This ACCV 2024 paper, provided here by the Computer Vision Foundation, is the author-created version.
The content of this paper is identical to the content of the officially published ACCV 2024
LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/accv

RNA: Video Editing with ROI-based Neural Atlas

Jaekyeong Lee*, Geonung Kim*, and Sunghyun Cho

POSTECH
{jaekyeong,k2woong92,s.cho}@postech.ac.kr
https://jaekyeongg.github.io/RNA

time

(a) Original Video (b) RNA (c) Hashing NVD (d) CoDeF

Fig. 1: (b) Our video editing achieves natural editing outcomes, successfully consider-
ing the occlusions from the thin chain (2nd row) and the toy horse of the carousel (3rd
row). In contrast, (¢) Hashing NVD [4] results in ghosting artifacts, and (d) CoDeF
neglects the occlusion from moving objects, failing to produce natural editing results.

Abstract. With the recent growth of video-based Social Network Ser-
vice (SNS) platforms, the demand for video editing among common users
has increased. However, video editing can be challenging due to the
temporally-varying factors such as camera movement and moving ob-
jects. While modern atlas-based video editing methods have addressed
these issues, they often fail to edit videos including complex motion or
multiple moving objects, and demand excessive computational cost, even
for very simple edits. In this paper, we propose a novel region-of-interest
(ROI)-based video editing framework: ROI-based Neural Atlas (RNA).
Unlike prior work, RNA allows users to specify editing regions, simplify-
ing the editing process by removing the need for foreground separation
and atlas modeling for foreground objects. However, this simplification
presents a unique challenge: acquiring a mask that effectively handles
occlusions in the edited area caused by moving objects, without relying
on an additional segmentation model. To tackle this, we propose a novel
mask refinement approach designed for this specific challenge. Moreover,
we introduce a soft neural atlas model for video reconstruction to ensure
high-quality editing results. Extensive experiments show that RNA of-
fers a more practical and efficient editing solution, applicable to a wider
range of videos with superior quality compared to prior methods.

* equal contribution
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1 Introduction

With the recent growth of video-based Social Network Service (SNS) platforms
such as YouTube Shorts, there has been an explosive increase in the demand for
video editing among common users. However, video editing is a challenging task
since videos have temporally-varying characteristics caused by various factors
such as camera movement and moving objects, and editing such videos must
involve addressing these tricky factors in a temporally-consistent way.

For temporally-consistent video editing, atlas-based video editing methods
such as Layered Neural Atlas (LNA) [9], Hashing Neural Video Decomposi-
tion (Hashing NVD) [4], and Content Deformation Fields (CoDeF) [13] have
been proposed. These methods operate under an assumption, in which each
video frame consists of sprite layers representing the background and foreground
objects, and the appearance of the sprites are constant, while their positions
and shapes change by their motions, which can be represented, e.g., by op-
tical flow [7]. Based on this assumption, the typical procedure of atlas-based
approaches is as follows. First, they separate an input video into foreground ob-
jects and the background using instance segmentation, then estimate the atlases
and motions of the separated regions. Finally, a user edits these atlases, and then
an edited video is reconstructed from the edited atlases and the motion data.

Unfortunately, the atlas-based video editing approaches have inherent limi-
tations caused by their strategy that explicitly models each foreground object
independently. Firstly, accurate instance segmentation and atlas estimation of
multiple foreground objects are challenging especially when foreground objects
have complex motions. Failures in segmentation and atlas estimation result in
error-prone editing outcomes, e.g., ghosting artifacts or failures of handling oc-
clusions in Fig. (1] (¢) and (d). Secondly, for the segmentation of foreground
objects, the atlas-based video editing approaches require users to specify all the
foreground objects including those that the users do not intend to edit. This
requirement significantly diminishes the user-friendliness of the video editing in-
terface, particularly when the input video contains multiple foreground objects.
Lastly, in practical scenarios, users frequently aim to modify only a specific re-
gion of a video, such as introducing a new object or altering the texture of
an existing one. Despite this, prior atlas-based video editing methods, such as
LNA [9] and Hashing NVD [4], necessitate the complete reconstruction of the
entire video, leading to substantial computational resource requirements. In par-
ticular, they demand memory space and computation time that scale with the
number of objects. This results in computation times spanning several hours for
videos containing multiple objects.

