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Abstract. Despite recent progress, Multi-Object Tracking (MOT) continues to
face significant challenges, particularly its dependence on prior knowledge and
predefined categories, complicating the tracking of unfamiliar objects. Generic
Multiple Object Tracking (GMOT) emerges as a promising solution, requiring
less prior information. Nevertheless, existing GMOT methods, primarily designed
as OneShot-GMOT, rely heavily on initial bounding boxes and often struggle
with variations in viewpoint, lighting, occlusion, and scale. To overcome the
limitations inherent in both MOT and GMOT when it comes to tracking objects
with specific generic attributes, we introduce Grounded-GMOT, an innovative
tracking paradigm that enables users to track multiple generic objects in videos
through natural language descriptors. Our contributions begin with the introduction
of the G2MOT dataset, which includes a collection of videos featuring a wide
variety of generic objects, each accompanied by detailed textual descriptions of
their attributes. Following this, we propose a novel tracking method, KAM-SORT,
which not only effectively integrates visual appearance with motion cues but also
enhances the Kalman filter. KAM-SORT proves particularly advantageous when
dealing with objects of high visual similarity from the same generic category
in GMOT scenarios. Through comprehensive experiments, we demonstrate that
Grounded-GMOT outperforms existing OneShot-GMOT approaches. Additionally,
our extensive comparisons between various trackers highlight KAM-SORT’s
efficacy in GMOT, further establishing its significance in the field. Project page:
https://UARK-AICV.github.io/G2MOT. The source code and dataset will be
made publicly available.

Keywords: Generic MOT · Grounded GMOT · G2MOT · KAM-SORT

1 Introduction

Multiple Object Tracking (MOT) [4,24,48,5,50,9,34,59,52,35,55,7] plays a crucial role
in dynamic scene analysis, proving essential for various critical real-world applications
including surveillance, security, autonomous driving, robotics, and biology. Despite
significant advancements in this field, current MOT methodologies predominantly focus
on a limited set of object categories, typically emphasizing a specific area of interest,
such as pedestrians [23,36,14], or objects pertinent to autonomous driving scenarios
[54,6]. These approaches require a substantial amount of prior knowledge about the
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Fig. 1: Comparison between OneShot-GMOT (OS-GMOT) (left) and our Grounded-
GMOT (right) in tracking multiple generic objects. The tracking system receives input
(1st row): OS-GMOT relies on an initial bounding box, and Grounded-GMOT utilizes
textual descriptions. OS-GMOT encounters numerous challenges related to pose, il-
lumination, occlusion, scale, texture, etc, resulting in many False Positives and False
Negatives corresponding to two different initial bounding boxes. Our Grounded-GMOT
adeptly detects objects based on input queries and tracks them over time at intervals t1
and t2 (2nd and 3rd rows).

objects being tracked and depend heavily on large, extensively labeled datasets. As a
result, they face challenges in tracking objects across unseen or specific categories, as
well as in handling objects with indistinguishable features.

Generic Multiple Object Tracking (GMOT) [32,33,2] aims to alleviate these limi-
tations by reducing the dependency on prior information. GMOT is designed to track
multiple objects of a common or similar generic type, making it suitable for a wide
array of applications, ranging from annotation and video editing to monitoring animal
behavior. Notwithstanding, conventional GMOT methodologies [32,33,2] are predomi-
nantly anchored in a one-shot paradigm, i.e. OneShot-GMOT (OS-GMOT), leveraging
the initial bounding box of a single target object in the first frame to track all objects
of the same class. The dependency on the starting bounding box poses challenges in
accommodating object variations e.g., pose, illumination, occlusion, scale, texture, etc.

In recent years, significant strides have been made in achieving grounded under-
standing through the integration of natural language processing into computer vision
[29,58,27,26]. This progress has enabled the precise alignment of language concepts with
visual observations, allowing for a comprehensive understanding of both visual content
and the nuance of natural language. Building upon this foundation, we aim to address the
limitations of both MOT and GMOT in tracking objects with specific generic attributes.
To this end, we introduce a novel tracking paradigm called Grounded-GMOT, which
leverages the capabilities of Vision Language Models (VLMs) to guide the tracking of
multiple generic objects in videos using descriptive natural language input. Figure 1
shows the comparison between OS-GMOT and our proposed Grounded-GMOT.

In this work, we first introduce G2MOT dataset, a large-scale dataset enriched
with a variety of generic object categories and their corresponding textual descriptions.
G2MOT dataset surpasses all currently available datasets in terms of size and diversity,
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as in Table 1. We then propose KAM-SORT (Enhanced Kalman Filter with Adaptive
Appearance Motion SORT), an innovative GMOT tracker. Our KAM-SORT tracker
first enhances the Kalman Filter by integrating camera motion into the re-association of
predicted bounding boxes. Subsequently, it adeptly measures appearance uniformity and
dynamically adjusts the weighting between motion and appearance in the association
process, ensuring robust and accurate object tracking. Our contributions are summarized
as follows:
• Introducing Grounded-GMOT, a novel tracking paradigm that utilizes responsive and
interactive natural language descriptions to track generic objects in videos.
• Unveiling the G2MOT dataset, a novel, large-scale dataset encompassing a broad
diversity of generic object categories and detailed natural language descriptions.
• Providing a comprehensive comparison between SOTA OS-GMOT and Grounded-
GMOT, using a variety of popular trackers across numerous performance metrics.
• Proposing KAM-SORT, an innovative object association method that enhances the
Kalman Filter and adeptly integrates both motion and appearance during the tracking.

