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Abstract. In large-scale image retrieval, the primary goal is to extract
discriminative features and embed them into global image representa-
tions. Previous methods based on CNNs effectively learn local features
and create robust representations, leading to strong performance. Trans-
formers that excel in learning global context, however, often struggle to
extract fine details and therefore do not perform well in large-scale land-
mark recognition. In this paper, we propose a novel hybrid architecture
named ULTRON, which combines transformer blocks with local self-
attention and a convolution-based encoder. Our local transformer block
contains an advanced self-attention mechanism that enhances the spatial
context awareness of key features and updates the value features by con-
sidering broader information within fixed-size regional windows. In ad-
dition, we have designed a channel-wise dilated convolution that adjusts
dilation per channel, enabling effective multiscale feature learning while
robustly capturing local features. We focus on learning local contexts
throughout the entire network and effectively blending these contexts in
the attention-based pooling process. This approach generates a powerful
global representation that includes local information, relying solely on
classification loss without requiring additional modules to capture local
features. Experimental results demonstrate that our model outperforms
previous works due to effectively embedding local features into a global
representation.

Keywords: Image retrieval · Landmark recognition · Local self-attention.

1 Introduction

Content-based image retrieval refers to searching large databases to find images
that match a query image. Specifically, instance-level image retrieval involves
searching for visually similar images and identifying specific landmarks, build-
ings, or objects to find images containing matching entities. The key challenge in
understanding the complex patterns of various locations and landmarks lies in
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2 M. Kweon et al.

extracting distinctive and meaningful local features while achieving a compact
global representation. In the early stages of feature extraction, various hand-
crafted techniques [22, 5, 25, 44, 15, 39] were developed. Over the past decade,
these traditional methods have evolved into techniques utilizing CNNs [33, 4] for
object recognition. Notably, deep local features [24] extracted from dense fea-
ture maps generated by CNNs are essential for discerning fine-grained details and
variations in images. These features are critical in image retrieval for geometric
verification [10, 2] to determine whether two images are correctly matched. Re-
cently, two-stage retrieval methods [6, 37, 19] have been proposed, where global
retrieval is initially performed using deep global features, followed by refining
a few errors based on local features. These approaches have achieved state-
of-the-art performance in instance-level image retrieval. However, in real-time
applications such as visual localization or SLAM, the two-stage method often
increases system complexity and can introduce significant latency during infer-
ence. DOLG [48] employed geometric orthogonal fusion to address these issues,
while other approaches [23, 34, 36] utilized attention mechanisms to integrate
local and global features. Recent studies [18, 49] have been designed to embed
richer detailed information into global features effectively.

While these efforts focus on improving instance-level image retrieval, other
computer vision tasks have seen success with models based on the Vision Trans-
former (ViT) [8]. However, these advancements have not shared the same success
in large-scale image retrieval tasks [9]. A few studies have introduced transformer-
based [26] and hybrid [35] models that integrate atrous convolution [7] with
ViT to recognize local features and embed them into global features. Despite
achieving excellent performance, these approaches rely on large deep networks,
resulting in slow inference times and high computational costs.

In this paper, we propose a Unifying Local TRansformer and cONvolution
network (ULTRON), a novel hybrid model that leverages both convolution
and local self-attention blocks. We also introduce Spatial Context-Aware Local
Attention (SCALA) as an advanced local self-attention technique to enhance
spatial interdependency in our transformer blocks. Moreover, we design a Channel-
wise Dilated Convolution (CDConv) that adjusts dilation rates across dif-
ferent channels to exploit multiscale information in convolution-based encoder
blocks. The proposed method has achieved state-of-the-art performance on the
revisited Oxford (ROxf) and Paris (RPar) datasets with one million distractors
(ROxf+1M and RPar+1M) under the hard configuration [30].

