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Abstract. Due to the remarkable advancements in RGB visual track-
ing, there has been a growing interest in RGB-D tracking, owing to its
robust performance even in challenging scenarios. To bridge the gap be-
tween RGB and RGB-D tracking, several 2D prompt learning methods
have emerged, which primarily target on downstream task adaptation.
In contrast, we introduce a novel prompt learning method for RGB-D
tracking, termed as 3D Prompt Tracking (3DPT), which is able to
capture essential 3D geometric information and transform base RGB
trackers into RGB-D trackers through parameter efficient tuning. Com-
pared to those counterparts using depth maps as 2D prompts, we pro-
pose to directly encode 3D features from point clouds into base models,
leading to more superior discriminative powers, particularly when the
target and background distractors share similar visual appearance. We
achieve this goal through an elaborately designed Geometry Prompt
(GP) block, which can effectively extract 3D features, and inject the 3D
knowledge into the 2D base model. The GP block is generally applica-
ble to recent visual trackers, yielding more robust tracking performance
with reasonable computational overhead. Extensive experiments demon-
strate that our 3D Prompt Tracking delivers promising performance and
can generalize across three popular RGB-D tracking datasets, including
DepthTrack, CDTB, and VOT-RGBD2022.
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1 Introduction

Video object tracking, as a foundational component in the field of computer vi-
sion, finds applications in various domains including virtual reality, augmented
reality, and autonomous driving. Recent progress in this field is largely at-
tributed to the adoption of transformer architecture [27] and the availability
of large-scale datasets. Transformer-based RGB trackers [4, 7, 32, 33, 6, 39] have
outperformed convolution-based models, benefiting from many large scale RGB
tracking datasets, like LaSOT [10], GOT-10K [13], and TrackingNet [24].

Despite advancements, RGB trackers [39, 43, 8] struggle in challenging scenar-
ios, like extreme illumination changes, background clutter, and motion blur. This
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Fig. 1: Comparison between 2D prompt learning and our proposed 3D prompt
learning for RGB-D tracking, where targets are marked in red and distractors in
green. Point clouds are colored based on RGB images for enhanced visualization.

has led to an interest in multi-modality tracking, including RGB-Depth (RGB-
D) [25, 37, 46], RGB-Thermal (RGB-T) [35, 28, 42], and RGB-Event (RGB-E) [40,
30] tracking, leveraging diverse modalities to enhance tracking performance.

Depth is a common modality with various acquisition methods [29], and
has proven to be effective in many tasks [11, 45]. Therefore, we focus on RGB-D
tracking in this work. Recent RGB-D trackers, which treat depth as an additional
visual feature, often rely on low-level appearance cues. This can be insufficient
for precise tracking in complex scenarios. Fig. 1a illustrates the limitations of
depth maps in distinguishing targets from distractors, especially when they are
closely located and share similar depth values.

In contrast, 3D geometric information offers a more comprehensive under-
standing of object shape and spatial arrangement, leading to more accurate
location estimation. As shown in Fig. 1b, point clouds can clearly highlight the
differences in location between the target and distractors, providing significantly
more discriminative information and enhancing tracking accuracy.

While 3D information holds potential to improve tracking capabilities, effec-
tively using it is challenging due to two main concerns. Firstly, RGB-D tracking
datasets are smaller than RGB tracking datasets, posing a challenge for devel-
oping precise and robust RGB-D trackers. Secondly, integrating 3D perception
into 2D base models without affecting their performance and generalization is a
non-trivial challenge.
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In recent years, the paradigm of prompt learning [22] has led to significant
successes for neural natural language processing (NLP) algorithms in down-
stream tasks. This approach provides an efficient way to leverage pre-trained
models for a wide range of downstream applications. Remarkably, these benefits
are achieved with the addition of only a minimal number of trainable parameters.

In this paper, inspired by prompt learning, we introduce 3D Prompt Tracking
(3DPT) as a solution to address the aforementioned concerns. Our approach
aims to equip 2D base models with the ability to perceive the 3D environment
in prompt learning manner, which results in improved performance and stronger
generalization. As shown in Fig 1, different from 2D prompt learning methods,
we extract and process the additional information, i.e. point clouds, in 3D space.
Technically, we first project the depth maps into camera view. Subsequently, to
extract the corresponding 3D features, we introduce a novel 3D prompt block,
denoted as the Geometry Prompt (GP) block. This block treats point clouds as
prompts and processes them within the 3D space. Lastly, we fuse 3D features
with 2D features that come from the base model.

We apply our proposed 3D prompt tracking to two state-of-the-art RGB
trackers, namely MixFormer [7] and OSTrack [39]. Experimental results demon-
strate that our proposed method achieves superior performance by equipping
2D base models with 3D perceptual capabilities. In comparison to 2D prompt
learning methods, our approach also exhibits enhanced performance and gen-
eralization across diverse datasets, i.e. DepthTrack [37], CDTB [23], and VOT-
RGBD2022 datasets [16], utilizing only a limited number of trainable parameters
(1.1M) trained on DepthTrack.

Our main contribution can be concluded as:

– We introduce a novel RGB-D tracking framework, named 3D Prompt Track-
ing (3DPT), that enhances 2D base models with 3D perception capabilities.
This approach effectively leverages the strengths of 2D trackers pretrained
on large-scale datasets while incorporating 3D geometric information with
the addition of only a minimal number of parameters.

– The proposed 3D Geometry Prompt block combines 2D features and 3D
representations in an efficient and effective way, which can be easily applied
to other transformer-based RGB trackers, resulting in improved performance
and enhanced generalization in RGB-D tracking tasks.

