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Abstract. The two-branch model ensures high performance in semantic
segmentation. However, the additional branch causes the fusion between
high-resolution and low-resolution contexts to corrupt the surrounding
context and increases the computational overhead. Existing methods
with many parameters and high computational costs are not well-suited
for the low-power devices used in applications like autonomous driv-
ing and robotics. This study proposes a robust semantic segmentation
architecture with any kind of device, from GPUs to edge devices. We in-
troduce five variants called HARD. HARD achieves fast inference speeds
while maintaining good performance on any kind of device. Notably,
the proposed Dual Atrous Pooling Module (DAP) can effectively fuse
contexts of variable resolutions without decreasing inference speed. Be-
sides, a lightweight decoder named Serialized Atrous Module (SA) is pro-
posed to extract global context. The proposed models are evaluated on
both GPU and embedded computing devices from NVIDIA and ARM
Cortex-M CPU. In experiments on Cityscapes, CamVid, and COCO-
Stuff datasets, the proposed variants of HARDs achieve 73.8, 76.3, and
41.0 mIoU, which outperform existing SOTA models.

Keywords: Real-time Semantic Segmentation · Embedded Device · Mi-
croProcessor.

1 Introduction

Semantic segmentation, which assigns a semantic class mask to each pixel of an
input image, is significant in applications such as autonomous driving, medical
image processing, mobile applications, and many other fields. Recently, seman-
tic segmentation methods have focused on integrating diverse spatial and posi-
tional contexts within images. Thus, the pyramid pooling module (PPM) [54]
and self-attention [41] have been used to extract contextual information. How-
ever, these methods require significant computational overhead. Many recent
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real-time semantic segmentation architectures employ bilateral architectures to
rapidly extract high-quality contextual information. BiSeNet [51], DDRNet [16],
SeaFormer [42], AFFormer [8], and SCTNet [48] propose the bilateral architec-
ture that separates spatially informative features from high-level contextual in-
formation early in the layer for parallel processing. However, due to their compu-
tational overhead, these designs can only perform real-time processing on GPUs.
Therefore, the state-of-the-art (SOTA) existing real-time segmentation models
are not suitable for IoT solutions. There has been much research on lightweight
segmentation networks with a reduced number of parameters for minimizing
memory usage. Although lightweight models such as ENet [32], ESPNet [29],
FastSCNN [34], and MiniNet [1] can be deployed on NVIDIA embedded comput-
ing devices, they suffered from significant performance degradation. Therefore,
there are still challenges in applying the existing studies to autonomous driving
solutions, smart manufacturing, personalized medicine, etc. Therefore, we pro-
posed HARD, an architecture applicable to both edge devices and GPUs. The
proposed HARD employs the Dual Atrous Pooling (DAP) module to extract
long-range context. Besides, the Serialized Atrous (SA) module is proposed to
perform real-time semantic segmentation by serially extracting contextual infor-
mation.

The main contributions of HARD are summarized as follows:

1. HARD is designed to be deployed on diverse device solutions, ranging from
MCUs to GPUs.

2. DAP and SA modules are proposed to minimize computational costs, thereby
enabling real-time segmentation.

3. This paper demonstrates the robustness of the proposed model using the
Cityscapes, CamVid, and COCO-stuff-10k datasets and conducts experi-
ments on GPU, embedded computing board, and MCU.

HARD has faster inference speed and higher accuracy than existing real-time se-
mantic segmentation models. In the Cityscapes dataset, the HARD-GPU achieved
73.8 mIoU with an inference speed of 315 FPS, outperforming existing SOTA
models. HARD-Edge on ARM Cortex-M presented 33 FPS, so it is the first
acceptable semantic segmentation model on MCUs, as far as we know.