2 Related Work

2.1 Image Retrieval

Image retrieval identifies matching images from a database given a query, using
similarity measures. Early methods focused on hand-crafted local features [22,
5, 25, 44] and compact descriptors from feature aggregation [15, 39]. In addition,
local feature matching with RANSAC [10] is used to re-rank the initial retrieval
results, leveraging geometric verification for better alignment [27, 28].
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ULTRON: Unifying Local Transformer and Convolution 3

With the advent of deep learning, features extracted from deep neural net-
works replaced hand-crafted ones [4, 11, 24], while methods like ASMK [40], R-
ASMK [38], and Token [46] advanced local feature aggregation. Pooling methods
such as SPoC [3], MAC [42], and GeM [31] generated more compact global de-
scriptors, leading to deep global feature-based retrieval. Attention-based models
like SOLAR [23] and GLAM [34] improved global representations by focusing on
important regions. Alongside the progress in global representations, two-stage
retrieval methods incorporating re-ranking as post-processing, such as DELG [6]
and RRT [37], also evolved. However, due to the computational demands of such
methods, global representation-based retrieval approaches have gained popular-
ity for real-time applications, offering lower memory usage and improved effi-
ciency [48, 36]. Recently, SENet [18], SpCa [49], and CFCD [50] pursued captur-
ing richer details and enhancing feature discrimination to create more powerful
global representations.

In contrast, our ULTRON is a single-stage model that effectively learns re-
gional context throughout the entire network using only classification loss. This
enables instance image retrieval through a single global pass using an end-to-end
approach without additional local feature enhancement modules or pairwise loss
functions, thereby reducing the complexity during the training process, while
still retaining robust global representations that preserve local features.

2.2 Vision Transformer for Image Retrieval

Transformers have proven effective in re-ranking tasks [37], outperforming tra-
ditional methods like geometric verification and query expansion [12]. However,
in terms of feature extraction, CNN backbone networks [24, 6, 48] have consis-
tently achieved state-of-the-art results in large-scale landmark retrieval, whereas
vanilla ViTs [9] have struggled to deliver satisfactory performance. In recent
times, ViT-based [26] and hybrid [35] models have been proposed, showing im-
proved results. Nevertheless, these networks integrate an additional module sim-
ilar to ASPP [7] to learn local features, making them not significantly different
from existing CNN-based architectures such as DOLG [48]. Moreover, they are
resource-intensive due to the large backbone networks, such as ViT-B [8].

To address this, we have designed a compact hybrid model with fewer param-
eters than a fully ViT-based backbone, while still maintaining high performance.
The proposed hybrid model, combining CNNs and ViTs, projects local features
into a global representation, setting itself apart from previous approaches that
relied on additional modules and post-processing to capture local context.

2.3 Local Self-Attention Mechanism

The self-attention mechanism in ViT [8] effectively captures long-range depen-
dencies and learns global context but lacks awareness of local features. Addi-
tionally, it exhibits linear time complexity concerning the embedding dimension
and quadratic complexity relative to the input size, leading to significant com-
putational demands. To mitigate these issues, SASA [32] applies self-attention
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within predefined window sizes rather than across the entire global feature map.
Subsequently, Swin Transformer [21] introduced a shifted-window self-attention
mechanism that alternates between two partition configurations in successive
transformer blocks. This approach efficiently computes non-overlapping features
while establishing connections between them. The more advanced form of local
self-attention, namely Neighborhood Attention [13], focuses exclusively on self-
attention within nearby features, along with efficient window-sized matrix mul-
tiplication methods. These local self-attention mechanisms enhance local feature
recognition compared to traditional self-attention methods but often compromise
the ability to capture long-range dependencies.

To improve the inter-dependency between features in the existing local self-
attention mechanism, our model facilitates an extension of spatial context aware-
ness during key-query interaction by considering a broader receptive field from
the query’s perspective, without expanding the feature updating area. As a re-
sult, the model can identify the importance of nearby features across a wider
area for the given query.

