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Abstract. In no-reference image quality assessment (NR-IQA), the chal-
lenge of limited dataset sizes hampers the development of robust and
generalizable models. Conventional methods address this issue by uti-
lizing large datasets to extract rich representations for IQA. Also, some
approaches propose vision language models (VLM) based IQA, but the
domain gap between generic VLM and IQA constrains their scalabil-
ity. In this work, we propose a novel pretraining framework that con-
structs a generalizable representation for IQA by selectively extracting
quality-related knowledge from VLM and leveraging the scalability of
large datasets. Specifically, we select optimal text prompts for five rep-
resentative image quality attributes and use VLM to generate pseudo-
labels. Numerous attribute-aware pseudo-labels can be generated with
large image datasets, allowing our IQA model to learn rich representa-
tions about image quality. Our approach achieves state-of-the-art perfor-
mance on multiple IQA datasets and exhibits remarkable generalization
capabilities. Leveraging these strengths, we propose several applications,
such as evaluating image generation models and training image enhance-
ment models, demonstrating our model’s real-world applicability.

Keywords: Image Quality Assessment - Vision Language Model

1 Introduction

No-reference image quality assessment (NR-IQA) [9,21,35,36,39,48] is a task of
quantifying the quality of images without a pristine reference image. Recently,
methods in IQA have also started incorporating deep learning [2,14,19,41,43,44],
similar to other fields in computer vision. However, effective application of deep
learning in image quality assessment (IQA) faces challenges due to the limited
size of existing IQA datasets [5,8,12,26,40|. Training an IQA model from scratch
with a small dataset encounters difficulties in learning rich representations for im-
age quality. This often results in degraded performance and poor generalization,
thereby restricting the practical applicability of IQA in real-world scenarios.
To address the generalization issue derived from limited dataset size, IQA
approaches have been developed to leverage rich representations from large
datasets [30] (Fig. 1(a)). In [1,36,38,44], transfer learning strategy was utilized
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Fig. 1: An illustration of a training strategy for IQA across previous works and ours. (a)
Classic IQA models use ImageNet-pretrained models or suggest image quality-related
pretraining. (b) CLIP-based IQA directly utilizes CLIP or adapts it for IQA using ad-
ditional quality annotations, which requires human labor. (¢) Our method incorporates
the rich representation of large datasets and leverages CLIP’s IQA capability. We pre-
train IQA model with attribute-aware pseudo-labels derived from CLIP and finetune it
to the target IQA dataset. (d) Cross dataset validation results, obtained by testing on
the KonlQ dataset after training on various datasets. ATTIQA achieves state-of-the-
art results and exhibits superior generalization capability on unseen datasets, showing
less performance decline on cross-dataset setup compared to other methods.

by pretraining a model on ImageNet [30]. Several studies [19, 20, 32,44, 46] have
proposed IQA-specific pretext tasks, founded on the premise that distortions in
images directly impact their quality. These lines of research emphasize the impor-
tance of pretraining tasks in IQA, demonstrating the benefits of the scalability
of large datasets. However, research on how to efficiently extract quality-related
representations from large datasets is still in progress.

Recently, Vision Language Models (VLM), exemplified by CLIP [27], have
emerged as a robust backbone in computer vision, highlighting their general-
ization capabilities. Building on these strengths, exploiting VLM for IQA has
also been explored (Fig. 1(b)). CLIP-IQA [37] proposed zero-shot IQA using the
quality-aware prompt, showing the applicability of CLIP for IQA. While CLIP-
based IQA demonstrates good generalization capability without fine-tuning, it
has been noted that CLIP alone is not suitable for precise IQA tasks, as it is
trained on generic image-text pairs. To address this issue, several studies attempt
to adapt CLIP to the IQA domain using text prompts related to image quality.
Although these approaches effectively enhance CLIP’s representation for IQA,
these strategies are constrained by the necessity of supplementary image-text
pairs for direct CLIP training, which requires additional human labor.

In this work, we introduce a novel pretraining framework for IQA, named
“ATTIQA”, ATTribute-aware IQA, which exhibits enhanced generalization
capabilities by effectively incorporating CLIP’s extensive knowledge and the scal-
ability of large unlabeled datasets. While previous works [37,45] have observed
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ATTIQA 3

that CLIP inherently contains robust representations relevant to IQA, the rep-
resentation of CLIP also consists of a wide range of semantic contexts, hindering
the precise assessment of image qualities. To this end, we propose a pretrain-
ing scheme that distills only quality-aware knowledge from CLIP with unlabeled
large dataset. Specifically, we generate pseudo-labels for given unlabeled images
utilizing CLIP’s zero-shot inference with quality-aware prompts and use them for
training a target encoder (Fig. 1(c)). Such a pretraining scheme can effectively
transfer CLIP’s quality-related knowledge, along with the scalability benefits of
unlabeled large datasets, into the target encoder. This results in the construction
of robust representations that contain only helpful information for IQA.