Table 1: Comparison of existing datasets of SOT , MOT , GSOT , GMOT . “#"
represents the quantity of the respective items. Cat., Vid. denote Categories and Videos.
Obj.: average number of objects per frame. App.: appearance similarity (%) between
objects in a frame, calculated by the average cosine similarity of objects in the same
frame; Den. density of objects in a frame, computed by the maximum number of objects
at the same pixel. Occ.: occlusion between objects in a frame, represented by the average
ratio of IoU (%) of the bounding boxes in the same frame; Mot.: motion speed of objects
in a video, calculated by the average ratio of the IoU (%) of the bounding boxes in the
same track in consecutive frames.

Datasets Task NLP Statistical Information Data Properties (mean(std))
#Cat. #Vid. #Frames #Tracks #Boxs Obj. App. Den. Occ. Mot.

OTB2013 [51] SOT ✗ 10 51 29K 51 29K – – – – –
VOT2017 [22] SOT ✗ 24 60 21K 60 21K – – – – –
TrackingNet [39] SOT ✗ 21 31K 14M 31K 14M – – – – –
MOT17 [37] MOT ✗ 1 14 11.2K 1.3K 0.3M 39(35) 62(10) 3.85(1.50) 14(16) 94(11)
MOT20 [14] MOT ✗ 1 8 13.41K 3.45K 1.65M 150(70) 68(8) 6.42(1.20) 15(15) 96(4)
Omni-MOT [45] MOT ✗ 1 – 14M+ 250K 110M – – – – –
DanceTrack [44] MOT ✗ 1 100 105K 990 – 9(5) 77(7) 2.67(0.99) 21(17) 90(9)
TAO [13] MOT ✗ 833 2.9K 2.6M 17.2K 333K 3(2) 69(7) 1.82(0.76) 11(14) 49(34)
SportsMOT [12] MOT ✗ 1 240 150K 3.4K 1.62M 11(3) 73(8) 2.44(0.80) 18(17) 80(16)
GOT-10 [19] GSOT ✗ 563 10K 1.5M 10K 1.5M – – – – –
Fish [21] GSOT ✗ 1 1.6K 527.2K 8.25k 516K – – – – –
AnimalTrack [57] GMOT ✗ 10 58 24.7K 1.92K 429K 17(9) 72(8) 3.13(1.22) 15(15) 91(11)
GMOT-40 [2] GMOT ✗ 10 40 9K 2.02K 256K 24(17) 71(9) 2.56(0.88) 11(12) 43(44)

LaSOT [16] SOT coarse 70 1.4K 3.52M 1.4K 3.52M – – – – –
TNL2K [46] SOT coarse – 2K 1.24M 2K 1.24M – – – – –
Refer-KITTI [49] MOT coarse 2 18 6.65K 637 28.72K 5(4) 65(6) 1.78(0.74) 11(11) 73(21)
G2MOT (Ours) GMOT fine 20 253 157.2K 5.84K 1.87M 12(5) 74(8) 2.65(0.95) 18(16) 84(14)

2 Related Work

2.1 Benchmarks

Recently, numerous benchmark datasets typically fall into two main categories: Varietal
Object Tracking (VOT) [51,22,39,37,14,45,44,13,12,16,46,49] and Generic Object
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Tracking (GOT) [19,21,57,2]. In VOT, the objects to be tracked typically exhibit diverse
visual appearances, while in GOT, the objects share similar visual characteristics. The
first category focuses on tracking a single object, encompassing Single Object Tracking
(SOT) and Generic Single Object Tracking (GSOT). The second category is dedicated to
tracking multiple objects, which includes Multiple Object Tracking (MOT) and Generic
Multiple Object Tracking (GMOT). Table 1 shows a detailed comparison of benchmark
datasets and their corresponding characteristics.

Most traditional visual tracking datasets [51,22,39,37,14,45,44,13,12,19,21,57,2]
have commonly associated labels ID with individual bounding boxes. In contrast, recent
tracking datasets [16,46,49] have incorporated language-assisted captions by harnessing
the power of VLMs. However, existing datasets that integrate natural language processing
(NLP) with textual descriptions are limited to only SOT and MOT. Our G2MOT dataset
goes beyond these limitations, supporting GMOT with rich textual descriptions and
offering a significantly larger number of generic object categories and greater diversity
in dataset size.

2.2 Pre-trained Vision-Language (VL) models
Recent advancements in computer vision have leveraged VL supervision, significantly
enhancing model versatility and open-set recognition. A pioneering work in this domain
is CLIP [41], which learns visual representations from vast amounts of image-text pairs.
Since its release, CLIP has garnered attention, leading to the emergence of several VL
models such as ALIGN [20], ViLD [18], RegionCLIP [62], GLIP [26,56], Grounding
DINO [30], UniCL [53], X-DETR [8], OWL-ViT [38], LSeg [25], DenseCLIP [42],
OpenSeg [17], and MaskCLIP [15], marking a paradigm shift across vision tasks. VL
pre-training models can be categorized into three groups: (i) Image classification: Models
like CLIP, ALIGN, and UniCL focus on matching images with language descriptions via
bidirectional supervised contrastive learning. (ii) Object detection: This group includes
ViLD, RegionCLIP, GLIPv2, X-DETR, OWL-ViT, and Grounding DINO, addressing
object localization and recognition. (iii) Image segmentation: The third group involves
pixel-level classification using VL models like LSeg, OpenSeg, and DenseSeg. In this
work, we employ Grounding DINO as our pre-trained VL model.