This paper proposes a novel region-of-interest (ROI)-based video editing
framework: ROI-based Neural Atlas (RNA). Unlike previous methods, RNA al-
lows users to specify a region where editing will occur and then optimizes a
single atlas exclusively for the specified region. After the optimization, editing
is performed directly on the atlas. Finally, RNA reconstructs an edited video
using the edited atlas for the ROI, and the original pixel values for the non-
edited regions. Our ROI-based approach enjoys a couple of advantages over prior
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methods. Firstly, our approach does not need foreground separation performed
by segmentation models, which are often unreliable and cumbersome for users.
Additionally, by focusing solely on an ROI atlas, it avoids the necessity of atlas
estimation for all moving foreground objects, thus enabling editing of videos with
complex motions without incurring ghosting artifacts, and maintaining constant
computational resources regardless of the number of foreground objects.

Eliminating the foreground separation process introduces a unique challenge
that sets it apart from previous methods: acquiring a mask that effectively ad-
dresses occlusions in the edited area caused by moving objects, without de-
pending on an additional segmentation model. To this end, we propose a novel
approach for mask refinement tailored to the specific challenge. Specifically, after
estimating the atlas and mask similarly to previous methods [4,/9], we further
refine the imperfect mask using a novel self-supervised method. Additionally, we
introduce a novel soft neural atlas model, which employs a soft mask for han-
dling boundaries between occluding objects and an edited atlas for high-quality
video reconstruction.

Our main contributions can be summarized as follows.

— We first propose a novel ROI-based video editing framework that utilizes a
single atlas for editing regions, which removes requirement for the foreground
separation process and atlas modeling for all foreground objects.

— To estimate an accurate mask without foreground separation, we propose a
novel mask refinement method.

— We also introduce a novel soft neural atlas model for more natural-looking
video reconstruction.

— Extensive experiments demonstrate the efficiency and effectiveness of our
video editing framework, underscoring its practicality and versatility, com-
pared to previous state-of-the-art methods.

2 Related Work

Atlas-based Video Editing Video editing via 2D atlas images was first introduced
by Unwrap Mosaics [14], which decomposes a video into a series of 2D texture
maps termed “unwrap mosaics”’, and establishes a mapping from these mosaics to
video frames. Editing is then directly applied to the unwrap mosaics. To enhance
this approach, which involves complex optimization, naive layering with binary
segmentation masks, and limited adaptability for non-rigid objects, LNA [9]
introduces an end-to-end self-supervised method that reconstructs videos us-
ing neural atlases with alpha blending. To expedite the optimization, Hashing
NVD [4] and CoDeF [13]| adopt hash encoding [11] to represent input videos. To
facilitate more advanced editing, Text2Live [1] and StableVideo [3] incorporate
text-based image editing into the LNA [9] framework. In another direction, De-
formable Sprites [19] estimates sprite images and their warping parameters to
reconstruct an input video.

While atlas-based editing methods enable temporally-consistent video edit-
ing, their capabilities are often limited to simple videos featuring a single fore-
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ground object with mild movement. It is primarily due to the unreliable fore-
ground separation process performed using an off-the-shelf segmentation model |5,
6], and atlas optimization for all moving foreground objects. Meanwhile, RNA
eliminates the need for foreground separation and employs a single atlas where
the editing will occur, thereby achieving robust video editing that is applicable
to a broader range of videos.