2 Related Works

2.1 Lightweight Semantic Segmentation

ENet [32] and FastSCNN [34] enhanced both performance and inference speed
through a lightweight bottleneck structure that effectively extracts contextual
information during downsampling with small parameters. They were resulted
in parameter redundancy and the loss of significant local details, negatively
impacting performance. ERFNet [35] and FDDWNet [22] designed models us-
ing 1-D convolutions to reduce the computational overhead. LiteHRNet [52]
addressed computational bottlenecks from 1 × 1 convolutions with conditional
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channel weighting. Although the 1 × 1 convolutions reduced the number of pa-
rameters, the excessive usage of 1×1 convolutions for performance enhancement
increased unnecessary computational overhead. LEDNet [45], FBSNet [12], LET-
Net [40], EdgeNet[10], DFANet [20], and FPENet [23] enhanced performance
by integrating Convolutional Neural Networks (CNNs) with attention mecha-
nisms to fusion local and global contexts. SGCPNet [14] and ADSCNet [43]
proposed spatial-detail guided context propagation and Dense Dilated Convo-
lution Connections (DDCC) modules to prevent the loss of context information
when resolution decreased. ESPNet [29] and ESPNet-v2 [30] reduced the number
of parameters and computational costs by decomposing convolutions into 1× 1
and dilation convolutions. CGNet [46] utilized Context Guided (CG) blocks to
train local features and their surrounding context. The CGNet was designed to
reduce parameters and memory usage. Similar to Inceptionv2 [39], CFPNet [28]
focused on encoding context at multiple resolutions using a channel pyramid
feature module for real-time segmentation. MiniNetv2 [2] designed fast models
suitable for CPU environments through multi-dilation depth-wise convolutions.
FSSNet [17] employed a ResNet [15] backbone with continuous factorized blocks
to extract low-level features and adopted continuous dilated blocks to ensure a
wide scale of receptive fields.

2.2 Real-Time Semantic Segmentation

FCN [25], U-Net [36], and RefineNet [21], Deeplabv3+ [5] have been conducted
to achieve high performance in semantic segmentation tasks. Besides, many
studies have focused on enhancing real-time processing for these tasks. For in-
stance, ICNet [53] employed a multi-resolution branch to enhance network in-
ference speed without accuracy degradation. PSPNet [54] utilized a Pyramid
Pooling Module (PPM) to aggregate global context, while SFNet [18] proposed
a flow alignment module to enhance feature representation. BiseNet [51] and
BiseNetv2 [50] adopted a bilateral segmentation network structure to balance
accuracy and inference speed. BiseNet improved the training of contextually
varying feature representations by dividing it into spatial and context paths.
BiseNetv2 adopted Detail and Semantic branches, successfully merging their
features through an Aggregate layer. STDC [11] improved the inefficiencies of
bilateral structure in BiseNet and proposed a single-stream approach for learn-
ing spatial information with a new Detail Aggregation module. Inspired by HR-
Net [44], DDRNet [16] proposed a network structure with two branches that are
dependent on each other. They also proposed Deep Aggregation Pyramid Pool-
ing Module (DAPPM) that combined feature aggregation and pyramid pooling.
PP-Liteseg [33], demonstrating a robust encoder-decoder architecture in seman-
tic segmentation, introduces a Flexible and Lightweight Decoder (FLD). PID-
Net [47] designs a network with a three-branch structure, enabling diverse feature
representations for enhanced performance. SCTNet [48] adopted a single-branch
architecture for fast inference speeds and incorporated a Transformer block dur-
ing the training phase to optimize performance trade-offs. While many studies
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have considered real-time inference in semantic segmentation, their executions
are focused only on GPUs.

3 Proposed Method

Real-time semantic segmentation is challenging on embedded computing devices
and autonomous vehicles. Our research aims to design new models that could be
applied to various types of hardware, including GPUs, embedded devices, and
edge devices. In this section, we propose two modules and a training methodol-
ogy that can be adjusted for the target device. Consequently, we introduce five
variants called HARD. The proposed models are designed to minimize the com-
putational overhead for their target devices. The overall explanation of HARD
is presented in Figs. 4 and 5.

3.1 Dual-Atrous Pooling (DAP) Module

Fig. 1: Architecture of Atrous and Pooling filters.

Real-time segmentation models such as DDRNet [16] and STDC [11] pro-
cessed encoders and decoders in parallel, maintaining variable high-resolution
feature maps. These bilateral structures are designed to utilize the parallel pro-
cessing of GPUs. However, they had difficulty in achieving real-time inference on
other hardware platforms due to their high computational overhead. In contrast,
SCTNet [48] adopted a unilateral structure for inference to achieve better per-
formance than existing models with small latency. Nevertheless, SCTNet also
employed a bilateral structure to extract multiple feature information during
the training process. To address the above weakness, the proposed HARD-GPU
adopts the proposed DAP module to enhance both performance and latency.
Fig. 1 shows the structure of the Atrous and Pooling filters. DAP Module is
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applied over the input x as follows:

AtrousFilter(xi) = Conv1×1(Concat(
∑
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PoolingFilter(xi) = Conv1×1(Pool2). (4)

Firstly, the Atrous filter extracts context information through two convolutions
with different dilation sizes and then compresses the two pieces of information
using 1×1 convolution. Channels are then expanded to match the final channels
of the encoder through two consecutive dilated convolutions. Because pooling can
extract global context more effectively than convolution, existing segmentation
models have utilized the pyramid pooling modules such as DAPPM. Motivated
by the above existing idea, the proposed Pooling filter performs average and
maximum pooling in parallel, extracting the global context and then interpolat-
ing it back to the same shape as the input feature map. The extracted context
performs two convolutions and average pooling to extract both local and global
context. Then, it is expanded to match the final channels of the encoder. When
the feature map is 1

8 , the DAP module is performed. To effectively extract con-
text information, the operation continues through to the final layer. The context
information extracted from the DAP module is concatenated with the encoder
output. Fig. 4 shows a DAP module consisting of Atrous and Pooling filters. In
our experiments, the proposed DAP shows a 4 mIoU performance improvement
on the Cityscapes dataset. Therefore, we conclude that the DAP is a suitable
context information extraction module for real-time semantic segmentation.

3.2 Serialized Atrous (SA) Module

The PPM and DAPPM decoder structures are designed for real-time segmenta-
tion that handles features at variable resolutions in parallel. However, in com-
mercial embedded computing boards such as NVIDIA Jetson GPUs with lim-
ited CUDA cores, real-time segmentation having more than 30 FPS is impossi-
ble. To address the above limitations, we propose the Atrous Inverted Bottle-
neck (AIVB) module. Fig. 2 shows the proposed AIVB module, including two
1× 1 convolutions and three depth-wise separable atrous convolutions arranged
in a serialized structure. The AIVB module utilizes three different sizes of dilated
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Fig. 2: Architecture of Serialized Atrous (SA) module and Atrous Inverted Bot-
tleneck (AIVB) module.

(a) Image (b) GT (c) Concat (d) No concat

Fig. 3: Effects of concatenation after Atrous convolution on segmentation mask
output.

kernels for all depth-wise convolutions. The atrous depth-wise convolution used
by the AIVB module is represented as follows:

yc[i] =
∑
k

xc[i+ d× k] · wc[k]. (5)

In Eq. 5, d represents the dilation rate and c is the channel-dependent value,
respectively. The Serialized Atrous (SA) module repeats the AIVB module three
times with decreasing dilation rates to extract long-range context information
using decreasing dilation rates. Recently, segmentation models have been extract-
ing global context through an attention mechanism. However, this approach is
inefficient for real-time segmentation due to its extensive computational over-
head. Our proposed design enables global context extraction with significantly
reduced computational requirements. Thus, the usage of SA module achieves
adequate global context extraction by only using convolutions. In Figs. 4 and
5, after the SA module is performed, the feature map is concatenated with
the previous feature map and a classifier is performed. We confirmed through
experiments that pixel blur occurs in the semantic mask when there is no con-
catenation with the previous feature map in convolutions using a dilated kernel.
In Fig. 3, the phenomenon negatively affects the precision of segmentation mask
prediction.

The proposed SA module consists of depth-wise convolution, which minimizes
the computational overhead and reduces peak-SRAM. It is optimized for embed-
ded and edge devices. Therefore, it is the most hardware-friendly segmentation
decoding module.
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3.3 Model Architecture

Fig. 4: The architecture of HARD-GPU. We apply two DAP modules in the en-
coder to extract global context information. In addition, the Pooling and Atrous
filters are configured with an auxiliary head to provide auxiliary output for cal-
culating extra semantic loss. Term DW means Depth-wise Convolution.

Model Architecture for High-Performance on GPU: For real-time se-
mantic segmentation, it is important to sufficiently reduce the feature map size.
Therefore, the HARD-GPU is a three-branch structure that uses encoders and
decoders. The HARD-GPU encoder module combines standard convolutions
with the inverted bottleneck proposed in MobileNetV2 [37]. To enhance per-
formance, downsampling occurs in the standard convolution considering inter-
channel correlations. The inverted bottleneck is useful for extracting spatial
information with a small number of parameters. Fig. 4 includes five encoder
modules, and the encoding process ends when downsampling reduces the input
resolution to × 1

32 . Two feature maps are extracted in the DAP module. The
final output from the encoder performs concatenation. Then, contextual infor-
mation is fused by 1 × 1 convolution to reduce it to × 1

3 of the channels. After
the encoding process is completed, the output is interpolated to × 1

8 of the input
resolution. The global context is extracted through SA module, then the fea-
ture map is used as the input to the classifier. The channels are reduced for the
dataset class and interpolated to the input resolution for output.