To generate quality-aware pseudo-labels, we propose to incorporate prompts
based on five key attributes, which have been proven to be crucial for assess-
ing image quality [5, 13, 34]. Specifically, we propose a five image attribute
based pretraining strategy beyond Mean Opinion Score(MOS). Instead of using
generic prompts such as “a good/bad photo”, as used in CLIP-IQA [37], we select
prompts representing each key attribute through Large Language Model(LLM)
and our carefully designed proxy tasks. They are taken by CLIP as inputs to
generate pseudo-labels, facilitating a network to learn from five representation
spaces for each specific image attribute (Fig. 1(c)). Taking advantage of using a
large-scale dataset combined with the novel attribute-aware CLIP guidance, our
pretraining framework significantly enhances the learning of rich representations
closely associated with image attributes and quality. We demonstrate the effec-
tiveness of our method through extensive experiments, achieving state-of-the-art
performance on multiple IQA datasets, as well as on an aesthetic quality dataset.

The ability to generalize beyond the training dataset is crucial for IQA, par-
ticularly when considering its further applications. We observe that ATTIQA
exhibits superior performance when the test dataset is unseen (Fig. 1(d)) or
the training dataset is limited, which is more applicable to real-world scenarios.
Building on these strengths, we propose a couple of applications where a gener-
alizable IQA method can be employed. We show that our method can be used
to evaluate the outputs of a generative model [29] and as a reward function for
reinforcement learning-based image enhancement [33].

2 Related Work

Classical Image Quality Assessment. Since image quality is highly regarded
as essential in diverse vision applications, numerous image quality assessment
studies have been explored. Traditional NR-IQA utilizes a feature-based ma-
chine learning approach to quantify image quality, leading to a primary focus on
extracting meaningful features. Therefore, these works introduced hand-crafted
feature based IQA, which is derived from natural scene statistics [7], spatial
domain [21, 22| or frequency domain [31].

Deep learning based IQA. With the success of deep learning, various deep
learning-based NR-IQA methods have been introduced. Early works tried to
train neural networks by directly predicting mean opinion score (MOS) [14]
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or the distribution of MOS [36]. Some works attempted to incorporate meta-
learning [48] or hypernetwork [35]. However, the limited size of IQA datasets
restricts deep learning-based approaches, making it hard to extract rich repre-
sentations solely relying on the IQA dataset. To address this problem, recent IQA
methods [36,38,44] commonly adopted ImageNet [30] classification-based back-
bone as their initial state, which already possesses rich representations. However,
there is another problem that this representation is not fully suitable to IQA,
as their pretraining task mainly focuses on semantic information but not image
quality.

Pretrain based IQA. Beyond applying deep learning strategies to IQA, some
approaches have focused on generating quality-aware representation using large
datasets without the need for ground truth. Liu et al. [19] employed the Siamese
network to rank images according to their quality, generating images of varying
quality levels by applying different scales of distortion to a single image. Syn-
thetic distortion-aware representation was introduced in [44], which attempts to
classify the type or the amount of distortions applied to images. Recently, with
the success of SSL, some works [20,32,46] suggested a contrastive learning frame-
work refined for IQA. Unlike typical contrastive learning, they viewed patches
from the same image, and each patch is differently distorted as different-quality
samples. By treating these samples as negative pairs in the training process, they
efficiently constructed a quality-aware representation space.

Vision Language Model based IQA. VLM [18,28] is a foundation model that
learns correspondence between image and text to understand the relationships
between visual contents and language. Specifically, CLIP [27] is trained with 400
million image-text pairs, and thus, it shows generalization capability for various
computer vision tasks. Taking advantage of this ability, IQA methods that utilize
CLIP have also been introduced. CLIP-IQA [37] directly assessed image qual-
ity by measuring the image’s correspondence with quality-aware text prompts.
They also suggested an enhanced version named CLIP-IQA+ that optimizes text
prompts to adapt to the given target dataset. Despite this successful application,
since the CLIP is trained with unrefined caption data focusing on semantic in-
formation, there is still room for improvement in refining CLIP’s representation
space towards an image quality-aware representation space. In response to this
property, some works have tried to adapt the representation space of CLIP with
additional datasets. Ke et al. [16] fine-tuned the CoCa [42] with the aesthetic
captioning dataset to make aesthetic-aware VLM. By injecting aesthetic-related
vision-language correspondence into VLM, they showed improved performance
of their representation in quality-related downstream tasks. Zhang et al. [45]
suggested a multi-task learning approach to adapt the vision backbone of VLM
for a unified IQA dataset. They trained the vision backbone by optimizing cosine
similarities of multi-modal embeddings with task-aware prompts.

