > τ,

0, otherwise,
(8)

where τ is the score threshold. The correspondences generated with high con-
fidence encourage the model to be trained without erroneous supervision from
ambiguous or textureless areas. In this work, different from the previous meth-
ods [2,3,9,21,25,32,34,36,59], trained on sparse keypoint pairs per limited labeled
image pairs, we can significantly increase the number of image pairs available
for training by including unlabeled data. Additionally, we use a large corpus
of keypoint pairs, densely filling most object parts by using dense predictions
from a machine annotator without the expense of manual annotation made by
a human expert.

Our training objective is L = LU+λLS , combining the loss function in Eq.(1)
and Eq.(7) to leverage both the existing labeled pairs and the ones annotated by
machine annotator. The weighting parameter λ adjusts the learning dynamics
between the losses; we use λ=1 for simplicity. Note that recent approaches [6,
30, 58] employed features from pre-trained text-to-image diffusion models for
semantic correspondence, which somewhat resembles our machine annotator.
However, our model is much lighter and is trained on much smaller data under
a simpler setup.

3.2 Iterative Labeling and Training

Our framework enjoys further improvements via iterative training. Specifically,
each iteration repeats the training process using the model trained in the previ-
ous iteration as a new machine annotator and trains a new model. We define l-th
training iteration as (f l

T, f
l), consisting of a pair of the machine annotator and

in-training-model. The first generation of annotator model f0
T is trained from

scratch on labeled training pairs S. The subsequent annotator models use the
model trained in the preceding generations, i.e., f l

T = f l−1.
During training, we augment the input images of the model to diversify them

further and let the model learn with more challenging ones. We use photometric
augmentation Np [2, 3, 14] and geometric augmentation Ng [14, 40, 50], to the
source and target image for training. As a result, the model is trained on more
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Table 1: Comparison with state-of-the-art methods on SPair-71k. Per-class
and overall PCK (αbbox = 0.1) results are shown in the table. Numbers in bold indicate
the best performance, and underlined ones are the second best. The averaged PCK of
each MatchMe significantly improves the baseline by a large margin, surpassing the
state-of-the-art methods. This superiority is mostly consistent across various regimes,
including supervised regimes such as a recent work HCCNet, semi-supervised regimes
such as SemiMatch and SCORRSAN, and unsupervised regimes such as DIFT.

Methods All AeroBike BirdBoatBottle Bus Car Cat ChairCow Dog HorseMBikePersonPlantSheepTrain TV

HPF [34] 28.2 25.2 18.9 52.1 15.7 38.0 22.8 19.1 52.9 17.9 33.0 32.8 20.6 24.4 27.9 21.1 15.9 31.5 35.6
SCOT [29] 35.6 34.9 20.7 63.8 21.1 43.5 27.3 21.3 63.1 20.0 42.9 42.5 31.1 29.8 35.0 27.7 24.4 48.4 40.8
DHPF [36] 37.3 38.4 23.8 68.3 18.9 42.6 27.9 20.1 61.6 22.0 46.9 46.1 33.5 27.6 40.1 27.6 28.1 49.5 46.5
PMD [26] 37.4 38.5 23.7 60.3 18.1 42.7 39.3 27.6 60.6 14.0 54.0 41.8 34.6 27.0 25.2 22.1 29.9 70.1 42.8
MMNet [59] 40.9 43.5 27.0 62.4 27.3 40.1 50.1 37.5 60.0 21.0 56.3 50.3 41.3 30.9 19.2 30.1 33.2 64.2 43.6
CHM [32] 46.3 49.6 29.3 68.7 29.7 45.3 48.4 39.5 64.9 20.3 60.5 56.1 46.0 33.8 44.3 38.9 31.4 72.2 55.5
PMNC [21] 50.4 54.1 35.9 74.9 36.5 42.1 48.8 40.0 72.6 21.1 67.6 58.1 50.5 40.1 54.1 43.3 35.7 74.5 59.9
CATs [2] 49.9 52.0 34.7 72.2 34.3 49.9 57.5 43.6 66.5 24.4 63.2 56.5 52.0 42.6 41.7 43.0 33.6 72.6 58.0
TransforMatcher [16] 53.7 59.2 39.3 73.0 41.2 52.5 66.3 55.4 67.1 26.1 67.1 56.6 53.2 45.0 39.9 42.1 35.3 75.2 68.6
CATs++ [3] 59.8 60.6 46.9 82.5 41.6 56.7 65.1 50.4 72.8 29.2 75.9 65.3 62.6 50.9 56.1 54.6 48.0 80.8 75.0
SemiMatch [14] 50.7 53.6 37.0 74.6 32.3 47.5 57.7 42.4 67.4 23.7 64.2 57.3 51.7 43.8 40.4 45.3 33.1 74.1 65.9
SCORRSAN [10] 55.3 57.1 40.3 78.3 38.1 51.8 57.8 47.1 67.9 25.2 71.3 63.9 49.3 45.3 49.8 48.8 40.3 77.7 69.7
DIFTsd [46] 52.9 61.2 53.2 79.5 31.2 45.3 39.8 33.3 77.8 34.7 70.1 51.5 57.2 50.6 41.4 51.9 46.0 67.6 59.5
HCCNet [17] 54.8 59.9 40.6 70.5 39.8 55.9 65.1 56.8 66.6 25.6 69.2 59.6 58.7 46.7 40.3 43.6 39.6 82.2 65.4