Model Architecture for Embedded Computing Devices Compared with
image classification and object detection, semantic segmentation models require
more computational overhead due to the image interpolation in the decoder.
To overcome the problem, more lightweight HARD-S, XS, and XXS architec-
tures are designed. In Fig. 5, the lightweight HARD-S, XS, and XXS for em-
bedded devices adopt an inverted bottleneck encoder. The inverted bottlenecks
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Fig. 5: On the top, the architecture of HARD-S, XS, and XXS is shown. On the
bottom, the architecture of HARD-Edge is illustrated.

effectively reduce the number of parameters and computational overhead. While
massive parallel processing is possible on GPUs, the lack of enough parallelism on
low-power CPUs and embedded computing GPUs, such as the NVIDIA Jetson,
makes fast inference difficult. Therefore, the HARD-S, XS, XXS models down-
sample the input to × 1

8 size using an inverted bottleneck for real-time inference,
and the decoding process is performed in the SA module.

Model Architecture for Low-Cost Edge Devices We propose a novel tiny
segmentation model called HARD-Edge for deployment on microcontroller units
(MCUs). As far as we know, the proposed HARD-Edge is the first model for
the semantic segmentation on MCUs. HARD-Edge is designed to ensure real-
time frames per second (FPS) on MCUs with limited Flash, internal SRAM, and
low-power CPUs such as ARM Cortex-M7. For example, ARM Cortex-M7 has
a maximum of about 320 KB SRAM. These MCUs are limited in the resolution
of the images that they can process. Consequently, HARD-Edge is optimized to
operate on images with a size under 128×128 pixels. To minimize computational
overhead while extracting adequate contextual information, HARD-Edge adopts
a combined architecture with an encoder and decoder. This structure employs
two downsampling followed by a single interpolation to produce a feature map
with the original resolution. Furthermore, in order to reduce the model size and
achieve fast inference, 8-bit quantization is applied to HARD-Edge, which shows
negligible performance degradation. The quantization approach makes it suitable
for low-power MCUs, enabling efficient operations.
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3.4 Extra Semantic Loss

We utilize Atrous and Pooling filters as auxiliary classifiers to enhance the ability
of HARD-GPU. Inception [38] used a secondary classifier to avoid the vanishing
gradient problem with increasing model depth. In a similar way, PIDNet [47]
attached classifiers to model branches to generate extra semantic loss, thereby
optimizing the model. In many cases, auxiliary classifiers have been employed to
improve segmentation performance in vision tasks.

LossCE(x, y) = − 1

N

∑
i

log
exyi∑
j e

xj
. (6)

Loss = LossCE(x, y) + 0.3× (LossCE(xPool, y) + LossCE(xAtrous, y)). (7)

Therefore, the proposed approach applied extra semantic loss during training to
improve the performance of lightweight models. In Fig. 4, two filters of the DAP
module configure their own decoder heads, respectively. In Eq. 7, we propose
that the three outputs from the model are used to calculate cross-entropy loss
denoted as LossCE with the ground truth. These semantic losses are weighted
and summed together. The detailed reason for setting the weight to 0.3 is in the
ablation study.

4 Experimental Results and Analysis

4.1 Experimental Setup

We evaluated the performance of the proposed HARD on Cityscapes [6], CamVid
[3], and COCO-Stuff-10k [4]. We pretrained the encoder of HARD on ImageNet-
1k [7], then fine-tuned it on the semantic segmentation datasets. The training of
proposed models was performed with a set of hyper-parameters as: we adopted
AdamW [26] optimizer, having the weight decay set as 1e−4. Initial learning
rate increased from 1e−5 to 1e−2 for the first 6550 iterations. Then, the learn-
ing rate was annealed to 1e−5 using a cosine scheduler [27]. The inference speed
of all models was measured on a single NVIDIA RTX 4090. In order to show
fair comparisons, all reported FPSs were estimated on the same input resolu-
tion. Furthermore, the proposed HARD and other counterparts were evaluated
in terms of FPS on NVIDIA Jetson ORIN NX and ARM Cortex-M7. For the
evaluation with ARM Cortex-M7, we adopted STM32F746NG from STMicro-
electronics.