As demonstrated by the above approaches, works refining the representation
of VLM to aware image quality are currently underway. While these method-
ologies showed improvements in incorporating quality-aware information into
VLM’s representation space, the necessity of additional datasets to fine-tune re-
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Fig.2: (a) The overall process of our prompt selection strategy for each image at-
tribute (e.g. brightness). Given attribute, we create prompt candidates using GPT-4
and then find the optimal prompt by utilizing proxy tasks related to the attribute.
(b) ATTIQA’s proposed pretraining pipeline. We generate attribute scores using CLIP
with an antonym strategy and then train our target IQA model using ranking-based
loss with generated scores.

mains a limitation. To mitigate this issue, our method does not fine-tune the
CLIP model itself, but rather eztract quality-related information from CLIP and
use them to train our IQA model.

3 Method

Fig. 2 illustrates our framework, which consists of two primary components:
prompt selection and pretraining pipeline using pseudo-labels from CLIP [27].
During the prompt selection phase, we create a list of candidate prompts using
a large language model (LLM). We then identify the most suitable prompts
for generating image attribute scores by evaluating the score generation ability
of candidates through proxy tasks. In the pretrain stage, we generate image
attribute scores as pseudo-labels for pretraining using CLIP and the chosen
prompts. Our IQA model is pretrained on this pseudo-labeled data and fine-
tuned using a dedicated IQA dataset.

3.1 Image Attributes

Our method aims to utilize image attribute-based scores as supervision to reduce
the ambiguity of the IQA task, which is typically represented solely by MOS.
This approach yields a more precise and well-defined representation of image
quality by offering specific quality criteria beyond the generic and ambiguous
mere notions of ‘good’ and ‘bad’.

In the line of IQA research that aims to incorporate quality relevant infor-
mation beyond the MOS, five key attributes — sharpness, contrast, brightness,
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colorfulness, and noisiness— are widely employed and have proven beneficial for
the IQA task [5,13,34]. Especially, SPAQ [5] substantiated through a user study
that these five image attributes correlate well with perceived image quality. These
observations indicate that these attributes are helpful factors in understanding
the image quality. Therefore, we choose these five attributes as the target objec-
tive for our IQA model. Note that the following attribute score generation and
prompt selection are conducted separately for each image attribute.

3.2 Attribute Score Generation

During attribute score generation, we generate five attribute scores for given
images using CLIP’s zero-shot inference. Given image x and attribute-aware
prompt ¢, CLIP encodes the image and prompt into shared multi-modal feature
space. We then compute the relatedness score s between x and t using cosine
similarity as follows:

S(X,t) _ EI(X) ~ET(t)T 7 (1)
Er &I - [[Er )]
where E; and Ep represent CLIP’s image and text encoder, respectively.

Our pseudo-label generation employs an antonym strategy [37], which com-
putes scores by integrating scores of positive and negative prompts with the soft-
max function. For example, we can use a prompt pair {“Dark image”, “ Bright
image”’} as a negative-positive pair to calculate the brightness attribute score.
Then, our attribute score is computed by the following equation:

es(x7tpos)

(2)

§attribute(x) = eS(X,tpos) I eS(X,tnEy)’
where t,,s and t,.4 represent positive and negative prompts for the correspond-
ing image attribute, respectively.

3.3 Prompt Selection

Previous work involving CLIP [47] has shown that the choice of prompts is criti-
cal in determining performance. To address this, we introduce a prompt selection
strategy aimed at identifying the most effective prompts for generating image at-
tribute scores. Drawing inspiration from techniques used in the NLP field [6], we
develop a selection based efficient approach for identifying the optimal prompts.