MatchMe (ours) 62.063.4 51.1 83.244.8 53.1 66.9 53.4 74.8 30.4 76.866.6 68.1 55.2 60.7 59.1 48.1 84.9 75.9

challenging image pairs than those in previous steps, which enhances the model’s
generalization ability, resulting in a superior model that surpasses the perfor-
mance of the previous step. It can be defined as Ps,t = f(Np(Is),Np(Ng(It)))).
Photometric augmentation is applied to both the source and target images, while
geometric augmentation is applied only to the target image, considering compu-
tational efficiency. The machine-generated labels P̄s,t are warped to align spatial
position changes by applying the same geometric transformation.

4 Experiments

4.1 Experimental Setups

Benchmarks. Experiments are conducted on three standard benchmarks for se-
mantic correspondence learning: PF-PASCAL [4], PF-WILLOW [4], and SPair-
71k [35] consisting of image pairs with human-annotated keypoints from 20, 4,
and 18 categories, respectively. As in previous works [5], we split the PF-PASCAL
dataset [4] into about 700, 300, and 300 images for training, validation, and test-
ing, respectively. For the SPair-71k dataset [35], we use 53,340 for training, 5,384
for validation, and 12,234 for testing. To verify generalization capacity, the PF-
WILLOW dataset [4] is used for testing only.
Evaluation metric. Following [34], the percentage of correct keypoint (PCK@αk)
is used for the evaluation metric by setting αk, a tolerance margin, having a value
∈ {0, 1}. PCK can be computed as the ratio of correctly estimated keypoint pairs
to the total number of keypoint pairs using the Euclidean distance between them
within the pixel margin αk ·max(Hk,Wk). By setting k ∈ {img,bbox}, Hk and
Wk are the width and height of either image or the object’s bounding box.
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(a) CATs (b) SemiMatch (c) SCORRSAN (d) CATs++ (e) MatchMe

Fig. 3: Qualitative results on SPair-71k in comparison with the competing
SOTA methods. The point-to-point matches are drawn by linking key point pairs
with line segments. Green and red lines denote correct and incorrect predictions with
respect to the ground-truth pairs, respectively. We observe that ours outperforms the
counterparts significantly across all the sample image pairs.

Implementation details. We demonstrate our proposed method with two sim-
ple baselines, CATs [2] and CATs++ [3]. We use the best-performing model’s
weight trained in a supervised setting on labeled data for the initial annotator to
generate labels. Only weak photometric augmentations, such as color-jitter and
gray-scale, are used with a given probability of 0.2 to prevent early over-fitting.
We employ stronger data augmentations to benefit generated labels more. Fol-
lowing the literature [2, 3], a combination of strong photometric augmentation
at a frequency of 0.4 is used along with geometric augmentation [22,40,48]. The
confidence threshold τ for the generated correspondences is commonly set as 0.7
for all image pairs in training datasets. We pick the best trained model as a new
machine annotator for successive iterative training.
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Table 2: Comparison with state-of-the-art methods on PF-PASCAL and
PF-WILLOW. Numbers in bold denote the best, and underlined ones are the second
best. MatchMe outperforms the competing methods again, like in Spair-71k.