2.3 Multiple Object Tracking (MOT)
Object tracking can be broadly categorized into Varietal Object Tracking, including
Single Object Tracking (SOT) and MOT, and Generic Object Tracking, comprising
Generic Single Object Tracking (GSOT) and GMOT. Our primary focus is on tracking
multiple generic objects.

In MOT, approaches are divided based on whether detection and association are
executed by a single model or separate models, known as "joint detection and tracking"
and "tracking-by-detection." The first category [10,63,40,50,52,35,55] integrates detec-
tion into a single network, often with re-identification features. The second category
[4,48,59,9,34] involves a two-step process: detection followed by association with pre-
vious tracklets. Tracking-by-detection has achieved SOTA results in MOT, as seen in
recent studies like OC-SORT[9] and Deep-OCSORT[34].

Despite recent advancements, MOT remains tied to supervised learning and prede-
fined categories, complicating tracking of unfamiliar objects. Unlike MOT, GMOT tracks

148



G2MOT 5

multiple generic objects without training data, employing a one-shot detection approach
called OS-GMOT [2]. While OS-GMOT requires less prior information, it heavily relies
on initial bounding boxes and struggles with variations in viewpoint, lighting, occlusion,
and scale. In contrast, we introduce a novel zero-shot tracking paradigm, Grounded-
GMOT, enabling users to track multiple generic objects in videos using natural language
descriptors without prior training data or predefined categories.

Table 2: Statistical information of G2MOT dataset.

Datasets Splits Statistical Information Data Properties (mean(std))
#Cat. #Vid. #Frames #Tracks #Boxes Obj. Mot. Occ. App. Den.

DanceTrack [44]
Train 1 40 41.8K 419 348.93K 8(5) 89(9) 20(17) 76(8) 2.62(0.99)
Val 1 25 25.5K 273 225.15K 9(4) 91(9) 21(17) 77(6) 2.74(0.98)

AnimalTrack [57]
Train 10 32 11.5K 823 186K 16(9) 91(14) 15(15) 71(8) 3.09(1.18)
Test 10 26 13.2K 1.1K 243K 19(7) 92(8) 15(15) 72(7) 3.17(1.26)

SportMOT [12]
Train 1 45 28.57K 639 312.58K 11(3) 80(16) 18(16) 73(8) 2.44(0.83)
Val 1 45 26.97K 641 295.57K 11(3) 80(16) 18(17) 73(8) 2.44(0.76)

GMOT-40 [2] Test 10 40 9.64K 1.94K 256.34K 24(17) 43(44) 11(12) 71(9) 2.56(0.88)

G2MOT(Ours) Test 20 253 157.2K 5.84K 1.87M 12(5) 84(14) 18(16) 74(8) 2.65(0.95)

3 G2MOT Dataset

Ensuring a fair assessment of GMOT methods demands a dataset of consistent quality,
free from annotator bias, and with a clearly defined problem setup. To offer comprehen-
sive coverage of real-world scenarios across different research domains, our released
dataset embodies two characteristics: (i) Diversity: integrating diverse object categories
from various sources, encompassing a broad spectrum of classes and diverse properties
such as motion, occlusion, appearance similarity, and density. Additionally, it employs
high-level semantics like player, athlete, referee etc., to describe objects in complex
contexts, rather than using generic terms like person. (ii) Fine-Grained Annotation:
alongside capturing detailed visual attributes like color, texture, and attachments, it offers
extensive textual descriptions with existing synonyms alongside captions.

3.1 Video collection

Combining datasets in object tracking offers strategic advantages. First, individual
tracking datasets focus on specific challenges. Second, merging tracking datasets yields
diverse challenges requiring tracking models to efficiently in varied scenarios. Therefore,
by combining datasets, we can evaluate the tracking models’ ability to deal with diverse
scenarios e.g. object movements, density, similar appearance, and occlusion which are in
line with the goal of the GMOT challenge. Finally, our ultimate objective is to propose a
new paradigm for GMOT and create a challenging benchmark dataset under various
demanding real-world scenarios. Our G2MOT dataset, a combination four benchmarks
(Table 2) not only broadens the range of object categories but also highlights the need for
reliable tracking methods across different real-world contexts, e.g., generic categories
diversity, fast-moving objects, high occlusion, long gaps, camera motion, etc.
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3.2 Annotation

Our objective is to create a dataset with precise descriptions and ambiguity-free annota-
tions, ensuring consistency for evaluation. Our caption generation process is conducted
manually, emphasizing the need for careful attention to detail and accuracy. The annota-
tion comprises two components: textual description annotation and tracking annotation.