3 Method

Fig. 1 illustrates the overall architecture of the proposed ULTRON. Let H, W ,
and C denote the height, width, and number of channels, respectively. Given a
query image I ∈ RC×H×W , ULTRON generates a deep global feature d ∈ RD,
which also integrates fine-grained details. Here, D indicates the final embed-
ding dimension. In the shallow layers, we utilize Channel-wise Dilated Convo-
lution, a refined convolution block that adapts the size of the receptive fields
according to the importance of each channel. In the deep layers, a novel local
self-attention mechanism called Spatial Context-Aware Local Attention is em-
ployed. This mechanism calculates the attention score between broadened key
and fixed query features, ensuring strong local context awareness and mid-range
interdependency. Finally, instead of a class token, we apply an attention-based
global pooling technique [29] to represent a single global vector from the deep
spatial feature map. The following sections provide a detailed explanation of
each process.

3.1 Channel-wise Dilated Convolution

In the initial two stages, we design Channel-wise Dilated Convolution to dy-
namically adjust the receptive field of the spatial feature map based on channel
significance, functioning as a multiscale encoder. Specifically, channel attention
scores are computed, enabling smaller kernels with larger dilations to be ap-
plied to less important channels, while larger kernels with smaller dilations are
assigned to channels with higher scores. We calculate the channel attention ac
according to ECA [43], which is defined as follows:
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ULTRON: Unifying Local Transformer and Convolution 5

Fig. 1: The overall architecture of the proposed ULTRON. The first and second
stages utilize the proposed CDConv, while the third and fourth stages employ
the proposed SCALA.

ac = sigmoid

 5∑
k=1

wk ·

 1

HW

H∑
i=1

W∑
j=1

Xc+k−P,i,j

 (1)

where c, P , k, wk, ac, i, and j represent the channel, padding, kernel index,
weight of the 1D convolution, attention score of c-th channel, and spatial posi-
tions, respectively. Based on the calculated channel attention, dilation values for
channel-wise convolutional layers are assigned.

Let τ1 and τ2 be the thresholds for the attention scores, and δ1 and δ2 denote
the dilation values. Then, the dilation value dc for the c-th channel, based on
the attention weight ac, can be defined as:

dc =


1 τ1 < ac,

δ1 τ2 < ac ≤ τ1,

δ2 ac ≤ τ2.

The CDConv is computed according to the following equation:

CDConvc,i,j(X) =

K∑
m=−K

K∑
n=−K

wc,m,n ·Xc,i+m·dc,j+n·dc
, (2)

where m, n, and wc,m,n represent the row and column indices in the kernel,
and the weight of kernel for channel c, respectively. The term dc denotes the
dilation rate determined by the attention score ac. The feature map computed
by CDConv is added to the feature map multiplied by the channel attention
scores. Before and after performing this process, pointwise convolution with a
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C

Fig. 2: Overview of the Spatial Context-Aware Local Attention. The red dashed
rectangle represents the fixed window area where local self-attention is per-
formed, while the purple dashed rectangle indicates the multiscale context kernel.
The gray dashed lines denote the linear projection, and the black solid lines rep-
resent the progression of SCALA.

kernel size of 1×1 is applied to enhance computational efficiency. This structure
can be interpreted as an advanced multiscale approach, enhancing the flexibility
and efficiency of traditional convolution operations. Unlike the simple pointwise-
depthwise-pointwise convolutions used in MobileNet [14], our method leverages
adaptive dilation rates informed by attention mechanisms, allowing for dynamic
receptive field adjustments tailored to the importance of different channels.

3.2 Spatial Context-Aware Local Attention

In image retrieval tasks, it is essential to train the backbone network to ef-
fectively capture fine-grained features. To achieve this, we introduce Spatial
Context-Aware Local Attention, designed to capture local context with mid-
range interdependencies across two deeper stages, as shown in Fig. 2. Our lo-
cal self-attention block improves spatial information awareness in key features
within a fixed window size, allowing attention calculation between key and query
regions, which is then applied to the value. To further enhance the awareness
of surrounding context in key features, we employ a Multiscale Context Kernel
(MCK) similar to the Contextual Reweighting Network [16] defined as follows:

DCδ(X)i,j =

p∑
m=−p

p∑
n=−p

wm,n ·Xi+m·δ,j+n·δ + bi,j , (3)