Propagation-based Video Editing Video propagation refers to general techniques
that address video-related problems in a temporally-consistent manner. It in-
volves selecting a key frame from a video, applying a specific action to that frame,
and then propagating it to the remaining video frames. For example, Jampani et
al. [8] and Oh et al. [12] propose video object mask segmentation methods, and
Wang et al. [17] introduce a more general label propagation method that covers
object masks, textures, and human poses. For video editing, Meyer et al. [10]
propose a phase-based modification transfer, and Texler et al. [16] introduce an
editing method using patch-based training with a few shots. These methods of-
ten show limited editing capabilities, since they largely rely on a single frame
rather than exploiting multiple frames. For example, Meyer et al.’s method is
applicable only to static videos, and Texler et al.’s is limited to video stylization.

3 ROI-based Neural Atlas

In this section, we first present our ROI-based neural atlas model, which serves
as the foundation for our video editing framework (Sec. . Then, we explain
the three main components of our video editing framework: atlas estimation
(Sec. , mask refinement (Sec. , and video reconstruction using a soft
neural atlas model (Sec. [3.4).

3.1 ROI-based Neural Atlas Model

For temporally-consistent editing of a local region in a video, our method takes
an input video, and an ROI specified by a user in a reference frame as input.
Then, our method estimates a 2D atlas representing the temporally-invariant
appearance of the ROI, and the mapping from each video frame to the atlas.
Then, a user edits the 2D atlas using an image editing software such as Adobe
Photoshop. Finally, an edited video is reconstructed from the edited atlas and
the original video input. We assume that the ROI can be of any arbitrary shape,
and that the ROI in the reference frame has no occluded pixels, while they can
still be occluded by other objects in other frames.
To this end, we propose an ROI-based neural atlas model defined as:

¢p = M(p)L(T(p), ) A(T(p)) + (1 — M(p)) ¢y, (1)

where p = (z,y,t) is a coordinate indicating the spatial position (x,y) at the
t-th frame. c and ¢ are the input and its reconstructed video, respectively. ¢, and
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Fig. 2: Overall framework of RNA. For video editing, (a) a user selects a reference frame
from an input video and specifies an ROI where they want to edit. (b) For the specified
ROI, our method estimates a 2D atlas representing its temporally-invariant appearance.
(c) Then, the user edits the 2D atlas. (d) Finally, an edited video is reconstructed from
the edited atlas and the input video.

¢, are the pixel values of ¢ and ¢ at p, respectively. M(p) is a mask indicating
whether the pixel (z,y) at the t-th frame belongs to the ROI, i.e., M(p) = 1 if
p belongs to the ROI, and M(p) = 0 otherwise. A is an atlas representing the
color values of the ROL. A is defined as a mapping from a 2D coordinate (u,v)
to an RGB value. T is a mapping from p to a coordinate (u,v) on the atlas. L
is a scaling function to model the spatial and temporal illumination change |4].
Specifically, L(T(p),t) is a 3 x 3 diagonal matrix whose diagonal entries consist
of scaling factors for the RGB color channels.

Fig. [2] illustrates our ROI-based neural atlas model in Eq. (1). The ROI
can be occluded by other objects that were originally outside of the ROI at
the reference frame, but moved into the ROI later, e.g., a person passing in
front of the ROI specified on the background as shown in Fig. M allows
for handling such occlusions without explicitly modeling occluding objects. For
the mappings M, A, T, and L, we adopt multi-layer perceptrons (MLPs). Also,
we use hash encoding for M and A following the recent neural atlas-based
approaches .

To edit a video using the model in Eq. , we first estimate the mappings
M, A, T, and L for a given video in an end-to-end supervised manner (Sec. .
Then, we perform an additional mask refinement process to more accurately
consider occlusions caused by foreground objects in motion (Sec. . Following
this, we render a discretized version of the atlas A. Users then edit this atlas
as they desire, and obtain an edited atlas image A.4;;. Finally, an edited video
is reconstructed using the video reconstruction method based on a novel soft
neural atlas model, which will be described in Sec. [3:4]

3.2 Atlas Estimation

To edit a video, all the mappings M, A, T, and L in Eq. are estimated in an
end-to-end self-supervised manner prior to editing. The estimation is performed
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(a) Reference Frame (b) W/ Position Loss (c) W/0O Position Loss