As depicted in the left side of Figure 2(a), we begin by generating prompt
candidates using Large Language Model (LLM), specifically GPT-4 [25]. To
streamline the search process, we adopt a standard template for these prompts in
the format “/adjective] image", focusing specifically on a variation of adjectives.
Prompt candidates are constructed using GPT-4, with an ask query to elicit ad-
jectives pertinent to specific image attributes. Since we use antonym pair for each
attribute, we generate 50 positive and 50 negative adjectives, resulting in 2500
positive-negative prompt candidates for each attribute. Subsequently, we identify
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the most suitable prompt pair from 2500 candidates by assessing their capability
to generate accurate attribute scores. To find the optimal prompt pair, we present
two proxy tasks. The optimal prompt is determined as the prompt that produces
an attribute score that best aligns with the goals of both tasks. To measure an
image attribute appropriately, the proxy tasks are designed under two hypothe-
ses: 1) For a fixed image, when a distortion corresponding to the image attribute
is applied to it, the attribute score predicted by the prompt should increase or de-
crease accordingly. 2) For different images, the attribute scores generated by the
prompt pairs should match well with the degree of human perception of each at-
tribute.

In the first proxy task, we apply vary-
ing levels of distortion to a fixed image
and identify the optimal pair of prompts Table 1: Results of the prompt selec-
that yield an attribute score aligning most ~ tion. These prompts are chosen by our
accurately with the applied level of distor- prompt selection strategy.
tion. For the second task, we employ the

: : : Sharpness || "Splendid image"” "Blurry image"
SPAQ dataset, which comprises diverse Contrast || "Distinet image”  "Vague image"
scenes and offers human-annotated at-  Brightness | "Sunny image” "Darkened image"
tribute scores for the same five attributes Colorfulness|| "Vibrant image" "Colorless image"
| X . Noisiness || "Peerless image" "Grainy image"

we adopt. We aim to identify the prompt
pair that generates the attribute scores
whose order closely aligns with the order
of the provided scores in the dataset. We calculate the sum of SROCC scores for
both tasks and select the highest performing prompt pair, and the result is shown
in Table 1. These selected pairs are then utilized to generate each attribute score
in the following pretraining pipeline.

Attribute H Positive prompt Negative prompt

3.4 Attribute Aware Pretraining Pipeline

After selecting prompts, we train the target IQA model to construct attribute-
aware space with ranking-based loss using a pseudo-label derived from CLIP, as
illustrated in Fig. 2(b).

Our method aims to create five unique representation spaces for each spe-
cific image attribute. Accordingly, our IQA model comprises a shared encoder
backbone and five attribute heads for each image attribute. Each attribute head
consists of two-layer multi-layer perceptrons (MLPs) that output an attribute
score. Then, our training objective for the pretraining pipeline can be formulated
by minimizing the discrepancy between five attribute score predictions from the
IQA model and the corresponding image attribute scores generated from CLIP.

Our pretraining pipeline can be directly implemented using regression-based
loss such as MSE or L1 loss. However, directly using the attribute score with
regression-based loss hinders handling uncertainties. Since scoring image at-
tributes as scalars in a zero-shot manner is inherently challenging, training by
predicting these scores may impede the construction of robust representations.
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To address this problem, we use a relative ranking-based loss instead of a numer-
ical norm-based loss to minimize the dependence on CLIP’s numerical results,
which are subject to uncertainty. To implement this loss in our framework, we
utilize margin-ranking loss that optimizes the relative ranking of the two samples
given. We first define the indicator function F', which specifies the superiority of
image attribute based on its score 5 for given images:

Fo(x1,79) = O ‘ia(XI) g fa(XQ) (3)
1a Sa(Xl) S Sa(x2)7
where a denotes an element of image attributes set A ={sharpness, contrast,
brightness, colorfulness, noisiness}, and x; and xo denote the sample images.
Then, we train our target IQA model based on margin-ranking loss with the
indicator function F,. We compute our loss by summation of margin-ranking
loss independently for each attribute a using attribute score prediction from
respective attribute head E,:

L =3 max(0,m — (Eq(x1) — Ea(x2))) - Fu(x1,%2), (4)

where m denotes the margin hyper-parameter.

3.5 Fine-tuning

To predict MOS with our IQA model, we have to fine-tune it on the target IQA
dataset. However, the architecture of our IQA model during the pretraining
stage is not designed to output a single score but instead predicts five attribute
scores. Therefore, we adapt the architecture of our model to fit the IQA task
to generate a single MOS as output. At a fine-tuning stage, we extract features
from each attribute head, excluding the final layer, and these features are then
concatenated and fed into regression MLPs that predict the MOS.