Methods
PF-PASCAL PF-WILLOW

αimg αbbox

0.05 0.1 0.15 0.05 0.1 0.15

HPF 60.1 84.8 92.7 45.9 74.4 85.6
DHPF 75.7 90.7 95.0 49.5 77.6 89.1
MMNet 77.6 89.1 94.3 - - -
CHM 80.1 91.6 - 52.7 79.4 -
CATs 75.4 92.6 96.4 50.3 79.2 90.3
TransforMatcher - 80.8 91.8 - 76.0 -
CATs++ 84.9 93.8 96.8 56.7 81.2 -
PMNC 82.4 90.6 - - - -
SemiMatch 80.1 93.5 96.6 54.0 82.1 92.1
SCORRSAN 81.4 92.9 96.1 54.1 80.0 89.8
DIFTsd - - - 58.1 81.2 -
HCCNet - 92.4 - - 74.5 -

MatchMe (ours) 84.9 94.3 96.7 59.6 83.6 92.9

4.2 Comparison on Benchmarks

We evaluate our method in comparison with the SOTA methods [2,3,16,17,32,59]
trained based on the supervised protocol with existing keypoint annotations. We
also compare with similar methods [10,14], using both generated labels and GT
labels and a method without supervision [46]
On SPair-71k. Tab. 1 shows PCKs (αbbox=0.1) on all 18 object classes, in-
cluding the overall mean PCK. Our overall averaged PCK=62.0% significantly
outperforms the current state-of-the-art methods. We achieve +2.2% of PCK im-
provements over the baseline [3]. It demonstrates that the matching networks,
especially with correlation enhancement architecture, have been under-trained
with sparse and limited keypoint supervision. Furthermore, our consistently su-
perior performance in both per-class and average PCK compared to state-of-
the-art methods across various regimes [3,10,14,17,46] indicate improved gener-
alizability, which facilitates handling large intra-class variation and deformation
between instances within the same object class.

Additionally, as shown in Fig. 3, we visualize the sampled example pairs with
the predicted matches for MatchMe and the competing methods showing the best
performance in both the supervised regime, such as CATs [2], CATs++ [3] and
the regime similar to ours, such as SemiMatch [14], SCORRSAN [10], using both
supervision from generated labels and GT keypoint labels. This demonstrates
that our method estimates correspondences between image pairs more accurately
than others, even under a large discrepancy in viewpoint and scale.
On PF-PASCAL and PF-WILLOW. Tab. 2 summarizes our results on the
PF-PASCAL and PF-WILLOW datasets compared with the other competing
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Table 3: PCK comparison among training methods. For a fair comparison, we
use the fixed baseline CATs++ [3] for all semi-supervised training methods. While all
lead to performance improvements, ours enjoy the most significant enhancement, which
highlights the need to prioritize the data-hungry matter.

Methods PCK

(a) Baseline 59.8

(b) (a) + CNNGeoU [19] 60.1 (+0.3)
(c) (a) + PWarpC [50] 60.5 (+0.7)
(d) (a) + SCORRSAN [10] 61.0 (+1.2)
(e) (a) + MatchMe (ours) 62.0 (+2.2)

methods trained on PF-PASCAL from each initialized model (i.e., usually pre-
trained on ImageNet [42]). We also fine-tune our model, pre-trained on SPair-71k
with the unlabeled data from PASCAL VOC 2012, on the PF-PASCAL dataset
to evaluate the generalization capability of our model on different datasets.
MatchMe records the new state-of-the-art PCK value 94.3 that beats the pre-
vious state-of-the-art value of 93.8, which is almost saturated, on PF-PASCAL.

On PF-WILLOW, MatchMe outperform the baseline [3] by 2.9% / 2.4%
(α=0.05/0.1), surpassing other competing methods across different regimes. Note
that our method not only achieves higher PCKs than the competing methods
on PF-PASCAL but also outperforms them by a more significant margin on
PF-WILLOW. This signifies the generalization capability of our method and
discloses that ours learns a general representation, which can be applied to vari-
ous datasets, different from the baselines usually overfitted on a specific dataset.
Controlled experiments for learning methods. We conduct controlled com-
parisons between our method and existing semi-supervised methods [10, 19, 49].
All the methods are trained with the fixed baseline CATs++ [2] for a fair com-
parison to evaluate the methods’ uniqueness in improving each method’s perfor-
mance without any potential influence from the model difference. We use SPair-
71k [35], which contains fixed, sparsely-annotated pairs, for a comprehensive
comparison. We strive to report the best results for each method via parameter
searches.