Fig. 3: (b) Atlas estimation with £, provides a user-friendly interface for editing, (c)
while, without Lp.s, the estimated 2D atlas can be severely distorted, leading to less
intuitive editing.

by minimizing a loss £, which is defined as:
L= ['Tecon + Erigid + ['pos + £corr + ﬁmask} + Lillum (2>

where Lyecons Lrigids Lposs Leorry Lmask, and Lijum represent the reconstruction,
rigidity, position, correspondence, mask, and illumination losses, respectively. In
the following, each loss will be elaborated in detail.

Reconstruction loss The reconstruction loss Ly econ is used for estimating the
mappings that can accurately reconstruct the input video. L,¢con is defined as:

Lyrecon = Z ”ép - Cp”ga (3)

peEP

where P is a set of pixels p in an input video, including those both inside and
outside the ROI. During the estimation process, we randomly sample pixels for
P in every epoch.

Rigidity loss Estimating the mappings only with the reconstruction loss may
result in a severely distorted atlas, making editing challenging. To tackle this,
we adopt the rigidity loss proposed by Kasten et al. ﬂgﬂ, which is defined as:

Lrigia = Nrigia ST Tl + 1)), W
pEP
where || - || r denotes the Frobenius norm, .J, is the Jacobian matrix of the local

transformation at p obtained from T, and A,;4:4 is & balancing weight for L,;g;q.
The rigidity loss encourages local transformations of T to be as rigid as possible
by enforcing the singular values of the Jacobians to be close to 1. We refer the
readers to the Supplemental Document for more details of J,.

Position loss While the rigidity loss can prevent severe local distortions, re-
sulting atlases may still be smoothly distorted. Moreover, it does not prevent
global scaling or rotation of the atlas, and may result in a too small and rotated
atlas, which is difficult to edit, as shown in Fig. [3| (¢). Thus, to support more
user-friendly and convenient editing, we introduce a position loss L,s, which
promotes the positions of the content in the atlas to be similar to those of the
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user-specified ROI in the reference video frame, so that it can prevent global
scaling and rotation as shown in Fig. [3| (b). £, is defined as:

Epos = >\;DOS Z ||T(p) - [1,7y}T||2’ (5)
pEPROI

where \,,s is a balancing weight for L,,s, Pror is the set of pixels in the ROI
in the reference frame, and p = (z,y,1).

Correspondence loss The correspondence loss L., ensures that the correspond-
ing pixels across different video frames in the ROI are mapped to the same UV
coordinate in the atlas. To this end, L., is defined as:

Leorr >‘((:(1)2‘r Z M(p)[IT(p) — T(pr)ll2 + )‘gz)rr Z M(p)[|IT(p) — T(pa)l2, (6)
(p.pr)EPr (P,Pa)E€Pa

where )\COM and Aff,lr are balancing weights. P, and P, are sets of corresponding

pixel pairs. Specifically, P, = {(p,p-)} is a set such that p is a pixel in the
input video and p, is its match in the reference frame. Similarly, P, = {(p, p.)}
is a set such that p is a pixel in the input video and p, is its match in an
adjacent frame. P, and P, can be estimated using an off-the-shelf optical flow
model |15]. For more accurate estimation of correspondences between distant
frames, we aggregate multiple optical flow estimations. Further details can be
found in the Supplemental Document. The first term on the right hand side in
Eq. @ ensures that the UV coordinate of a point in any given frame matches the
UV coordinate of its corresponding point at the reference frame, while the second
term is adopted for improving the temporal consistency of the UV coordinates
between adjacent frames.