4.2 Comparison on Cityscapes

Cityscapes is a well-known urban scene segmentation dataset having 5,000 im-
ages collected from the perspective of a car. Table 1 shows the experimental
results on the Cityscapes dataset. Our experiments were conducted for 30K it-
erations on two RTX 4090 GPUs. The proposed HARD-GPU had fewer number

3560



10 Y. Kwon et al.

Table 1: Comparisons with SOTA real-time methods on Cityscapes validation
set.
Resolution Model Params FLOPs mIoU FPS Resolution Model Params FLOPs mIoU FPS
512×1024 ENet [32] 0.38M 5.65G 58.3 112 512×1024 LiteHRNet [52] 1.09M 4.66G 70.6 40
512×1024 FSSNet [17] 0.29M 3.89G 58.8 240 512×1024 SeaFormer-S [42] 4.1M 1.8G 70.7 120
512×1024 ESPNet [29] 0.36M 4.1G 60.3 392 1024×2048 SGCPNet [14] 0.61M 4.5G 70.9 138
512×1024 MiniNet [1] 1.41M 6.71G 61.5 426 512×1024 FBSNet [12] 0.61M 22.06G 70.9 29
360×640 HARD-XXS 0.11M 0.93G 64.1 533 512×1024 EdgeNet [10] - - 71.0 31
360×640 CGNet [46] 0.50M 28.0G 64.8 177 512×1024 FDDWNet [22] 0.77M 12.38G 71.5 126
512×1024 NDNet [49] 0.50M 3.9G 65.1 251 512×1024 MiniNetV2 [2] 0.51M 9.26G 71.8 195
512×1024 ESPNetV2 [30] 1.25M 5.65G 66.2 167 512×1024 MSCFNet [13] 1.15M 17.1G 71.9 50
512×1024 EDANet [24] 0.69M 8.88G 67.3 240 512×1024 STDC1 [11] 12.5M 23.1G 72.2 82
512×1024 ADSCNet [43] 0.51M 12.68G 67.5 360 512×1024 SeaFormer-B [42] 8.7M 3.1G 72.2 98
512×1024 ERFNet [35] 2.06M 29.93G 68 222 512×1024 LETNet [40] 0.95M 13.59G 72.8 36
1024×2048 FastSCNN [34] 1.14M 6.72G 68.6 348 512×1024 SCTNet-S [48] 4.6M 7.1G 72.8 275
360×640 HARD-XS 0.39M 1.93G 69.6 532 360×640 HARD-S 0.76M 3.24G 72.8 427
1024×2048 CFPNet [28] 0.27M 21.07G 70.1 66 512×1024 PP-LiteSeg-T [33] 4.4M 4.3G 73.1 257
512×1024 FPENet [28] 0.4M 12.8G 70.1 180 512×1024 BiseNetv2 [50] 5.2M 35.5G 73.4 244
512×1024 SwiftNetRN [31] 12.1M 32.1G 70.2 186 512×1024 AFFormer-Base [8] 3.0M 8.6G 73.5 50
512×1024 LEDNet [45] 0.94M 11.31G 70.6 127 512×1024 HARD-GPU 3.9M 11.5G 73.8 315

of parameters, ranging from 10% to 60% than recent models such as SCTNet-S,
PP-LiteSeg-T, BiseNetv2, Seaformer-B, and STDC1. Nevertheless, the proposed
HARD-GPU achieved 73.8 mIoU, which is 1 mIoU higher than SCTNet. Addi-
tionally, it achieved 315 FPS, which is 40 FPS faster in terms of inference speed
compared with the SCTNet. HARD-S and HARD-XS achieved 72.8 and 69.6
mIoU, respectively, which showed better performance than LETNet, MiniNetv2,
SGCPNet, and LEDNet with comparable numbers of parameters. HARD-XXS
had the fewest parameters among the models. However, it can achieve 5 mIoU
higher performance than Enet and ESPNet. It also had the fastest inference
speed among all segmentation models, reaching 533 FPS. In conclusion, the pro-
posed HARD achieved excellent trade-offs between performance and inference
when compared with other real-time counterparts.