MCK(X)i,j = conv1×1 (concat (X,DC1(X)i,j , DC2(X)i,j , DC3(X)i,j)) , (4)

where DC, p, wm,n, bi,j , concat, conv1×1 represent the dilated convolution,
kernel size of the DC, weight of kernel, positional bias of kernel, channel-wise
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(a) Landmark (b) NA (c) SCALA (Ours)

Fig. 3: Visualization of activation maps based on different local self-attention
methods.

concatenation, and pointwise convolution. Each convolution kernel is processed
through depthwise convolution, and after concatenation, it is computed using
pointwise convolution to maintain computational efficiency. After the key of the
window size is updated by considering the surrounding local area, the attention
score at the pixel (i, j), Ai,j , is calculated as follows:

Ai,j = Qi ·MCK(X)⊤εj(i) +Bεj(i), (5)

Ak
i = [Ai,1 Ai,2 · · · Ai,k]

⊤
, (6)

where, εj(i), and Ai,j represents the j-th neighbor feature of i, and it’s attention
score. Note, Q and B denote the projected query feature and the positional bias,
respectively. Let Vk

i be a matrix where each row corresponds to the k-th value
projection defined as follows:

Vk
i =

[
V ⊤
ε1(i)

V ⊤
ε2(i)

· · · V ⊤
εk(i)

]⊤
. (7)

As a result, our local self-attention is defined as follows:

SCALAk(i) = softmax

(
Ak

i√
d

)
· Vk

i , (8)

and this process is carried out for each pixel within the feature map. Through our
design, we first update the key feature using a convolutional multiscale context
kernel, and update the local area by window self-attention based on the updated
key values.
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SCALA can be interpreted as a context expansion version of Neighborhood
Attention (NA) [13]. As shown in Fig. 3, SCALA focuses more activation on the
spatial area and reduces unnecessary background attention compared to NA.

3.3 Attention-based Global Feature

After passing through all the layers, the goal is to integrate the feature map into
a single global descriptor by considering its universal relationships. This pro-
cess involves compressing X ∈ RD4×H4×W4 , which has important local features
activated, into the final descriptor d ∈ RD4×1 using a global pooling method.
We have modified the attention-weighted pooling technique previously used in
DALG [36] and SimPool [29]. For our attentive pooling, the feature map is pro-
jected into key and value features, K,V ∈ RD4×H4×W4 . Then, the attention
score is calculated as follows:

dq = Wq ·

(
1

H4W4

H4∑
h=1

W4∑
w=1

Xγ(h,w)

) 1
γ

, (9)

A = softmax(
K⊤dq√

d
), (10)

where dq, and γ represent the query descriptor, and pooling parameter. First, we
obtain the initial global representation through GeM [31] and embed it as a query
descriptor through linear projection dq ∈ RD4 . After that, the attention score
is calculated by performing matrix multiplication between K and dq followed
by applying the softmax function. The calculated attention scores represent the
weights for pairwise interactions in the spatial features. Additionally, the value
feature is scaled through the following nonlinear elementwise function defined in
11:

fα(x) :=

{
x

1−α
2 , if α ̸= 1,

lnx, if α = 1.
(11)

Finally, the scaled value is un-scaled through the inverse function f−1
α after

performing matrix multiplication with the attention score, resulting in the final
global representation d ∈ RD4 as follows:

d = f−1
α (fα(V)A). (12)

3.4 Training Objective

We utilize a margin-based softmax loss to train our model on a dataset labeled
with landmark classes. For computing the logit values, we used MadaCos [50] as
the header. This method dynamically adjusts the scale and margin during the
training period, following the equations below:

s =
log
(

(1−ϵ)(1−ρ)
ϵρ

)
1− median

(
{cos(θi)}Ni=1

) , (13)
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ULTRON: Unifying Local Transformer and Convolution 9

m =
1

N

N∑
i=1

cos(θi)−
1

s
log

(
ρ
∑

exp(s · cos(θf ))
1− ρ

)
, (14)

where ρ denotes a hyperparameter for the anchor point of the target probability.
The final loss function is defined as follows:

L = − log

(
exp(s · cos(θt −m))

exp(s · cos(θt −m) +
∑

exp(s · cos(θf ))

)
, (15)

where θt represents the angle with the label encoding vector of the true class,
and θf represents the angles with the label encoding vectors of the other classes.