Mask loss The goal of the mask loss L5k is to train the mask network M
to output 1 for non-occluded pixels within the ROI and 0 otherwise. We define
Loask as:

Lonask = —Aomae 4 > logM(p)+ > log (1 —M(p))

PEPROI PEPSo;
2 3)
+ Mo 2 IM(p) = M(p,)| + A5, D M(p) = M(pa)l . (7)
(p,pr)EPr (pyPa)EPa

where )\frlblé o )\53{)15 i and )\Ejt)wk are balancing weights. In the first term, Pg; is

a set of the pixels outside the ROI in the reference frame. The first term on the
right hand side is a binary cross-entropy loss to train M to have 1 if the pixel
is inside the ROI and 0 otherwise. The second and third terms propagate the
mask values to different frames in the input video based on the correspondence
P, and P,. As we assume that the ROI in the reference frame has no occluded
pixels, we enforce M to be 1 for all the pixels inside the ROI in the reference
frame using the first term. Then, M is trained to be 0 for the occluded pixels
inside the ROI in different frames by the reconstruction loss and the second and
third terms of the mask loss.
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e [y e

(a) Mask (b) Editing Result (c) Mask (d) Editing Result
w/o mask refinment w/o mask refinement w/ mask refinment w/ mask refinement
Fig. 4: Magnified masks and editing results with and without mask refinement. With-
out the mask refinement, the mask inaccuracy is significant at the boundaries of oc-
cluding object.

Illumination loss The illumination loss L4, ensures that the mapping L ac-
curately models changes in lighting over time. For L;j;,, we adopt the residual
regularization loss of Chan et al. [4]. Specifically, assuming that the illumination
does not change much from that of the reference frame, we define L, as:

Littum = Nittum Z ||L(T(p)7 t) - [17 L, 1]Tl|§a (8)
peP

where \;jjum is a balancing weight.

3.3 Mask Refinement

While our atlas estimation process de-
scribed in Sec. accurately esti-
mates T, A, M, and L for most pix- Input Frame ROI Atlas (A)

els, M can still contain errors, particu-

larly around the boundaries of occlud- Fig-5: A point p, which is outside of the
ing objects, as shown by the red arrow R.OI,. is mapped into a plausible position
in Fig. [ffb). This artifact occurs when within the ROT by T.

non-occluded pixels are erroneously identified as occluded ones due to the dif-
ficulty in reliably estimating a mask for these pixels. To handle such boundary
errors and to obtain a more accurate mask, we propose a novel mask refinement
method, which is performed after atlas estimation. To this end, we leverage well-
estimated A and T, as shown in the example in Fig. [5] In the example, the point
p, which was originally inside the ROI at the reference frame, is occluded by a
foreground object. Nevertheless, T still learns to map p to a position inside the
ROI due to the non-occluded counterparts of p at other frames. This is because
T is modeled as an MLP, which is a piece-wise continuous function. Based on this
property, we perform an additional occlusion test. Specifically, we test whether
¢p is close enough to A(T(p)) to detect occluded pixels, and update the mask M
accordingly.

Specifically, in the first stage of the refinement step, we first find a set of
pixels in the input video potentially belonging to the ROI. To this end, we build
a binary mask M,.,; for the reference frame such that M,.;(z,y) = 1 if (z,y)
is inside the ROI at the reference frame, and M,.;(x,y) = 0 otherwise. Then,
we warp M,,; using the transformation T for the reference frame, and obtain
a mask M. that is aligned to the atlas A. Using M. we find a set of pixels

ot ro%’
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(a) Input Frérﬂné (b) Rendering of Atlas (¢) Ppor at Time ¢ (d) Py at Time t
atTime t atTime ¢

Fig. 6: (b), which is rendered by L(T(p),t)A(T(p)), shows an appearance without the

moving foreground object that exists in the input frame at ¢. (d) Using this property,

we can effectively identify the target points, P, for mask refinement.

potentially belonging to the ROI as Ppor = {p|M2,(T(p)) = 1} (Fig.[f] (c)). We
then identify non-occluded pixels among the pixels in Pp.:. Specifically, we find a
set of non-occluded pixels Ppo as Pro = {p|||L(T(p), ) A(T(p)) — cplli < TINPpor
where 7 is a small constant. Fig. [6] (d) visualizes an example of Py,.