4.3 Comparison on CamVid

Table 2: Comparisons with SOTA real-time methods on CamVid validation set.
Resolution Model Params FLOPs mIoU FPS Resolution Model Params FLOPs mIoU FPS
360×480 ENet[32] 0.36M 1.86G 51.3 140 360×480 FDDWNet[22] 0.8M 4.08G 66.9 127
360×480 ESPNet[29] 0.36M 1.2G 55.6 195 720×960 LBN-AA[9] 6.2M - 68.0 -
360×480 NDNet[49] 0.5M 0.56G 57.2 257 360×480 FBSNet[12] 0.62M 7.27G 68.9 30
360×480 FSSNet[17] 0.26M 1.28G 58.6 252 360×480 MSCFNet[13] 1.15M - 69.3 -
360×480 CFPNet[28] 0.55M 1.7G 64.3 68 720×960 LETNet[40] 0.95M - 70.5 37
720×960 DFANet[20] 7.8M - 64.7 - 360×480 HARD-XXS 0.11M 0.69G 74.4 532
720×960 BiseNet[51] 13.0M 40.0G 65.6 249 360×480 HARD-XS 0.39M 1.43G 75.8 530
360×480 DABNet[19] 0.76M 3.37G 66.4 232 360×480 HARD-S 0.76M 2.41G 76.3 424

CamVid provides 701 images of driving scenes, having 960× 720 image res-
olution, where our experiments adopted 11 classes. In Table 2, when a simi-
lar number of parameters is given, HARD-S achieved 76.3 mIoU, significantly
outperforming LETNet, SGCPNet, and FBSNet. On the other hand, although
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HARD-XXS has the fewest parameters in the models of Table 2, it achieved 74.4
mIoU and 532 FPS, outperforming other counterparts in Table 2.

4.4 Comparison on COCO-Stuff-10K

Table 3: Comparisons with SOTA real-time methods on COCO-Stuff-10K.
Resolution Model Params FLOPs mIoU FPS
480×480 HARD-XXS 0.11M 1.49G 23.8 527
640×640 BiSeNetV2-L [50] 5.2M 27.8G 28.7 225
512×512 DeepLabV3+(MV2) [5] 15.4M 25.9G 29.9 -
640×640 DDRNet-23 [16] 20.1M 27.9G 32.1 200
640×640 PSPNet [54] 49.0M 288.2G 32.6 78
480×480 HARD-XS 0.39M 2.42G 33.1 527
640×640 SeaFormer-B [42] 8.6M 2.39G 34.1 -
512×512 AFFormer-B [8] 3.0M 4.6G 35.1 109
640×640 SCTNet-B [48] 17.4M 23.37G 35.9 216
480×480 HARD-S 0.76M 3.87G 37.0 358
640×640 HARD-GPU 3.9M 9.27G 41.0 271

The COCO-Stuff-10k dataset is a large-scale segmentation dataset having 171
classes. On COCO-Stuff-10k, it is known that real-time semantic segmentation
is very challenging due to the large number of classes. In Table 3, HARD-GPU
achieved 41.0 mIoU, demonstrating 5.1% higher performance compared with
the state-of-the-art model SCTNet. Furthermore, HARD-GPU achieved state-
of-the-art performance with a much faster inference speed. Notably, HARD-XS
achieved 33.1 mIoU by having only 0.39M parameters. Although the above num-
ber of parameters was smaller than those of Seaformer-B and PSPNet, HARD-
XS produced comparable performance. Besides, HARD-XS achieved 527 FPS,
being faster than other models in Table 3.