4 Experiments

4.1 Implementation Details

Datasets and Metric We use the Google Landmarks v2-clean dataset (GLDv2-
clean) [45] for our training, which is widely used for landmark recognition and
retrieval. The GLDv2-clean dataset comprises a total of 1,580,470 images from
81,313 landmarks, featuring a variety of landmarks. To evaluate our model, we
primarily use the Oxford and Paris datasets with revisited annotations, referred
to as ROxf, RPar, and +1M distractor datasets [30]. +1M is composed of a large
number of challenging images, making it suitable for evaluating the ability to
accurately match small similarities in images that depict the same object but ap-
pear different overall. The ROxf, RPar, and +1M datasets contain 4,993, 6,322,
and 1,001,001 high-resolution images, respectively. Each dataset has a distinct
query set, both comprising 70 images. Image retrieval performance is evaluated
based on mean Average Precision (mAP).

Model Architecture Details Our model is built based on the architecture
of the Uniformer [20]. While we adopt the architecture of the Uniformer, we
completely replace its local and global multi-head relation aggregators [20] with
our proposed CDConv and SCALA blocks. Our proposed architecture is similar
to the combination of convolution stem and ViT-based backbone in previously
proposed hybrid models [35] for instance image retrieval, but it can be consid-
ered a lighter and more efficient structure. To implement local self-attention in
stages 3 and 4 of our model, we utilized an efficient CUDA extension named
NATTEN [13]. In NATTEN, we employ a tiled neighborhood attention func-
tion to handle the operations between contextually updated keys and queries, as
well as the computations between the calculated attention weights and values.
We design the proposed model in two versions, small (ULTRON-S) and base
(ULTRON-B). For the small model, the number of encoder blocks for stages 1,
2, 3, and 4 are configured as {3, 5, 9, 5}, respectively, and for the base model,
they are configured as {5, 7, 18, 5}. In the CDConv, the thresholds τ1 and τ2
were set to the top 50% and 75% score of channel attention, and the δ1 = 3 and
δ2 = 6. Inside SCALA, the kernel size p for DC is set to 3. In both cases, the
kernel size for CDConv and the window size for SCALA are set to 7.
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10 M. Kweon et al.

Training Details Following previous studies [24, 6, 48], we randomly split the
GLDv2-clean dataset, utilizing 80% for our training dataset and the remaining
20% for validation. In the process of image augmentation, random cropping, and
color jittering are initially applied, followed by resizing all the enhanced images
to 512 × 512 pixels for use as model inputs. Each blocks are initialized from
ImageNet pre-trained weights. We use a batch size of 128 to train our models
on four NVIDIA RTX A6000 GPUs. During our training process, we employed
the technique of optimizer switching [17]. To elaborate, we trained with the
AdamW optimizer for the first 10 epochs, which included a 5-epoch warm-up
phase scaling up from a learning rate of 1e−3 to a base learning rate of 1e−2.
Subsequently, we used the SGD optimizer with a learning rate of 4e−3 and a
momentum of 0.9 for the next 40 epochs. Both methods employed a weight decay
of 1e−4. For the learning rate adjustment, we use a cosine learning rate schedule
starting after the warm-up epochs and both AdamW and SGD share the same
cosine scheduler steps. For the classification loss using MadaCos, ρ is set at 0.04.
In our pooling methods, we use learnable parameters γ for initial GeM pooling
and set α to 2.0 for scaling.