The next stage of the refinement step updates the mask M by minimizing
the loss function defined as:

ﬁrefine = Lrecon + »Cnoa (9)

where L, is a loss for the non-occluded pixels. L, is defined as:

Lo =0 D> =M@+ D M(p) —M(pa)l, (10)
PEPno (PsPa)EPa

where )\%10) and )\nQO) are balancing weights. The first term on the right hand side
promotes M to be close to 1 for the non-occluded pixels inside the ROI while
the second term propagates the refined mask values to other frames. We update
only M using L, fine in the mask refinement step.

3.4 Video Reconstruction using a Soft Neural Atlas Model

Although our mask refinement step can effectively enhance the accuracy of the
mask M, the mask after the refinement tends to be close to a hard mask whose
values are either 0 or 1. On the other hand, pixels along the boundaries between
occluding objects and the ROI usually have mixtures of the colors from different
regions. Thus, using a hard mask leads to unnatural reconstruction results after
atlas editing as indicated by the orange arrow in Fig. [4] (d).

For more visually pleasing blending, we thus estimate a soft mask that cor-
rectly reflects the blending of occluding objects and the ROI using an off-the-shelf
matting network, VitMatte |18]. Specifically, for each video frame, we render its
mask from M, and apply morphological erosion and dilation to obtain a trimap.
Then, we estimate a soft mask M by feeding the frame and its trimap to the
matting network.

For video reconstruction after atlas editing, we may naively replace A and
M in Eq. with Agg;r and M, respectively. However, this approach does not
produce natural-looking results on the boundary pixels around occluding objects
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dog-gooses schoolgirls

dogs-jump

(a) Original Video : (b) RNA (c) Hashing NVD (d) LNA (e) CoDeF

Fig. 7: Qualitative comparisons with previous methods. RNA achieves natural editing
by handling complex occlusions without artifacts, such as ghosting and omission, sig-
nificantly outperforming previous methods.

since Eq. is designed in the consideration of using a hard mask. To address
this, we additionally propose a soft neural atlas model, which is defined as:

¢p = M(p)L(T(p), t)A(T(p)) + (1 — M(p))c;", (11)
where ¢o¢ is the color of the occluding object at p. From Eq. (11), we can derive
cp° as:

CZC _ Cp — M(p)L(TSP), t)A(T(p)) ) (12)
1—Mi(p)

Then, by replacing A in Eq. and substituting Eq. into Eq. , we
obtain our final reconstruction equation, which is defined as:

pedit _ M(p)L(T(p), t)(Acait (T(p)) — A(T(p))) + cp I\:/H(p) <1 (13)
P L(T(p), t)Acait(T(p)) M(p) =1,

where ¢°@* is a video reconstructed from A.g;;. The equation for M(p) < 1lin
Eq. (13) should reduce to L(T(p), t)Acai(T(p)) when M(p) = 1 if A and L are
perfectly estimated, i.e., L(T(p), t)A(T(p)) = cp. However, A and L may have a

small amount of error in practice, so we use L(T(p), t)Acqi(T(p)) for M(p) = 1.
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breakdance

music-band

libby

buiiding

(a) Reference Frame (b) Rendring of Atlas (c) Original Frame  (d) Edited Frame (e) Edited Frame
atTime ¢ atTime ¢t at Time t atTime t

Fig. 8: Editing results of RNA applied to various video scenarios, including complex
foreground objects (breakdance-flare, music-band), large camera movements (tennis),
foreground object with occlusion (libby) and time-varying light change (building).