4 Experiments

4.1 Datasets

We conduct experiments with ATTIQA on the 4 “in-the-wild" NR-IQA Datasets,
CLIVE [8], KonIQ-10k [12], SPAQ [5], and FLIVE [40] and 1 image aesthetic
dataset, AVA [23]. While AVA [23] focuses on image aesthetics, we utilize this
dataset since its user study setting is the same as “IQA in the wild”.

For FLIVE [40] and AVA [23], we follow the official dataset split. For the rest,
we randomly partition the dataset and allocate 80% to the train set and 20%
to the test set. Following previous works [46], we conduct the same experiment
ten times with different random splits and report the median value as a result
to compensate for the bias arising from random splits.
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Table 2: Fine-tuning performance comparison of ATTIQA and existing NR-IQA meth-
ods for 4 IQA “in-the-wild” dataset and 1 TAA dataset. “{” denotes that this measure-
ment is achieved from [46]. “-” denotes that measurement is not possible due to the
absence of an official code and result. Other measurements are based on the official
reports or reproduced by the official code. We highlight the best performance in bold
and underline the second-best performance for each dataset.

Methods H CLIVE KonlQ SPAQ FLIVE AVA

SROCC PLCC|SROCC PLCC‘SROCC PLCC‘SROCC PLCC|SROCC PLCC
DBCNNT [44] 0.844 0.862| 0.878 0.887| 0.906 0.907| 0.542 0.626 | 0.554 0.583
HyperIQAT [35] 0.855 0.871| 0.908 0.921| 0.916 0.919| 0.535 0.623| 0.668 0.668
CONTRIQUE [20] 0.824 0.848 | 0.900 0.915| 0.910 0.915| 0.598 0.674| 0.674 0.678
MUSIQ [15] - - 0.916 0.928 | 0.917 0.921| 0.646 0.739| 0.726 0.738
TReS [9] 0.846 0.877| 0.915 0.928 | 0.915 0.919| 0.554 0.625| 0.658 0.663
Re-IQA [32] 0.823 0.865| 0.924 0.935| 0.915 0.919| 0.574 0.674| 0.714 0.716

QPT [46] 0.895 0.914| 0.927 0.941| 0.925 0.928| 0.610 0.677 - -
CLIP [27] 0.847 0.881| 0.918 0.932| 0.918 0.922| 0.563 0.628 | 0.746 0.745
CLIP-IQA+ [20] 0.805 0.832] 0.895 0.909| 0.864 0.866| 0.575 0.593| 0.692 0.732

LIQE [45] 0.865 0.866 | 0.898 0.913 - - - - - -
ATTIQA (Distortion intensity)|| 0.891 0.910 | 0.929 0.943| 0.922 0.926 | 0.625 0.729 | 0.754 0.750
ATTIQA (Human perception) || 0.890 0.915| 0.942 0.952| 0.925 0.930| 0.635 0.740| 0.756 0.759
ATTIQA (Joint strategy) 0.898 0.916| 0.942 0.952| 0.926 0.930| 0.632 0.742| 0.761 0.761

4.2 Experimental Setup

For a fair comparison, we utilize ResNet-50 [10] as our backbone, widely used in
NR-IQA. For CLIP, we adopt the ViT-B/16 model [4]. We experimentally set
the value of the margin parameter m at the loss function to 0.1.

At the pretraining stage, we use the ImageNet [30] widely used for pretext
tasks. At the fine-tuning stage, we followed the setting from [46]. We resized the
image’s shorter edge to 340 and randomly cropped the image at a resolution
of 320x320. We fine-tuned our network to 100 epochs on each target dataset.
At the evaluation stage, we take five crops at a resolution of 320x320 from
each corner and center as test samples, and the average of the results is used
for the predicted MOS. For performance evaluation, we calculated Pearson’s
Linear Correlation Coefficient (PLCC) and Spearman’s Rank-Order Correlation
Coefficient (SROCC), widely adopted evaluation metrics in IQA research.

4.3 Main Result

In this section, we report the quantitative performance of ATTIQA and compare
it with existing NR-IQA models. Utilizing our CLIP-guided attribute-aware pre-
trained model, we conduct fine-tuning on five IQA datasets to predict the MOS.
As shown in the Table 2, ATTIQA shows notable performance improvements
compared to CLIP-based methods on four IQA “in the wild” datasets and one
image aesthetic dataset AVA. Our method demonstrates state-of-the-art perfor-
mance in most evaluation settings, with the second-best SROCC performance on
the FLIVE dataset. It is important to note that MUSIQ is an exceptional work
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Table 3: Cross dataset validation performance comparison of ATTIQA and existing
NR-IQA methods.