"id": 1,
"video_id": 1,
"is_eval": true,
"type": "superset",
"superset_idx": -1,
"class_name": "horse",
"synonyms": ["pony", "equine",
"steed","charger", "mount", "mare",
"stallion", "colt", "filly"],
"definition": "mammal has four-
legged, hooves, long mane and tail",
"attributes": [],
"caption": "horse",
"track_path":"horse_7/query_01.txt".

"id": 2,
"video_id": 1,
"is_eval": true,
"type": "subset",
"superset_idx": 1,
"class_name": "horse",
"synonyms": ["pony", "equine",
"steed", "charger", "mount", "mare",
"stallion", "colt", "filly"],
"definition": "mammal has four-legged
hooves, long mane and tail",
"attributes": ["on ground"],
"caption": "horse on ground"
"track_path": "horse_7/query_02.txt".

"id": 3,
"video_id": 1,
"is_eval": true,
"type": "subset",
"superset_idx": 1,
"class_name": "horse",
"synonyms": ["pony", "equine",
"steed", "charger", "mount", "mare",
"stallion", "colt", "filly"],
"definition": "mammal has four-
legged hooves, long mane and tail",
"attributes": ["in river"],
"caption": "horse in river"
"track_path":"horse_7/query_03.txt".

Fig. 2: Demonstration of both “superset” and “subset” types within the same video
and other fields in our annotation format which is described in Section 3.2.

Textual description annotation: The textual description annotation, as shown in Figure 2,
is structured within JSON files and encompasses the following key fields: class_name :
represents the common name of the object class; type: superset | subset : indi-
cates whether the object belongs to a “superset" category, grouping “coarse category"
(e.g., horse), or a “subset" category, allowing for finer categorization (e.g., horse on
ground) as in Fig. 2; caption : manually crafted comprehensive description providing
detailed information about the tracked objects; synonyms : Offers alternative terms or

phrases for the class name; definition : describe the object’s visual characteristics.
attributes : encompasses a list of attributes used to distinguish objects within the

“superset”; track_path : follows the standard MOT format and is stored separately.
Tracking annotation: The tracking annotation follows the standard MOT format [37,14]
includes the following parameters [frame_id, identity_id, box_top_left_x, box_top_left_y,
box_width, box_height, 1, -1, -1, -1].

Equipped with comprehensive annotations and diverse attributes, our G2MOT dataset
extends its utility beyond object tracking to support various grounding tasks e.g., Ques-
tion Answering, fine-grained task understanding in real-world scenarios. Moreover,
G2MOT provides adaptability in tracking objects under different configurations, includ-
ing captions (default), attributes, object definitions, and synonyms, effectively addressing
the complexities of real-world natural language descriptions.
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(b) Demonstration of a wide range of statistical information
of G2MOT, highlighting characteristics such as occlusions
(a), fast-moving objects (b), a high number of tracklets (c),
and tracking gaps (d).

Fig. 3: Statistical information of our proposed G2MOT.

3.3 Data statistics

Table 1 provides a comprehensive comparison with existing datasets, while Table 2
offers detailed information about our G2MOT. Among GMOT datasets, ours has the
highest number of categories and videos, surpassing all MOT datasets except for TAO.
However, it’s important to note that TAO, despite having a higher video count, lacks
dense annotation and exhibits lower annotation quality, with fewer challenges such as
low appearance similarity, and less occlusion. Additionally, while some datasets such
as MOT20 [14] contain a high number of objects per frame (Obj.) but low appearance
similarity (App.), less occlusion (Occ.), slow motion (Mot.), and DanceTrack [44] exhibit
high App., substantial Occ., but slower motion (Mot.), fewer Obj., our G2MOT, being a
combination of multiple datasets, provides a diversity of challenges including a large
Obj., high App., dense object density (Den.), substantial Occ., and fast Mot. While
existing referring datasets [16,46,49] only provide captions as tracking settings and
present a low range of data properties, including low scores of Obj., App., Den., Occ.,
and Mot., our G2MOT offers fine-grained information with various textual description
settings including definition, attributes, synonyms, besides captions, and contains a
wide range of diversity in data properties. This is depicted in Tables 1 and 2 through
the dataset’s statistical information and data properties, including mean and standard
deviation on each metric. Detailed computation of these metrics (Obj., App., Den., Occ.,
Mot.) is included in the Supp.

Figure 3(a) presents a Word Cloud that depicts the frequent usage of terms related to
the caption ’s subject and caption ’s attributes. Not only diversity within the object
category, but it also diversifies in higher semantic levels e.g., “player”, “athlete”, “dancer”
rather than “person” only. Regarding the attribute part, the most frequently occurring
descriptors encompass color, object parts, and locations. Figure 3(b) summarizes some
further attributes, including (a) occlusion: measured by the IoU of interacting objects; (b)

151



8 Duy et al.

occurrence of fast motion: determined by the IoU between object boxes in two adjacent
frames; (c) number of objects per frame: calculated by number of object in a frame. (d)
track gap lengths: measured by the gap length between the frames in which an object
reappears and the frame of its last occurrence.