Table 1: Quantitative comparisons of memory usage, training time, and PSNR for
reconstructed frame. The training is conducted using a GeForce RTX 3090 GPU with 24
GB. Deformable Sprites is tested at a lower resolution due to memory constraints.

lucia [1 object, 70 frames||dogs-jump [3 objects, 65 frames||dog-gooses |5 objects, 70 frames|
Method Resolution GPU Tra}mng PSNR GPU TraAmmg PSNR GPU Tra}nmg PSNR
Memory Time Memory Time Memory Time
Deformable Sprites [E] 427 x 240/ 9.4 GB 25 min. 25.6 |15.1 GB 35 min. 30.5 21.2 GB 55 min. 25.3
CoDeF 768 x 4321 3.8 GB 10 min. 26.2 | 3.8 GB 10 min. 33.8 3.8 GB 10 min. 25.1
LNA g 768 x 432| 3.1 GB 6 hours 31.4 | 4.7 GB 10 hours 33.8 6.3 GB 14 hours 27.6
Hashing NVD [Z] 768 x 432|2.9 GB 1.2 hours 31.0 | 3.7 GB 2.2 hours 33.2 4.4 GB 3.2 hours 27.3
Ours 768 x 432 2.4 GB 40 min. 31.5 [2.4 GB 40 min. 33.5 2.4 GB 40 min. 27.7

4 Experiments

In this section, we conduct extensive experiments to demonstrate the effective-
ness of RNA. We use video examples from the DAVIS dataset |2| for the evalu-
ations. We refer the readers to the Supplemental Document for implementation
details including the network architecture of the mappings, the balancing weights
of the loss function, and the details of the editing process.

4.1 Video Editing Quality

We first compare the quality of video editing results of different methods. Fig. [7]
shows a qualitative comparison of the editing results of Hashing NVD , LNA @]
and CoDeF . Hashing NVD [4] and LNA @]I exhibit ghosting artifacts in all
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editing results due to the inaccurate atlas estimation of the foreground objects.
CoDeF |13] exhibits several issues across the editing examples. In the ‘schoolgirls’
example, the head of the girl in violet disappears in the edited frames, because
CoDeF relies on instance segmentation to extract foreground objects, which is
unfortunately unreliable for objects with complex motions. In the ‘dog-gooses’
example, the edited contents show jittering artifacts as the camera moves due
to its relatively naive motion estimation. In the ‘dogs-jump’ example, boundary
artifacts can be observed between the dog and the background due to its inac-
curate segmentation and hard mask-based approach. In contrast, RNA achieves
natural video editing results in these challenging scenarios.

4.2 Reconstruction Quality and Efficiency

For plausible video editing, accurate atlas estimation is crucial. To evaluate the
quality of atlas estimation of RNA, we compare video reconstruction results of
different methods on video examples with various numbers of moving objects
in Tab. [1} Additionally, we also compare the computation times to evaluate the
efficiency of the proposed method. In the table, we compare the GPU memory
usage and the training times needed for atlas and mask estimation with those
of previous methods. For a fair comparison, we compare the PSNR value within
a specified ROI region between the reference and reconstructed frames. The
details of these ROI regions are included in the Supplementary Document. As
described in the table, Deformable Sprites [19], LNA [9], and Hashing NVD [4]
require memory and training times that proportionally increase with the number
of foreground objects, as they model each foreground object using an individual
network. Meanwhile, RNA achieves comparable PSNR values to these methods
with generally smaller and constant computational overload, regardless of the
number of moving objects. CoDeF [13] exceptionally requires constant and small
computational overload, similar to our approach, since it models only a single
atlas for the background region. However, it exhibits poor PSNR values when
there are camera motions, as shown in the ‘lucia’ and ‘dog-gooses’ examples.
This poor reconstruction results in jittering artifacts after editing, as shown in
the results of ‘dog-gooses’ and ‘dogs-jump’ in Fig. m (e).