Tab. 3 first shows MatchMe outperforms all the competitors. Specifically, (a)
and (b), using a cycle consistency, and (c), using generated labels as sources of
unsupervised loss signal, show limited performance improvement compared to
the baseline supervised learner (a). This is attributed to their narrow focus on
augmenting labels within a limited amount of labeled data. Unlike them, our
method (d) focuses on densifying generated labels even with unlabeled data as
well as labeled data, thereby highly boosting performance.

4.3 Analyzing Our Method

Robustness evaluation. Here, we construct a new benchmark for semantic
correspondence estimation robustness, named SPair-C, following the regime [7].
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Table 4: Robust evaluation on SPair-C. We report the PCK numbers of our
model and the baseline evaluated on clean (SPair-71k) and the newly introduced cor-
rupted dataset (Spair-C), using the pre-trained weights of our model and the baseline
model [2] provided by official code on SPair-71k.We report detailed PCKs for all the
corruptions and further report the averaged PCKs to facilitate comparison. Numbers
in bold indicate the best performance, and underlined ones are the second best.

Methods Sev. Noise Blur Weather Digital Corrup. Clean
Gauss. Shot Impulse Speckle Defocus Gaussian Snow Frost Fog Spatter Bright Contrast Saturate Pixel JPEG

Baseline

1 45.0 44.8 42.0 45.9 41.0 45.5 39.3 42.3 43.7 48.3 48.8 46.3 48.9 47.7 46.2 45.0

49.9

2 40.7 41.1 38.1 44.3 35.9 38.1 28.8 34.6 41.9 42.7 48.1 44.4 48.1 46.8 44.5 41.2
3 35.3 35.5 35.2 37.9 27.7 29.8 28.8 29.1 38.3 37.5 47.3 40.9 48.4 43.3 43.8 37.3
4 27.9 27.8 27.9 34.1 21.6 23.6 23.6 27.9 35.7 35.1 46.1 31.3 46.5 36.5 40.4 32.4
5 19.7 22.7 21.8 29.4 17.1 16.1 23.9 25.4 27.6 29.0 44.1 20.5 43.9 33.6 37.0 27.5

avg. 33.7 34.4 33.0 38.3 28.7 30.6 28.9 31.9 37.4 38.5 46.9 36.7 47.2 41.6 42.4 36.7

MatchMe

1 47.9 48.5 45.7 49.5 46.9 50.4 44.2 47.0 49.3 51.0 52.3 50.8 52.1 50.7 49.8 49.1

53.0

2 44.7 45.2 42.4 47.8 43.4 44.9 35.7 40.6 47.4 46.0 51.7 49.6 51.6 50.5 48.8 46.0
3 39.5 40.2 39.5 41.9 36.5 39.2 35.3 34.6 44.9 42.1 51.5 46.8 51.7 45.5 47.0 42.4
4 31.4 30.9 30.8 38.3 29.2 31.6 30.1 33.2 43.5 39.1 50.3 37.5 50.1 38.0 43.5 37.2
5 20.4 24.3 22.5 32.6 22.6 19.3 31.1 29.5 36.2 32.6 48.2 17.4 39.2 34.9 39.2 30.0

avg. 36.8 37.8 36.2 42.0 35.7 37.1 35.3 37.0 44.3 42.2 50.8 40.4 48.9 43.9 46.1 40.9

We highlight that SPair-C is the first dataset with corruption and noise for dense
correspondence learning and will be useful for future evaluations. We verify our
method’s robustness by evaluating whether the model can robustly predict corre-
spondences on corrupted images. Additional details for the dataset are provided
in the supplementary material.