3.4 Grounded-GMOT benchmark protocols
In this evaluation process, we make use of well-established metrics as defined in
[49,44]. Specifically, we employ the following metrics: Higher Order Tracking Ac-
curacy (HOTA) [31], Multiple Object Tracking Accuracy (MOTA) [3], and IDF1
[43], together with Detection Accuracy (DetA), Association Accuracy (AssA). It is im-
portant to note that HOTA =

√
DetA ·AssA effectively strikes a balance in assessing

both frame-level detection and temporal association performance.

4 Proposed KAM-SORT
Data:
D, T : set of detection boxes at current frame and tracks at
the previous frame.
α: param. of uncertainty revise factor.
Model:
C: score matrix defined in Equation 5; M : bipartite
matching function; Kp, Ku: Kalman Filter predict and
update; BC, IoU : function compute box center and IoU.
Output:
T ′ set of new tracks.
x̂, P = Kp(T ); // Get estimated location and

error covariance.
S = C(x̂,D); // Compute matching score between

estimation and detection.

DTm, Dr, Tr = M(S); // 1st-round association
produce matched pairs DTm, unmatched
detections Dr, and unmatched tracks Tr.

SIoU = IoU(Dr, Tr); // 2nd-round associate
unmatched ones.

DTr = M(SIoU ); // Rematched pairs from
remaining detections and tracks.

for (id, it) ∈ DTr do
// id: detection index, it: track index.

cmin = x̂it [: 2] − α
√

P [: 2] and cmax =
x̂it [: 2] + α

√
P [: 2]; and c = BC(Did

);
if c > cmin&c < cmax then

DTm = DTm ∪ (id, it);
end

end
T ′ = Ku(DTm) // Update matched tracks

Algorithm 1: Kalman++ algorithm

MOT is primarily designed to track
objects with diverse appearances,
such as individuals wearing vari-
ous outfits or having distinct facial
features and hairstyles. In contrast,
GMOT is tailored for tracking objects
of a generic type that share a high de-
gree of visual similarity. This task be-
comes particularly challenging when
attempting to associate objects across
consecutive frames, especially in sce-
narios where objects densely congre-
gate, as seen in groups like schools
of fish, ant colonies, or swarms of
bees. Consequently, our approach ad-
vocates for the utilization of both vi-
sual representations and motion cues
to effectively track these generic ob-
jects. Our proposed KAM-SORT con-
sists of two major contributions: (i)
propose a tracking mechanism that
can dynamically balance visual ap-
pearance and motion cues (ii) pro-
pose Kalman++, an improvement to
the Kalman filter to re-associate unmatched detections and unmatched tracks.

The problem’s setting is as follows: Consider a set of N existing tracks T and a
set of M new detections in the current time step D. The standard similarity between
the track T and box embeddings D is defined by cosine distance and is represented
as Ca ∈ RM×N . In a typical tracking approach that combines visual appearance and
motion cues, the cost matrix C is:

C(T ,D) = Cm(T ,D) + γCa(T ,D). (1)
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Here, Cm represents the motion cost, which is measured using the IoU cost matrix.
Leveraging OC-SORT, a technique that calculates a virtual trajectory over occlusion
periods to correct error accumulation in filter parameters during occlusions, the motion
cost is defined as:

Cm(T ,D) = IoU(T ,D) + λCv(T̃ , T ). (2)

Therefore, the resulting cost matrix that integrates both visual appearance and motion
information is as follows:

C(T ,D) = IoU(T ,D) + λCv(T̃ ,D) + γCa(T ,D). (3)

, where T̃ contains the trajectory of observations of all existing tracks. Cv represents the
consistency between the directions of i) linking two observations (i.e., T t−2, T t−1: a set
of tracks at time (t− 2) (t− 1)), denote as, (T t−2 → T t−1)[u,v] and ii) linking tracks’
historical observations T t−1 and new observations D at frame t, (T t−1 → D)[u,v]. As a
result, Cv is computed on 2D coordinates [u, v] of the object center:

Cv = arctan
(
(T t−2 → T t−1)[u,v], (T t−1 → D)[u,v]

)
. (4)

To strike a balance between visual appearance and motion cues, we incorporate
adaptive appearance cost Wa and adaptive motion cost Wm into Equation 3, resulting in:

C(T ,D) = WmIoU(T ,D) + λCv(T̃ ,D) +WaCa(T ,D). (5)

To effectively handle the high similarity between objects of the same generic type
in GMOT, we propose the following hypothesis: when the visual appearances of all
detections are very similar, the tracker should prioritize motion over appearance. The
homogeneity of visual appearances across all detections can be quantified as follows:

µ =
1

M

M∑
i=1

fi and µdet =
1

M

M∑
i=1

cos(fi, µ). (6)

Here, we consider a threshold θ to determine the similarity between two vectors; if
the angle between them is smaller than θ, the vectors are considered more similar. It’s
noteworthy that when µdet > cos(θ), the visual appearance is less reliable for tracking,
implying that Ca should be less than 1. Conversely, Ca > 1 when µdet < cos(θ).
Therefore, the weight Ca can be calculated as:

Wa =
(1− µdet)

1− cos(θ)
. (7)

We initialize Cm as 1, indicating that both motion and appearance are equally important.
As the weight on appearance reduces, we propose redistributing the remaining weight to
motion. Thus, the adaptive motion weight Cm is:

Wm = 1 + [1−Wa] = 2− (1− µdet)