4.3 Additional Qualitative Examples

Fig. [8 shows rendering results of estimated atlases and video editing results ap-
plied to various scenarios. As shown in (b) and (c) in the figure, the rendering
results of atlases exhibit the contents without occluding foreground objects. We
effectively utilize this property in our mask refinement and soft neural atlas
model, achieving high-quality editing results. (d) and (e) in the figure demon-
strate high-quality video editing results achieved by RNA. Especially, despite the
high complexity with many people walking around in the ‘music-band’ exam-
ple, RNA effectively handles such challenging occlusions, achieving natural video
editing results. In the ‘tennis’ example, RNA succeeds in editing despite large
camera movements. The ‘libby’ example shows that RNA successfully edits the
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(a) Reference Frame (b) ROI Atlas (c) Edited Frame 1 (d) Edited Frame 2

Fig. 9: (a) shows multiple ROIs designated for a moving foreground object and a static
background, and (b) shows an estimated atlas corresponding to those ROIs. (c¢) and
(d) show that RNA can address the editing in both the foreground object and the
background using a single atlas.

il : L
(a) Original Video (b) Atlas Estimation (c) (b) +Mask Refinement (d) (b) +Mask Refinement
+ Soft Neural Atlas Model

Fig.10: Ablation study for our altas estimation, mask refinement, and soft neural
atlas model. (b) Atlas estimation produces artifacts for pixels around the boundaries
of occluding objects (red arrows). (c) Mask refinement successfully addresses those
artifacts. (d) Soft neural atlas model achieves smooth compositions between the editing
area and the foreground.

moving foreground object despite its non-rigid motion, and handles occlusions
despite the motion of the foreground object. The ‘building’ example demon-
strates that RNA can also effectively handle time-varying illumination changes.

Multiple ROIs RNA also allows for a user to simultaneously edit both a moving
foreground object and the background as long as they are not overlapped in the
reference frame. For editing multiple ROIs, a user specifies multiple ROIs, as
shown in Fig. [0] Then, RNA estimates a single atlas for multiple ROIs as shown
in Fig.[9] (b) so that the user can edit the ROIs together.

4.4 Ablation Study

Impact of each phase We conduct an ablation study by sequentially applying
our mask refinement and soft neural atlas model after atlas estimation (Fig. .
Without the mask refinement phase, an imprecise mask is estimated, leading to
artifacts for pixels around the boundaries of occluding objects (red arrows in
Fig. [10[ (b)). Our mask refinement effectively suppresses these artifacts. Finally,
our soft neural atlas model smoothly blends the edited content and moving
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(c) Naive Reconstruction (d) Soft Neural Atlas Model

(a) Original Frame (b) Soft Mask M

Fig. 11: Comparison of (c) a nalve reconstruction result, which uses Eq. by replac-
ing M and A with M and Acgit, and (d) a result using our soft neural atlas model. In
the boundary areas between the edited content and the occluding foreground object,
our proposed model shows a more natural-looking transition between them.

foreground object, as shown in Fig. [10[(d). More ablation examples are displayed
to the Supplemental Document.

Soft neural atlas model We conduct another ablation study to verify the effect
of our soft neural atlas model. A naive approach to video reconstruction is to
use the hard mask-based neural atlas model presented in Eq. . Specifically,
we may simply replace A and M with A.4;; and M, respectively, to achieve video
reconstruction using an edited atlas. In this ablation study, we compare our
soft neural atlas model-based video reconstruction against the naive approach
to verify the effect of the soft neural atlas model in Fig. Fig. (c) shows
a result of the naive reconstruction approach. As shown in the magnified view
in Fig. (c), the boundary between the leg and green bin includes unnatural
dark colors, which originate from the original input frame. In contrast, our soft
neural atlas model successfully avoids such artifacts and achieves highly-natural
reconstruction results, as shown in Fig. [11] (d).

5 Conclusions

In this paper, we propose RNA, a novel ROI-based video editing framework.
RNA enables video editing by allowing users to specify an ROI that they want
to edit. Our ROI-based approach enables computationally-efficient and robust
atlas and mask estimation, while removing the burden of users to manually spec-
ify all moving foreground objects. For high-quality video editing, we also present
a novel mask refinement method, and a novel soft neural atlas model. Conse-
quently, RNA offers a more practical and efficient solution to video editing that
is applicable to a wider range of videos. Our method is not free from limitations.
we assume that the ROI a user wants to edit must be clearly visible without
any occluding objects in a reference frame. However, such frames may not be
available in some videos.
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