Inference Details For inference, we perform feature extraction and match-
ing. Query images are cropped according to bounding box coordinates. Follow-
ing previous works [24, 6, 48], we use an image pyramid at test time to gen-
erate multiscale representations for feature extraction. We produce 5 scales:{

1
2
√
2
, 1
2 ,

1√
2
, 1,

√
2
}

with 512 dimensions to create compact global descriptors.
Each descriptor extracted at multiple scales undergoes L2 normalization and is
then averaged. The averaged descriptor is further refined through L2 normaliza-
tion to produce the final descriptor.

4.2 Experimental Results

Comparison with State-of-the-art Methods Table 1 presents a perfor-
mance comparison on Revisited Oxford (ROxf) and Revisited Paris (RPar) by
incorporating 1 million distractors in the tests (+1M). Our experimental study
compares three groups of state-of-the-art methods: (a) refers to two-stage mod-
els that perform image retrieval based on global features followed by reranking
using local features. (b) refers to models that effectively aggregate local features
to generate a single global vector. (c) includes global single-pass models that
have recently achieved state-of-the-art performance. All models in (c) learn a
single global representation using an angular margin-based classification loss.

When compared to group (a), our proposed ULTRON-S model achieved su-
perior performance across all datasets with single global retrieval, outperforming
methods such as geometric verification [6] and reranking transformer [37], with-
out the need for reranking. In comparison with CVNet, ULTRON-B shows lower
performance on the ROxf dataset, but ULTRON-B outperforms CVNet slightly
on the RPar dataset. This indicates that our proposed method enables effective
searching in large-scale datasets without the need for reranking.
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ULTRON: Unifying Local Transformer and Convolution 11

Method Medium Hard

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M

(a) Global feature −→ Local features re-ranking

R101-DELG+GV [6] ECCV20 78.5 62.7 82.9 62.6 59.3 39.3 65.5 37.0
50-DELG+RRT [37] ICCV21 78.1 67.0 86.7 69.8 60.2 44.1 75.1 49.4
R50-CVNet+CV [19] CVPR22 87.9 80.7 90.5 82.4 75.6 65.1 80.2 67.3
R101-CVNet+CV [19] CVPR22 87.2 81.9 91.2 83.8 75.9 67.4 81.1 69.3

(b) Global single pass (Local features aggregation)

R101-HOW-VLAD [41] ECCV20 73.5 60.4 82.3 62.6 52.0 33.2 67.0 41.8
R101-HOW-ASMK [41] ECCV20 80.4 70.2 85.4 68.8 62.5 45.4 70.8 45.4
R50-Token [46] AAAI22 80.5 68.3 87.6 73.9 62.1 43.4 73.8 53.3
R101-Token [46] AAAI22 82.3 70.5 89.3 76.7 66.6 47.3 78.6 55.9

(c) Global single pass (Global features with classfication loss)

R101-GeM [45] CVPR20 74.2 - 84.9 - 51.6 - 70.3 -
R101-DELG [6] ECCV20 76.3 63.7 86.6 70.6 55.6 37.5 72.4 46.9
R101-DOLG† [48] ICCV21 78.8 73.1 89.0 79.2 59.4 48.3 73.6 61.5
R50-SENet-Lcls [18] CVPR23 81.4 72.9 90.5 79.0 62.3 48.7 80.3 59.9
R101-SENet-Lcls [18] CVPR23 80.0 72.5 (91.6) 82.1 61.7 49.2 (82.2) 64.6
R101-SENet-L†

cls [18] CVPR23 81.5 73.4 90.0 80.7 63.4 51.2 78.9 63.8
R50-SpCa [49] ICCV23 79.9 72.8 87.4 78.0 59.3 49.3 73.1 58.3
R101-SpCa [49] ICCV23 83.2 77.8 90.6 79.5 65.9 53.3 80.0 65.0
R50-MadaCos† [50] ICCV23 81.8 72.7 90.5 81.4 63.4 50.7 79.9 61.9
R101-MadaCos† [50] ICCV23 83.5 73.2 90.1 82.7 66.3 51.4 79.1 64.2
ULTRON-S (Ours) 80.9 71.8 90.8 84.5 61.2 48.8 79.9 68.0
ULTRON-B (Ours) 82.3 73.9 91.5 86.8 66.5 54.5 81.4 71.7

Table 1: Performance comparison with the previous state-of-the-art
models on the standard benchmarks. +GV, +RRT, and +CV indicate
the application of geometric verification, reranking transformer, and correlation
verification in the re-ranking process, respectively. † denotes the reproduced
result in our training setting. The best and the second-highest performances are
indicated in bold and underlined, respectively. Parentheses indicate instances
where the official performance exceeded the results reproduced in our training
setting.