1− cos(θ)
. (8)
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As a result, the final cost matrix C is computed as follows:

C(T ,D) =

(
2− (1− µdet)

1− cos(θ)

)
IoU(T ,D) + λCv(T̃ ,D) +

(1− µdet)

1− cos(θ)
Ca(T ,D). (9)

In our KAM-SORT framework, the cost matrix between existing tracks T and detec-
tions D is computed using our proposed Kalman++ algorithm, outlined in Algorithm
1. Specifically, we introduce an uncertainty revision parameter (α) to re-associate un-
matched detections and tracks. From our observations, we have noticed a significant
variation in box centers when dealing with fast motion and object deformation. This
variation introduces unwanted noise in linear estimators like the standard Kalman Filter,
leading to mismatches between detections and tracks. As a result, we propose to employ
IoU scores to associate detections with previously unmatched tracks. Our Kalman++
algorithm strategically adjusts the probabilistic bounding box by considering the variance
in predictions. This adjustment allows for the expansion or contraction of the predicted
bounding box based on the variance of the prediction, providing flexible thresholds
(cmin, cmax) that adapt to the level of uncertainty in the prediction.

5 Experimental Results
5.1 Implementation Details

grey wild wolf“

G
ro

un
di

ng
D

IN
O

KAM-SORT Tracker
Update

RoI Aligned features
of each bbox

homogeneity
measure

Bboxes

Fig. 4: Overview of the proposed Grounded-GMOT pipeline. The system detects objects using
Grounding DINO with natural language descriptors (e.g., "grey wild wolf"), measure homogeneity
via RoI-aligned features, and uses KAM-SORT for object association, enabling zero-shot multi-
object tracking without prior training.

In the context of GMOT, the state-of-the-art (SOTA) approach is known as OS-
GMOT [2]. To ensure fair comparisons, Grounded-GMOT is evaluated against OS-
GMOT. We implement OS-GMOT following the configuration outlined in SOTA [2].
For Grounded-GMOT, we utilize GroundingDINO [30] alongside captions from the
proposed G2MOT dataset to generate detected bounding boxes. As shown in Fig. 4,
the system detects objects using natural language descriptors (e.g., "grey wild wolf"),
calculate homogeneity across objects via RoI-aligned features, and passes them to KAM-
SORT for object association across frames. OS-GMOT operates on a one-shot basis,
whereas our Grounded-GMOT employs a zero-shot tracking mechanism, with no training
required in either OS-GMOT or Grounded-GMOT.

To evaluate the efficacy of our KAM-SORT, we compared it with several established
trackers, including SORT [4], DeepSORT [48], BYTETrack [59], OC-SORT [9], Deep
OCSORT [34], MOTRv2 [61]. It is worth noting that while KAM-SORT is SORT-
based, MOTRv2 utilizes a transformer-based architecture. To implement KAM-SORT,
we configured the parameter with uncertainty revision α = 1 and similarity threshold
θ = 80◦ in our experiments.
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5.2 Performance Comparison

Table 3: Tracking performance comparison of multiple trackers under various settings
of MOT with YOLOv8 [1], OS-GMOT (averaged over five runs), and our proposed
Grounded-GMOT on the G2MOT dataset. The best score is in bold

Trackers Settings HOTA↑ MOTA↑ IDF1↑ DetA↑ AssA↑

SORT [4]

YOLOv8 Fully-train 5.48 -145.61 0.80 5.78 6.47
OS Five runs of OS 24.77 7.09 24.90 30.22 20.70

Grounded-GMOT Zero-shot 40.73 46.57 44.52 45.13 37.26

DeepSORT [48]

YOLOv8 Fully-train 5.21 -156.2 0.74 5.88 5.82
OS Five runs of OS 22.59 -0.20 21.66 29.3 17.89

Grounded-GMOT Zero-shot 36.01 43.30 37.54 43.94 29.96

ByteTrack [59]

YOLOv8 Fully-train 6.02 -140.81 0.84 5.80 7.53
OS-GMOT Five runs of OS 25.16 8.02 26.46 29.38 21.94

Grounded-GMOT Zero-shot 39.89 45.83 45.65 43.35 37.12

OC-SORT [9]

YOLOv8 Fully-train 5.48 -127.3 0.76 5.53 6.78
OS-GMOT Five runs of OS 25.17 12.62 25.96 29.66 21.67

Grounded-GMOT Zero-shot 41.84 46.32 45.92 44.49 39.92

Deep OCSORT [34]

YOLOv8 Fully-train 5.72 -145.6 0.81 5.80 6.94
OS-GMOT Five runs of OS 25.65 7.06 25.92 30.47 21.92

Grounded-GMOT Zero-shot 40.53 46.12 43.08 46.01 36.27

MOTRv2 [61]

YOLOv8 Fully-train 3.06 0.48 0.85 0.45 20.71
OS-GMOT Five runs of OS 28.69 14.18 29.43 26.32 34.88

Grounded-GMOT Zero-shot 42.02 41.68 45.91 41.81 42.54

Comparing Grounded-GMOT with OS-GMOT and full-trained trackers. We evaluate the
efficacy of the Grounded-GMOT paradigm by comparing it with (i) OS-GMOT averaged
over five runs and (ii) traditional MOT settings where the object detector is fully-trained,
specifically YOLOv8 [1] trained on MSCOCO [28], using various trackers as detailed in
Table 3. This experiment highlights Grounded-GMOT’s advancements in GMOT.