Train DB || CLIVE KonlQ SPAQ FLIVE
Test DB ||KonIQ SPAQ FLIVE|CLIVE SPAQ FLIVE|CLIVE KonIQ FLIVE|CLIVE KonIQ SPAQ

CONTRIQUE|| 0.676 0.842 0.346 | 0.731 0.789 0.410 | 0.549 0.646 0.338 | 0.706 0.709 0.734
Re-IQA 0.769 0.852 0.424 | 0.791 0.862 0.461 | 0.732 0.707 0.497 | 0.720 0.676 0.793

CLIP 0.725 0.850 0.405 | 0.799 0.837 0.507 | 0.773 0.753 0.496 | 0.727 0.717 0.834
CLIP-IQA+ || 0.697 0.836 0.437 | 0.803 0.832 0.516 | 0.784 0.722 0.470 | 0.620 0.631 0.661
LIQE 0.819 0.877 0.497 | 0.824 0.868 0.551 - - - - - -

ATTIQA ||0.829 0.887 0.5110.856 0.879 0.540 | 0.824 0.819 0.548 |0.756 0.762 0.867

that utilized the complete FLIVE dataset comprising patches and full images,
unlike the other methods that do not use patch data. Notably, ATTIQA shows
a significant performance gap on the KonlQ-10k and AVA datasets.

In the last three rows of Table 2, we report the performance of three different
versions of ATTIQA. We carry out experiments with various types of prompts,
including cases where we apply the two proxy tasks described in Sec 3.3—Distor-
tion Intensity and Human Perception—separately, as well as a scenario where
we combine both tasks in our prompt selection strategy (Joint Strategy). We
observe that prompts based on human perception work effectively, and the joint
strategy that involves both proxy tasks shows the most superior performance.
It indicates that a prompt selection strategy that considers using both low-level
information distortion and high-level human perception enhances the robustness
of our model across various datasets.

4.4 Generalization Capability

Cross-dataset Validation. To verify ATTIQA’s generalization ability, we con-
duct experiments about cross-dataset validation. This experiment evaluates the
IQA model’s ability to learn generalizable features by training it on the specified
dataset and testing it on the unseen dataset. To consider various scenarios, we
conduct extensive experiments across four datasets: CLIVE, KonlQ, SPAQ, and
FLIVE. Every experimental setup is the same as the main experiment, and due
to the various ranges of the MOS for each dataset, we use only SROCC as an
evaluation criterion. As shown in Table 3, ATTIQA exhibits superior generaliza-
tion capability to baselines, achieving the best performance in most scenarios.
Interestingly, LIQE achieves comparable results to ATTIQA, demonstrating that
strategies adapting CLIP possess strong generalization capabilities. However, we
highlight that ATTIQA outperforms LIQE in most scenarios and that LIQE can-
not be extended to datasets where additional annotations are not provided.

Data-Efficient Setup. Moreover, we conducted experiments in a data-efficient
setup to demonstrate that ATTIQA can generalize in environments where only
a small amount of data is available. Instead of the conventional 8:2 Train-Test
split, we performed training using only 10% or 20% of the data. Since we utilize
a small amount of data, we also use only SROCC as an evaluation criterion.
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As shown in Table 4, ATTIQA outperforms other pretrain-based methods in
environments with limited datasets. This performance gap validates that our
pretraining strategy is more robust than other baselines.

Table 4: Comparison of ATTIQA and NR- Table 5: Cosine similarity between
IQA methods which focuses on representation features from pretrained and fine-

learning under data efficient setup. tuned encoder.
Methods CLIVE KonlQ SPAQ Fine-tune DB ||CLIVE |KonIQ|SPAQ
10% 20% | 10% 20% | 10% 20%
CONTRIQUE|| 0.687 0.740]0.832 0.835|0.883 0.885 CONTRIQUE|| 0.536 1 0.566 | 0.613
Re-IQA  |[0.632 0.683|0.853 0.888(0.893 0.902 Re-IQA 0.158 1 0.181 1 0.243
CLIP 0.650 0.728|0.846 0.863 |0.882 0.884 CLIP 0.195 | 0.203 | 0.309

ATTIQA ||0.820 0.838(0.903 0.919|0.909 0.917 ATTIQA || 0.890 |0.811 |0.945

Feature Analysis. In this section, we analyze why ATTIQA exhibits superior
generalization capability compared to other pretrain-based methods. We hypoth-
esize that pretext tasks providing more generalizable representations would offer
robust features that do not overfit specific datasets. To examine these proper-
ties, we extract features from each backbone before and after fine-tuning the
IQA dataset and compare them by measuring cosine similarity. As shown in
Table 5, ATTIQA’s features are slightly adjusted, whereas other methods’ fea-
tures are modified significantly. This result suggests that ATTIQA’s pretrained
representation inherently possesses superior robustness and provides a more ef-
fective initialization point for IQA than other methods, leading to enhanced
performance and generalization capability.