In group (b), our model demonstrated advanced performance across all bench-
mark datasets compared to VLAD [1] or ASMK [41] methods by using global
features directly extracted from the feature map. When compared to Token [46],
our proposed ULTRON-S and ULTRON-B both outperformed the R50- and
R101-based Token models, respectively. Particularly, in the comparison between
the R101 model and ULTRON-B on the +1M RParis dataset, our model showed
a significant performance improvement of 10.1% and 15.8% in the medium and
hard settings, respectively. This can be attributed to the likelihood that the ag-
gregation process of local features in Token leads to a loss of detail, whereas
ULTRON’s deep global features likely retain their detailed information.

In comparison with group (c), which employs a similar methodology to ours,
our proposed approach achieved competitive performance on standard bench-
mark datasets relative to previous methods. ULTRON-S achieved superior im-
provements across all datasets compared to DELG [6] and DOLG [48]. This sug-
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Query: Hertford

2nd 3rd 4th 5th 6th

Ours	(ULTRON − B)

R101 − SENet!"#$

R101 − MadaCos$

Fig. 4: Highlighted qualitative results with R101-SENetcls, R101-MadaCos, and
ULTRON-B. Green and Red borders indicate correct and wrong predictions,
respectively.

gests that our proposed hybrid network is more effective than ResNet [47] as a
backbone for landmark recognition. When benchmarked against recent state-of-
the-art models, ULTRON-S showed slightly lesser performance than ResNet50-
based SENet [18], SpCa [49], and MadaCos [50] on the ROxf dataset. However,
it achieved comparable or better results on the RPar dataset. This points to a
more substantial improvement in performance on the +1M distraction dataset,
with ULTRON-S outperforming SENet, SpCa, and MadaCos by 8.1%p, 9.7%p,
and 6.1%p, respectively. Among larger models, ULTRON-B demonstrated a de-
crease in performance compared to the previous state-of-the-art, falling short by
1.2%p and 3.9%p on the ROxf and ROxf+1M medium datasets, respectively,
and by 0.8%p on the RPar hard dataset. However, it showed similar or improved
performance on the remaining datasets. Particularly, ULTRON-B achieved sig-
nificant performance improvements on the RParis+1M dataset, with increases
of 4.1%p (cf.ULTRON-B vs. R101-MadaCos†) and 7.9%p (cf.ULTRON-B vs.
R101-SENet†) in the medium and hard settings, respectively.

Qualitative Results Fig. 4 compares the top-10 retrieval results from the
SOTA models and our ULTRON. The SENet [18] results in the first row demon-
strate strong performance by robustly embedding inherent structural features
based on self-similarity, though they can exhibit weaknesses when handling struc-
turally similar query instances. In comparison with the second and third rows,
when trained with the same MadaCos [50] margin loss, our proposed model
demonstrates more accurate retrieval performance than ResNet. This indicates
that hybrid models such as ULTRON can achieve superior global representation
compared to ResNet.
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Method Stage 1-2 Stage 3-4 Medium Hard
(CDConv) (SCALA) ROxf RPar ROxf RPar

baseline [20] 72.5 85.8 51.1 71.0
- ✓ 75.1 88.1 52.0 74.5
- ✓ 78.7 89.6 58.4 77.8
ULTRON-S(Ours) ✓ ✓ 80.3 90.7 60.7 79.5

Table 2: Effectiveness of our feature embedding blocks in the hybrid network.