Table 5: Tracking performance of KAM-SORT
on G2MOT with various settings.

Settings HOTA↑ MOTA↑ IDF1↑ DetA↑ AssA↑

attribute + class_name 42.20 43.26 45.29 44.73 40.15
definition 34.04 26.45 35.83 34.00 34.49
caption 43.03 46.60 47.13 46.05 40.80

Table 6: Ablation study on the effectiveness
of KAM-SORT on MOT20-testset with MOT task.
As ByteTrack, OC-SORT uses different thresholds
for testset sequences with an offline interpolation
procedure, we also report scores by disabling these
as in ByteTrack†, OC-SORT†. As Deep OC-SORT
used separated weights for YOLOX, we also report
scores by retraining YOLOX on MOT20-trainset
as in Deep OC-SORT†.

Trackers HOTA↑ MOTA↑ IDF1↑
MeMOT[7] 54.1 63.7 66.1
FairMOT[60] 54.6 61.8 67.3
GSDT[47] 53.6 67.1 67.5
CSTrack[11] 54.0 66.6 68.6
ByteTrack[59] 61.3 77.8 75.2
OC-SORT[9] 62.4 75.7 76.3
Deep-OCSORT[34] 63.9 75.6 79.2
ByteTrack†[59] 60.4 74.2 74.5
OC-SORT†[9] 60.5 73.1 74.4
Deep OC-SORT†[34] 59.6 75.3 75.2

KAM-SORT (Ours) 62.6 75.2 76.9

Particularly, Grounded-GMOT demonstrates
superior object detection capabilities (higher
MOTA and DetA scores) attributed to the ro-
bust grounding capabilities of VLM. Additionally,
leveraging textual descriptions from captions ,
Grounded-GMOT reduces reliance on initial
bounding boxes, a challenge in OS-GMOT. Fur-
thermore, while YOLOv8 [1] trained on MSCOCO
[28] fails to detect categories not present in the
training set, Grounded-GMOT outperforms all OS-
GMOT and fully-trained MOT approaches in han-
dling the GMOT task.
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Table 4: Tracking performance comparison between the existing trackers and our pro-
posed KAM-SORT tracker on G2MOT dataset. The best score is in bold.

Trackers Settings HOTA↑ MOTA↑ IDF1↑ DetA↑ AssA↑

SORT [4] Grounded-GMOT 40.73 46.57 44.52 45.13 37.26
DeepSORT [48] Grounded-GMOT 36.01 43.30 37.54 43.94 29.96
ByteTrack [59] Grounded-GMOT 39.89 45.83 45.65 43.35 37.12
OC-SORT [9] Grounded-GMOT 41.84 46.32 45.92 44.49 39.92
DeepOC-SORT[34] Grounded-GMOT 40.53 46.12 43.08 46.01 36.27
MOTRv2 [61] Partly-trained 42.02 41.68 45.91 41.81 42.54

KAM-SORT(Ours) Grounded-GMOT 43.03 46.60 47.13 46.05 40.80

Compare KAM-SORT with SOTA MOT methods.
Table 4 provides a thorough comparison between our proposed KAM-SORT and

SOTA existing trackers. Our method is primarily SORT-based, necessitating an evaluation
against other SORT-based approaches. In this experiment, SORT-based trackers adhere
to the Grounded-GMOT setting, utilizing object detections by GroundingDINO-B.
However, for a comprehensive perspective, we have also included MOTRv2 [61], a
cutting-edge transformer-based tracker, as a reference point in this assessment. The
results demonstrate that KAM-SORT outperforms all trackers including both SORT-
based and transformer-based ones across metrics except MOTRv2 on AssA score. It is
noteworthy that MOTRv2 was partially trained on the G2MOT dataset, specifically on
the training set of DanceTrack dataset[44]. Additionally, we conduct a visual comparison
between our KAM-SORT and other trackers, as depicted in Fig. 5. In this illustration,
SORT encounters challenges with loss track and incorrectly re-ID, resulting in numerous
new IDs being associated at Frame #90. Let’s consider the object with “ID = 6” in
other trackers, OC-SORT struggles with ID Re-association caused by loss track, while
Deep-SORT faces issues with ID switching and incorrectly Re-ID. In contrast, our
KAM-SORT accurately re-associates object ID once the object reappears.

Table 7: An ablation study conducted on the
G2MOT dataset to demonstrate the impact of
each proposed component within KAM-SORT.
Exp. Appearance- Kaman++ Tracking Metrics

Motion Balance HOTA↑ MOTA↑ IDF1↑ DetA↑ AssA↑

#1 ✗ ✗ 40.53 46.12 43.08 46.01 37.27
#2 ✗ ✓ 41.90 46.35 45.27 46.02 38.71
#3 ✓ ✗ 43.03 46.60 47.12 46.05 40.79
#4 ✓ ✓ 43.03 46.60 47.13 46.05 40.80

Table 8: Ablation study on hyper-
parameters on KAM-SORT.