Tab. 4 shows the overall PCK values throughout 15 corruptions in SPair-
C for MatchMe with CATs versus CATs. We observe that MatchMe consistently
outperforms the baseline [2] in terms of the average PCK values across different
severities of a single corruption (located in the column of the table) and across
different types of corruption with the same severity (shown in the row of the
table). Moreover, the average PCK for all 75 corruptions of MatchMe is 40.9,
which represents a 4.2 improvement over the baseline, surpassing the gap of 3.1
observed in the clean SPair dataset. This improvement is presumably attributed
to novel labeled keypoints mined by our method, which allowed the model to
extract more robust features, even in the presence of corrupted pixels. As a
result, the model’s robustness to typical corruptions, commonly found in natural
images, further reinforces our generalization capability effectively.
Impact of iterative training. Fig. 4 shows the improved PCK values as iter-
ative training progresses, which empirically proves the effectiveness of our iter-
ative training framework. We verify the effectiveness using two baseline models,
including CATs and CATs++. As observed in Fig. 4, performance consistently
improves with each iteration, and the difference between the first and the last
iterations is nearly 3% under the same training hyperparameters. This suggests
that improved annotations from stronger models on challenging images by more
intense data augmentations can effectively boost performance. This exposes the
data-hungry issue in earlier baselines, suggesting they were likely undertrained.
Training time efficiency. A pertinent question regarding our method is the
extent of overall training time required by our iterative learning protocol. For-
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Fig. 4: PCK at each iteration in iterative training. We report PCK values at
each iteration to show the effectiveness of our training framework. We use identical
architecture for the teacher and student and set the iterative training interval to 50
epochs for simplicity. The left and right figures are the results of MatchMe trained upon
CATs and CATs++ backbones, respectively. This indicates that the baseline models
were, in fact, undertrained and possess the capacity for further training, highlighting
the data-hungry problem.

tunately, due to the efficiency of our approach to handling the expanded data,
this is not a significant concern. Our method’s multi-iteration training with more
data may increase the training time, but our rapid convergence (8 for ours vs.
42 epochs for [10]) offsets this, maintaining time efficiency despite repeated it-
erations.
PCK analysis by variation factors. The averaged PCK is insufficient to
demonstrate the performance of the matching models precisely because it is
evaluated without considering variation factors. Therefore, the desirable model
should show an even PCK performance among the diverse difficulty levels under
various factors. To confirm the accurate performance comparison, we conduct the
PCK analysis based on the variation factors and difficulty levels on SPair-71k in
Tab. 5. In experiments, our models show robustness by maintaining higher PCK
values consistently across different difficulty levels for various factors compared
to the other models. This proves that a large amount of unlabeled data used
by our method can cover a wide range of data distribution, including diverse
difficulty levels and scene variations.
Ablation study. We comprehensively analyze each component in our method
in Tab. 6. For a fair comparison, we train all the variants on SPair-71k under the
same experimental setting. The ablation results show the impacts of each com-
ponent consisting of MatchMe. Compared to (a) MatchMe, (b) demonstrates the
impact of iterative training by running the same epochs to show the impact (i.e.,
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Table 5: PCK analysis of state-of-the-art methods on SPair-71k. All meth-
ods commonly show lower PCK than average PCK as difficulty levels of labeled data
become more difficult, but MatchMe shows the best at each level in all but two.

Methods All View-point Scale Truncation Occlusion
Easy Medi Hard Easy Medi Hard None Src Tgt Both None Src Tgt Both

NC-NET [41] 26.4 34.0 18.6 12.8 31.7 23.8 14.2 29.1 22.9 23.4 21.0 29.0 21.1 21.8 19.6
HPF [34] 28.2 35.6 20.3 15.5 33.0 26.1 15.8 31.0 24.6 24.0 23.7 30.8 23.5 22.8 21.8
CATs [2] 49.9 54.6 44.5 43.6 54.5 49.2 36.3 53.7 42.0 49.4 40.6 52.7 44.5 44.9 42.0
CATs++ [3] 59.8 63.5 55.9 53.0 62.8 59.6 50.2 61.8 55.2 56.3 54.8 63.6 52.4 57.9 50.8
SemiMatch [14] 50.8 54.8 44.1 46.2 55.3 50.2 36.6 54.2 43.2 50.0 42.7 53.6 45.1 44.9 43.3
SCORRSAN [10] 55.3 59.2 51.2 48.9 58.7 55.0 45.0 59.2 46.1 55.0 46.9 57.8 50.2 50.7 48.7

MatchMe (ours) 62.0 66.0 57.9 55.0 64.7 61.4 54.4 65.5 54.5 60.9 55.1 64.3 57.3 57.6 56.2

Table 6: Ablation study with the components. We perform a factor analysis of
the elements used for training MatchMe-CATs. We compute PCKs on SPair-71k for each
component. We observe all the components contribute to the PCK improvements.