4.5 Semantic Segmentation on Embedded Computing Device

Table 4: Comparisons on NVIDIA Jetson ORIN NX.
Resolution Model Params mIoU FPS Resolution Model Params mIoU FPS
512×1024 FBSNet [12] 0.61M 70.9 3 512×1024 ESPNetV2 [30] 1.25M 66.2 18
1024×2048 CFPNet [28] 0.27M 70.1 4 512×1024 ENet [32] 0.38M 58.3 19
1024×2048 CGNet [46] 0.50M 64.8 4 512×1024 EDANet [24] 0.69M 67.3 19
512×1024 FDDWNet [22] 0.77M 71.5 7 512×1024 NDNet [49] 0.50M 65.1 20
512×1024 LETNet [40] 0.95M 72.8 8 1024×2048 FastSCNN [34] 1.14M 68.6 20
512×1024 LiteHRNet [52] 1.09M 70.6 9 512×1024 FSSNet [17] 0.29M 58.8 26
512×1024 ERFNet [35] 2.06M 68 11 512×1024 ESPNet [29] 0.36M 60.3 27
512×1024 LEDNet [45] 0.94M 70.6 12 360×640 HARD-S 0.76M 72.8 30
512×1024 ADSCNet [43] 0.51M 67.5 14 512×1024 MiniNet [1] 1.41M 61.5 36
512×1024 FPENet [23] 0.4M 70.1 15 360×640 HARD-XS 0.39M 69.6 40
512×1024 MiniNetV2 [2] 0.51M 71.8 15 360×640 HARD-XXS 0.11M 64.1 64
1024×2048 SGCPNet [14] 0.61M 70.9 17

Most of all, real-time semantic segmentation studies have been conducted
using high-performance GPUs. To prove the effectiveness of the proposed mod-
els in embedded computing environments, our experiments were performed on
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NVIDIA Jetson Orin NX 16GB. In the above experiments, FPS was measured
in each model based on the resolution from Cityscapes. The experimental results
are presented in Table 4. Most real-time segmentation models could not achieve
30 FPS. However, the proposed HARD-XXS demonstrated 64 FPS, which was
more than ×2 faster than that of ESPNet. HARD-S achieved the highest per-
formance at 72.8 mIoU while also demonstrating a high inference speed of over
30 FPS. Besides, the inference speed was ×4 faster than FDDWNet, having
slightly more advanced results. HARD-S achieved 12 mIoU higher performance
than ESPNet and comparable inference speed. The above summary of Table 4
shows that the proposed HARD can outperform other real-time segmentation
models on the embedded computing device.

4.6 Semantic Segmentation on MCU

Table 5: Comparisons on STM32F746NG. When the target model exceeds its
memory constraints, it is marked as OOM denoting “Out Of Memory”.

Model Param Flash (FP32) SRAM (FP32) Flash (Int8) SRAM (Int8) mIoU Latency
ENet [32] 0.36M 1.41MB (OOM) 13.18MB (OOM) 735.46kB 3.35MB (OOM) 51.3 -
ESPNet [29] 0.36M 1.43MB (OOM) 14.5MB (OOM) 1.15MB (OOM) 3.55MB (OOM) 55.6 -
NDNet [49] 0.5M 1.87MB (OOM) 14.54MB (OOM) - - 57.2 -
CFPNet [28] 0.55M 1.15MB (OOM) 14.62MB (OOM) 1.2MB (OOM) 7.44MB (OOM) 64.3 -
FSSNet [17] 0.26M 719.77kB 5.54MB (OOM) 439.41kB 3.68MB (OOM) 58.6 -
DABNet [19] 0.76M 2.89MB (OOM) 14.54MB (OOM) 898.77kB 7.44MB (OOM) 66.4 -
HARD-Edge 0.11M 620.72kB 694.04kB (OOM) 271.41kB 283.05kB 57.3 30.1ms

In the evaluations of HARD-Edge on an MCU, STM32F746NG (Cortex-
M7 processor, 320kB SRAM, and 1MB Flash) was adopted. Table 5 shows the
comparisons of lightweight segmentation models trained on the CamVid dataset
in terms of performance and latency. We performed experiments on FP32 real-
valued and Int8 quantized models, respectively. In FP32, the activations and
model outputs of all models were out of SRAM capacity in the target device.
Besides, ENet, ESPNet, NDNet, CFPNet, and DABNet cannot be stored in
Flash memory because the memory requirements for storing the above models
were over 1 MB or more. Therefore, Int8 quantization was necessary for the
deployment in MCUs.

The 8-bit quantized lightweight segmentation models were deployed in the
target MCU for an apple-to-apple comparison. Although most models were de-
signed for embedded computing devices, only the HARD-Edge could be deployed
on an MCU. Although only FSSNet can meet the limitation with 719 kB Flash,
it exceeded the memory capacity of 320kB SRAM. In Int8 quantization, ENet,
FSSNet, and DABNet did not exceed Flash memory capacity. However, SRAM
capacity was insufficient for the above models. On the other hand, HARD-Edge
was designed to have minimal computational overhead so it can achieve a fast
inference speed of 30.1ms (33.2 FPS) on STM32F746NG. As far as we know,
HARD-Edge is the first real-time segmentation model that can be deployed on
MCUs.
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4.7 Ablation Study

Table 6: Effects on DAP module and Extra Semantic Loss (denoted as ES Loss)
of HARD-GPU.