For real-world applications, a model’s generalization ability is far more criti-
cal than its performance on specific benchmark datasets. Our method’s superior
generalization capability ensures robust baseline performance on unseen images,
highlighting its practicability when considering the purpose of the IQA tasks.
Building on this strength, we will demonstrate the application of ATTIQA in
real-world scenarios in Sec 5.

4.5 Ablation Studies

Linear probing. We conduct linear probing experiments to demonstrate the
robustness of our attribute-aware pretrained feature space, training only a single
regression MLPs on the target dataset with a frozen ATTIQA backbone. In this
experiment, we compared ATTIQA to previous works that suggest pretext tasks
for IQA. For Re-IQA, we report the three types of results based on the encoder
configuration: using only the quality or content encoder, and both encoders. As
shown in Table 6, ATTIQA shows a significant performance gap compared to
other methods in CLIVE. In other datasets, ATTIQA also demonstrates com-
parable results to Re-IQA, which uses both features of a separate quality and
content encoder, while our method only utilizes a single shared encoder for five

4536



12 Kwon et al.

attributes. We note that CLIP shows the worst performance, validating our mo-
tivation that CLIP’s original representations are unsuitable for precise IQA.

Table 6: Linear probing performance com-
parison of ATTIQA and NR-IQA methods
which focuses on representation learning.

Table 7: Ablation study results about our
prompt based strategy and loss function.

CLIVE KonlQ SPAQ
SROCC PLCC|SROCC PLCC|SROCC PLCC
ATTIQA || 0.898 0.916] 0.942 0.952| 0.926 0.930

CLIVE KonIQ SPAQ Prompt type
SROCC PLCC|SROCC PLCC|SROCC PLCC

CONTRIQUE 0.845 0.857| 0.894 0.906 | 0.916 0.919

Methods H

Re-IQA (quality)|| 0.806 0.824| 0.861 0.885| 0.900 0910  _single-prompt || 0.880 0.909] 0928 0939 0.916 0.920
Re-IQA (content)|| 0.808 0.844 | 0.896 0.912| 0.902 0.908 Worst prompt || 0.869 0.889| 0.930 0.943| 0.920 0.925
Re-IQA (both) || 0.840 0.854| 0.914 0.923| 0.918 0.925 Median prompt|| 0.872 0.893| 0.931 0.944 | 0.921 0.925
CLIP 0.803 0.829| 0.883 0.895| 0.895 0.896 -
with Lo~ || 0.875 0.904] 0.933 0.945] 0.923 0.928
ATTIQA || 0.870 0.891| 0.903 0.918] 0.918 0.922

Attribute based Approach. To demonstrate the effectiveness of our image
attribute based approach, we carry out an experiment by replacing the target
objective from five image attributes with a single overall image quality. In this
experiment, we train the IQA model with a single pseudo-label using a prompt
pair that describes image quality: {“Good image", “Bad image"}. Comparing the
first and the second tab of Table 7, we can observe that our representation space
decomposing image quality into five attributes outperforms the single-prompt
based representation space, justifying our approach for model design.

Prompt Selection Strategy. To justify our prompt selection strategy, we ex-
periment with other prompts selected by different strategies. For comparison, we
adopt prompts that achieve the median and lowest scores in the proxy task. As
shown in the third tab of Table 7, the results of our strategy align with the per-
formance at the evaluation. This correlation validates the efficacy of our prompt
selection strategy.

Ranking-based loss. To verify the efficacy of our relative ranking-based loss
approach, we conduct an additional ablation study by replacing the margin-
ranking loss with L2 loss at the pretraining stage. As depicted in the last row
of Table 7, the use of L2 loss exhibits a performance degradation compared to
adopting margin-ranking loss. Interestingly, we can observe a notable perfor-
mance decline in the CLIVE dataset, which has the smallest dataset size within
this ablation study. This result supports the use of relative loss instead of nu-
merical loss, enhancing our pretraining pipeline’s robustness.