Method FLOPs Medium Hard
ROxf RPar ROxf RPar

SA [8] 3hwd2 + 2h2w2d 75.1 88.1 52.0 74.5
Swin [21] 3hwd2 + 2hwdk2 76.5 88.9 55.4 76.1
NA [13] 3hwd2 + 2hwdk2 78.2 89.7 57.3 77.4
SCALA(Ours) 3hwd2 + hwd(2k2 + 3p2 + 1) 80.3 90.7 60.7 79.5

Table 3: Performance comparison of self-attention methods with ULTRON-S.

Method #Param. (M) FLOPs (G) Latency (ms)

R101-DOLG [48] 47 334 110
R50+ViT-B/16 [35] 101 1096 632
ULTRON-B (Ours) 43 314 192

Table 4: Computational cost comparison of backbone models with ULTRON-B.

4.3 Ablation Studies

In this section, we empirically demonstrate the superiority of the proposed
method through additional experiments. All models use ULTRON-S as the back-
bone and are trained for 40 epochs.

Table 2 shows the performance changes when our method is applied to the
baseline network. Specifically, we replace Uniformer’s local multi-head relation
aggregator with our proposed channel-wise dilated convolution in stages 1-2 and
replace Uniformer’s global multi-head relation aggregator with our proposed
SCALA blocks in stages 3-4. Applying channel-wise dilated convolution resulted
in significant improvements: 2.6%p and 2.3%p on the ROxf and RPar medium
benchmark, and 3.5%p on the RPar hard benchmark. In Stage 3-4, our SCALA-
based transformer blocks significantly improved performance, achieving notable
gains of 7.3%p and 6.8%p on the ROxf and RPar hard benchmarks, respec-
tively, compared to Uniformer. These results demonstrate the effectiveness of
both CDConv and SCALA quantitatively.

Table 3 presents experimental results comparing our SCALA with previous
self-attention mechanisms, demonstrating its superiority. For input feature maps
with dimensions h×w×d , where d denotes the number of channels and h and w
represent the height and width of the feature map, respectively. Compared to NA,
SCALA has additional FLOPs equivalent to hwd(3p2 + 1) in order to enhance
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the spatial context of the key through the use of MCK. Compared to ViT’s self-
attention, local self-attention yielded superior results, and our proposed method
showed significant performance improvements. On average, it achieved a 3.6%p
increase over Swin and a 2.2%p increase over NA, due to the extended spa-
tial context in the key features without substantial increases in computational
complexity, allowing for these gains without sacrificing FLOPs.

Table 4 compares the computational cost of representative CNN and ViT-
based models in landmark image retrieval with our model. The evaluation was
carried out with a 1024 × 1024 feature map as input, using 5 scaling for embed-
ding. Note that for [35], since the official code is not yet publicly available, the
actual computational cost is likely higher than reported, as only the backbone’s
cost was measured. Our method has fewer learnable parameters and FLOPs
compared to previous backbone models. In particular, when compared to the
backbone used in [35], it shows significantly lower computational cost and ap-
proximately ×3 times faster feature extraction. This is attributed to the efficient
design of our backbone, which mitigates the necessity for supplementary mod-
ules to embed detailed information by enhancing local features. However, due to
the limitations of the local self-attention implementation, it is slower than CNN-
based models, despite being faster than universal self-attention models. This
indicates significant potential for improvement, especially with enhancements in
CUDA APIs supporting window self-attention.

5 Conclusion

We introduced ULTRON, a novel hybrid model for large-scale landmark recogni-
tion and retrieval. ULTRON addresses ViT’s limitations in fine-grained feature
capture through SCALA, enhancing spatial context awareness while reducing
unnecessary background attention. Additionally, CDConv adjusts dilation rates
based on channel importance, improving both local and global feature learning.
This multiscale approach reduces redundancy and provides robust feature em-
bedding. ULTRON outperformed state-of-the-art models on challenging bench-
marks, such as the one million distractors. For future works, we aim to implement
CDConv with continuous dilation sizes for enhanced efficiency and improve the
latency of local self-attention to develop a convolution-free local transformer for
landmark recognition.
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