Pooling filter Atrous filter ES Loss mIoU
69.8

✓ 69.9
✓ 70.5

✓ ✓ 73.0
✓ ✓ ✓ 73.8

Effects on DAP module and Extra Semantic Loss We performed ablation
studies to validate the effectiveness of the proposed DAP module and ES Loss.
In Table 6, there was a degradation of 4 mIoU when Atrous and Pooling fil-
ters were removed. The performance was significantly degraded when either the
Atrous filter or the Pooling filter was not deployed. Therefore, we concluded that
the training with multi-contextual information is significantly important for the
semantic segmentation task. The extra semantic loss was effective in improving
the performance without increasing the number of parameters and computa-
tional overhead. In Fig. 4, it is worth noting that HARD-GPU incorporates an
auxiliary classifier solely during the training process. In Table 6, the training
HARD-GPU with an auxiliary classifier resulted in a 0.8 mIoU performance im-
provement. Moreover, after extensive experiments, a weight of 0.3 was found to
be the most effective for the weighting ES Loss in Eq. 7. When the weight was
set to 0.1, there was only a performance improvement of 0.07 mIoU, and when
the weight was set as 0.5, the performance improvement was only 0.2 mIoU.

Table 7: Comparisons with lightweight segmentation models on low-resolution
CamVid.

Model Resolution Param mIoU Flash SRAM FPS (GPU) Latency (MCU)
FSSNet [17] 64× 64 0.26M 26.7 553.2kB 182.57kB 256 44.7ms
ENet [32] 64× 64 0.36M 37.1 821.52kB 211.15kB 149 40.5ms
ESPNet [29] 64× 64 0.36M 39.5 1.14MB (OOM) 238.72kB 167 OOM
NDNet [49] 64× 64 0.5M 39.6 1.2MB (OOM) 367.44kB (OOM) 261 OOM
DABNet [19] 64× 64 0.76M 40.0 1.26MB (OOM) 308.11kB 232 OOM
CFPNet [28] 64× 64 0.55M 46.6 1.2MB (OOM) 367.44kB (OOM) 66 OOM
HARD-Edge 64× 64 0.11M 57.3 271.42kB 283.05kB 535 30.1ms

Low-Resolution Performance Table 7 shows the training results with the
CamVid dataset when images were resized to 64×64. FPS was measured on a sin-
gle NVIDIA RTX 4090 GPU, and latency was measured on an STM32F746NG.
While FSSNet was faster than ENet on GPUs, it was shown that ENet was
faster on the STM32F746NG. It was noted that FSSNet required more memory
access time due to the residual connection between the encoder and decoder fea-
ture maps. Therefore, it showed a 4.2 ms slower latency on the MCU. However,
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HARD-Edge achieved the highest performance at low resolution with the fewest
number of parameters. It also showed 30.1 ms, which was 10.4 ms faster than
ENet.

4.8 Comparison on Visualization Results

Fig. 6: Visualized comparisons on the Cityscapes validation set. From left to
right are original input images, ground truths, and segmentation results from
BiSeNetv2 [50], STDC [11], SCTNet [48], and the proposed HARD.

Fig. 6 shows the visualization results for the cityscapes validation set. Com-
pared with SCTNet, STDC, and BiseNetv2, which have similar numbers of pa-
rameters, HARD-GPU achieved higher-quality results. It effectively produced
precise segmentation masks for small and narrow objects like utility poles, signs,
and traffic lights. Notably, HARD-GPU showed higher quality long-range con-
text extraction and better preservation of object boundaries than SCTNet using
Transformer.

5 Conclusion

In this paper, we propose HARD that can be deployed on GPUs, embedded
computing devices, and MCUs. We demonstrate through intensive experiments
on a variety of datasets and devices where HARD achieves new SOTA results.
Also, the proposed DAP and SA modules can successfully extract long-range
contextual information. Notably, HARD is the first method to deploy semantic
segmentation deployable on MCUs. HARD can extend its applications of real-
time semantic segmentation, considering computational resources.
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