Vector Similarity θ Uncertainty Revision α

θ HOTA↑ MOTA↑ IDF1↑ α HOTA↑ MOTA↑ IDF1↑
22.5◦ 42.963 46.586 47.013 0.5 43.026 46.601 47.123
45◦ 43.010 46.600 47.091 1 43.027 46.601 47.126
67.5◦ 43.020 46.601 47.122 2 43.026 46.602 47.131
80◦ 43.027 46.601 47.126 3 43.026 46.602 47.131

5.3 Ablation Study
We conducted four ablation studies as follows:

The first ablation study, presented in Table 5, evaluates KAM-SORT’s tracking
performance on the G2MOT dataset under different annotation settings. These settings
include using both attribute and class_name , using definition , and using
caption as the default setting. This study highlights the utility and accuracy of our

fine-grained and informative annotations, valuable not only for object tracking but also
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for many other applications and further exploration. Fig.6 illustrates some visualization
of tracking performance by KAM-SORT on different annotation settings. Although we
do not report tracking performance using synonym in Table 5 due to it represents a list
of synonyms, the illustration in Fig. 6 demonstrates promising results, indicating the
potential for further exploration in the future.

The second ablation study, shown in Table 6, assesses KAM-SORT’s performance on
the MOT task by comparing it on the MOT20 dataset [14]. To ensure fairness, we disable
certain ad-hoc settings, such as employing varying thresholds for individual sequences,
an offline interpolation procedure, and internal weights for object detection. YOLOX
object detector is used for all trackers to demonstrate the effectiveness of KAM-SORT.

The third ablation study, presented in Table 7, evaluates two novel components of
KAM-SORT: (a) Appearance-Motion Balance, which balances visual appearance and
motion cues (Eq. 5), and (b) Kalman++ (Algorithm 1), an alternative algorithm replacing
traditional Kalman. The ablation study (#1 v.s. #2) and (#3v.s. #4) shows the importance
impact of Kaman++ whereas (#1 v.s. #3) and (#2 v.s. #4) shows the importance impact
Appearance-Motion Balance.

The fourth ablation study, shown in Table 8, report KAM-SORT’s tracking per-
formance on various hyper-parameters, i.e. vector similarity θ, defined in Eq. 7 and
uncertainly revision α, defined in Algorithm 1.

KAM-SORT (Ours) SORT DeepOCSORT
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Fig. 5: Tracking comparison between our tracker KAM-SORT (1st column) with SORT (2nd

column), OC-SORT (3rd column) and DeepOCSORT (4th column) on video dancetrack0010
[44]. When handling objects disappear and reappear, SORT encounters challenges in maintaining
tracklets, OC-SORT tends to lose track, potentially leading to incorrect Re-ID, and DeepOCSORT
faces difficulties Re-ID objects once they reappear. In contrast, our KAM-SORT accurently re-
associates object ID once the object reappears.
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black plane aircraft
 a aircraft that is lifted
and propelled by one or
more horizontal rotors

blue shirt player blue athlete
person with blue shirt who

participates in the basketball

attributes + class_name synonyms definitioncaption

the helicopter

player on field with
dark blue shirt
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Fig. 6: KAM-SORT’s tracking performance on the G2MOT dataset under different textual
description settings. From left to right: detected boxes and tracking IDs when using
caption (default setting), attribution + class_name , synonyms (randomly

select one synonym from a list of synonyms), definition .

6 Conclusion and Discussion

In this paper, we introduced a novel generic multi-object tracking (GMOT) framework
called Grounded-GMOT, which leverages natural language descriptions for track-
ing multiple generic objects in videos. Alongside this framework, we unveiled the
G2MOT dataset, providing diverse object categories, substantial data size, and challeng-
ing properties including a large number of objects, fast motion, large occlusion, high
appearance similarity, and high object density. The G2MOT dataset is annotated with
fine-grained language descriptions including synonyms, descriptions, attributes,
definitions, and captions. Additionally, we presented KAM-SORT, an innovative
object association method that incorporates Kaman++, an enhancement of the Kalman
Filter and effectively balancing between motion and appearance cues. Our extensive
experiments demonstrated the remarkable efficacy of the Grounded-GMOT framework
in GMOT task, significantly outperforming existing SOTA OS-GMOT methods. Fur-
thermore, our experiments and ablation studies highlighted KAM-SORT’s superior
performance compared to all SOTA trackers in both GMOT and MOT tasks.
Discussion: In our Grounded-GMOT framework, we utilize Grounding DINO as our
preferred VLM for detecting object bounding boxes, using textual description captions
as the query input as default. However, it is important to recognize the rich diversity of
VLMs available in the field, which opens up exciting avenues for deeper exploration.
Researchers and users have the opportunity to explore many other alternative VLMs
specifically designed for object detection, including noteworthy options like ViLD, Re-
gionCLIP, GLIP, X-DETR, and OWL-ViT (Section 2.2). Moreover, in our ablation study,
we implemented Grounded-GMOT using various textual description settings including
definitions, synonym, attribute + class_name, in addition to the default caption.
This showcases the informative annotation of our proposed fine-grained G2MOT dataset,
which holds potential for various research and future exploration endeavors. Exploring
these additional aspects of G2MOT could lead to enhanced object tracking capabilities
and advancements in fields such as surveillance, robotics, and animal welfare.
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