5 Applications

To better demonstrate our ATTIQA’s generalization capability, we introduce
two types of applications in this section: (1) metrics for the generative model
and (2) image enhancement guided by our IQA score. For each application, we
employ models trained on the KonlQ dataset, which shows the best generaliza-
tion capability at Sec 4.4.
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Preferences

Metrics
#+ CONTRIQUE| v/
RelQA |V
Ours v

A B

Table 8: Comparisons of accuracy between [
human preferences and IQA model’s result.

Human

Method  ||CONTRIQUE|Re-IQA |CLIP-IQA+|ATTIQA
Accuracy (%)|| 615 | 550 | 575 | 71.0

Table 9: Performance comparisons among
IQA model in an Al-Generated Contents
Dataset(AGIQA-3k) ;
Fig. 3: Example of generatd im-
Method | CONTRIQUE|Re-IQA|CLIP-IQA + |ATTIQA ges. The images are generated by
SROCCH 0.643 ‘ 0.807 ‘ 0.835 ‘ 0.854  the same prompt. ATTIQA hits hu-
PLCC 0-795 0-876 0-885 0911 1han preference while others do not.

5.1 Metrics for Generative Model

Recently, as the diffusion models [11,29] have shown success in the text-to-image
generation [24, 28] task. One of their primary focus is generating high quality
images from a given text prompt. In this regard, we attempt to employ ATTIQA
as a metric for generative models.

To validate ATTIQA’s effectiveness as a metric, we create a benchmark
dataset that involves the pairwise comparison of two images generated from
the same text prompt. Here, we generate 200 pairs of images using the Stable
Diffusion [29] and collect human preference by conducting a user study. When
collecting the user preferences, we only present the generated images without the
prompt to make participants focus on visual quality. The user study was carried
out with 60 participants through Amazon Mechanical Turk (AMT). We then
investigate the correlation between IQA models and the human participants.

As shown in Table 8 and Figure 3, our method mostly aligns with human pref-
erence compared to other IQA methods. Our ATTIQA can capture this detailed
visual quality difference while others do not. Please refer to the supplementary
for the user study details and more visual results. We will make the benchmark
used in this application publicly available for further IQA research.

Moreover, we carry out an additional experiment using an AGIQA-3k dataset
[17], which consists of images generated by various generative models. As shown
in Table 9, ATTIQA outperforms other methods, exhibiting a significant perfor-
mance gap. These results highlight the improved generalization capability of our
method when extended to Al-generated content. They indicate the potential for
expanding the use of ATTIQA as a metric to evaluate generative models.

5.2 Image Enhancement

The image signal processing pipeline (ISP) converts an input raw image into a
color image. It is essential to carefully tune the parameters of the ISP to obtain
visually pleasing images. In this section, we apply ATTIQA’s MOS prediction as
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Original Image

User Preference 26.7% 73.3% User Preference . 69.5%

Fig. 4: Qualitative comparisons between our enhancement method and retouching of
Expert C. Our results give more liveliness and vibrancy, aligned more closely with
human preference.

a reward for reinforcement learning to find optimal parameters for the ISP [33].
After the training, we convert raw images into color images in the MIT-Adobe-
5k dataset [3], which consists of 5,000 raw images and color images retouched by
five experts (A/B/C/D/E). Then, we conduct a user study comparing our result
against the retouched one by expert C, which is typically used as the ground
truth in most previous image enhancement research. The study was executed
with 60 participants through AMT, involving a comparison of 200 image pairs.
For details on the implementation, please refer to the supplementary materials.

As shown in Fig. 4, our pipeline retouches images to make them more colorful
and vivid compared to both retouching by expert C and the default settings.
Furthermore, according to our user study, ATTIQA receives higher preferences
from subjects, demonstrating a 58% win rate compared to Expert C. We also
report additional qualitative comparisons to supplementary material.

6 Discussion and Conclusion

We propose ATTIQA, a pretraining framework for IQA that develops an attribute-
aware representation space with CLIP guidance. Since our IQA model effectively
incorporates CLIP’s vast knowledge and scalability of large datasets, it shows
state-of-the-art performance on IQA datasets and superior generalization capa-
bility on cross-dataset validation. Leveraging these advantages, we successfully
demonstrate a couple of real-world applications where IQA can be utilized.
Limitation and Future Work. While our approach focuses on five attributes
commonly employed in the IQA domain, we expect that other properties relevant
to image quality exist (e.g., Composition and Focus). Consequently, future work
will involve exploring extended representation spaces for IQA. Given that our
method proposes a pretraining framework not limited to the specified attributes,
our work holds the potential for expansion to encompass additional properties.
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