Components αbbox

0.05 0.10

(a) MatchMe (ours) 29.6 53.0

(b) (a) - Iterative training 28.8 (-0.8) 52.0 (-1.0)
(c) (b) - Data noise 28.5 (-0.3) 51.6 (-0.4)
(d) (c) - Unpaired data 26.9 (-1.6) 49.9 (-1.7)

(b) trained at once, and (a) trained for a total of three iterative training divided
by 50 epochs). (c) shows that data noise also contributes to the performance
of MatchMe. (d) shows the benefits that novel generated labels are densified at
pixel-level and image-level, respectively, by showing a large margin of 1.6, com-
pared to (c). The result demonstrates that the data-hungry issue in the semantic
correspondence task is the most crucial in performance degradation since their
performance gains are more significant than others.

5 Related Work

Semantic correspondence learning. Recent methods for semantic correspon-
dence [2,3,16,17,25,26,29,32,36,59] inevitably train complicated matching net-
works to maximize performance in a supervised manner with limited qualified
dataset [4,35], which leads to high computational demands and poor generaliza-
tion capability across datasets.

Some unsupervised strategies [10, 14, 19, 50] extend their unsupervised loss
to the supervised regime and significantly improve the performance of the pre-
vious supervised approaches. This shows that the performance of the existing
supervised model was not fully learned due to a lack of data. Specifically, the
methods [19, 50] use a cycle consistency for unsupervised loss signal, and the
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others [10, 14] utilize pseudo-labels, generated by the model’s prediction be-
tween real images, combined with confidence measures to guarantee the qual-
ity of pseudo-labels. Recently, methods [6, 30, 58] have emerged that implement
unsupervised semantic correspondence by tapping into the inherent knowledge
embedded in pre-trained diffusion models trained on large text-image datasets
to facilitate semantic correspondence. Leveraging the knowledge in pre-trained
models for unseen data may share a similar spirit, but our framework does not
require billion-scale data for generative modeling like those. Our method em-
ploys a lighter pre-trained model as a guidance labeler to address the scarcity
of both image and point pairs by utilizing massive unlabeled data through the
pre-trained model.
Semi-supervised learning methods for semantic correspondence learn-
ing. Previous literature [24,37,47,53] were proposed to utilize a teacher-student
structure mainly for semi-supervised learning. Those methods are distinguished
from the earlier methods pseudo-labeling [20,43] and consistency regularization
methods [38] due to their use of data and the resulting performance achieved. A
teacher model, generally trained on a small set of labeled data, generates pseudo-
labels on a larger unlabeled data to guide the student model, and then the stu-
dent is jointly trained on a combination of labeled and pseudo-labeled images.
Recent studies have applied the teacher-student framework for pixel-level semi-
supervised learning, specifically for the semantic correspondence task [10, 26].
They employ a teacher model to generate additional pseudo-labels using knowl-
edge from keypoint periphery [10] or hypotheses [26] across labeled image pairs.
On the other hand, our method labels overlooked unlabeled data using a machine
annotator, continually repeating the process by assigning the learned student
back to the teacher.

6 Conclusion

In this paper, we have proposed a simple baseline that leverages unpaired im-
ages for semantic correspondence learning. Instead of using a sizeable compli-
cated model with strong data augmentations to augment paired images, we have
aimed to break the stereotype of using given labeled image pairs by expanding the
training pairs with machine-annotated unpaired images. Only with a machine-
annotation-based framework for labeling the unpaired images, our method could
beat the state-of-the-art models on SPair-71k, PF-PASCAL, and PF-WILLOW
by large margins. Additionally, our approach could continuously improve per-
formance by repeating the training process with increasingly challenging image
pairs after each step. It also turns out that a resultant model has become more
robust to corrupted images.
Limitations. Going beyond the scale of Spair-71k and tackling more challeng-
ing datasets unrelated to the semantic correspondence task would reveal a more
generalized impact of our work. Furthermore, an exciting direction can be uti-
lizing recently proposed Transformer-based architectures to deal with unpaired
data with expanded data.
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