– Extensive results show that our proposed method achieves SOTA results on
both DepthTrack and VOT-RGBD 2022 datasets, and exhibits stronger gen-
eralization across three different datasets. This achievement is expected to
have a positive impact on future research endeavors involving the integration
of 2D and 3D information in tracking applications.

2 Related Works

2.1 Video Object Tracking

RGB Tracking. In recent years, RGB tracking has witnessed significant ad-
vancements, largely owing to the availability of various large-scale datasets such
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as LaSOT [10], Got-10K [13], and TrackingNet [24]. Additionally, the integra-
tion of transformer architectures also has made substantial contributions to the
success of modern RGB trackers. For instance, TransT [5] revolutionizes video
object tracking by introducing the transformer architecture, leading to a notable
improvement in tracking performance. OSTrack [39] adopts the ViT [9] as its
backbone, harnessing self-attention mechanisms to effectively model the relation-
ships between search regions and templates. Stark [36], drawing inspiration from
DETR [2], embraces a transformer encoder-decoder structure. SeqTrack [4] treats
object tracking as a sequence generation problem and employs auto-regressive
techniques to make predictions for bounding boxes. Mixformer [7] and Swin-
Track [21] are two trackers that incorporate multi-scale transformer encoders
into their designs.

RGB-D Tracking. In recent years, many RGB-D tracking approaches treat
depth information as another form of visual information for more robust and
accurate tracking. DeT [37] employs a two-encoder approach, where color and
depth domain information are processed separately to extract their correspond-
ing features. SPT [47] adopts a structure similar to Stark [36], and it feeds both
color and depth images into a ResNet50 [12] backbone, followed by several trans-
former encoders, to extract search region and template features in both the color
and depth domains.

Furthermore, building upon the impressive achievements of RGB trackers
trained on extensive large-scale datasets, ProTrack [38] and ViPT [46] adopt
an approach where depth information is treated as a prompt. ProTrack com-
bines the RGB image with an additional modality into a single input image,
effectively merging both sources of information. On the other hand, ViPT em-
ploys a bypass network with a few number of trainable parameters to process
the additional modality. However, despite the significant progress made by re-
cent RGB-D trackers, they still tend to treat depth maps as another form of
visual information, and do not fully capitalize on the potential of modeling the
geometric relationships between search regions and templates.

2.2 Prompt Learning

Recently, prompt tuning paradigm [22] has gained significant attention as an
alternative to traditional full fine-tuning. Noted for its superior performance
and parameter efficiency, this approach is increasingly preferred in a variety of
downstream tasks.

VPT [14] utilizes predefined parameters as prompts and fine-tunes them on
downstream tasks. This approach outperforms full fine-tuning methods in many
downstream tasks, highlighting the potential of prompt learning in computer
vision. In contrast to VPT, AdaptFormer [3] introduces an AdaptMLP mod-
ule and incorporates it after the multi-head self-attention within a transformer
block. ConvPass [15] utilizes a convolutional bypass subnetwork as adaptation
modules in Vision Transformers (ViT) [9] to improve their performance on vi-
sual tasks, especially in low-data scenarios. ControlNet [41] introduces various

2530



3D Prompt Learning for RGB-D Tracking 5

Patch em
bed

Point  em
bed

G
P B

lock

Transform
er

G
P B

lock

Transform
er

G
P B

lock

Transform
er

Patch em
bed

Point  em
bed

Patch em
bed

Point  em
bed

H
ead

1/4 scale 1/8 scale 1/16 scale

× �1

× �1 × �2

× �2 × �3

× �3

Base Model

3D Prompt Branch

Frozen
Parameters

Trainable
Parameters

Search Template

R
G

B
Point C

loud

Fig. 2: The general architecture of our proposed 3D prompt tracking. The input
RGB images are sent to the base model MixFormer, while the point clouds are
sent to the 3D prompt branch, consisting of multiple our proposed Geometry
Prompt (GP) block. At each scale, we downsample the point cloud features and
their corresponding 3D coordinates using a point embedding process.

types of information, such as depth maps, Canny edges, and scribbles, which can
be viewed as different types of prompts to control predictions of the diffusion
model [26]. In essence, prompts serve as additional information to enhance the
knowledge of base models.

Based on that, ViPT and ProTrack uses different modality information to
adapt the base model to different tasks. Comparing with these 2D prompt learn-
ing method, our method focuses on equipping 2D base models with the ability
to process 3D information within the prompt learning paradigm.

3 Method

In this section, we introduce our proposed method, 3D Prompt Tracking (3DPT),
with the aim of equipping 2D base models with the capability to perceive and
understand the 3D environment through parameter efficient tuning, harnessing
the combined power of the 2D and 3D domains to significantly improve accuracy
and robustness in video object tracking.

We will begin by introducing the formulation of RGB-D tracking and its
application within the prompt learning paradigm. Subsequently, we provide a
detailed explanation of our approach. Finally, we describe the experimental con-
figurations for different base models.

3.1 Problem Formulation

Given a tracking dataset I = {(Ii, Bi)}Ni=1, tracking algorithms utilize the first
frame image I1 and its corresponding bounding box B1 to predict the object
location Bt in the t-th frame. This can be formally expressed as:

Bt = Fθ1(It, I1, B1), (1)
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where F(·) is the forward function of a base model with its corresponding pa-
rameters θ1 trained on large scale RGB tracking datasets.

The conventional fine-tuning paradigm aims to train the parameters θ1 on
the target dataset. In RGB-D tracking, the scale of datasets is much smaller than
the RGB counterpart. Directly using the full fine-tuning paradigm may lead to
sub-optimal performance, as shown in Tab. 2.

To tackle this challenge, we adopt the prompt learning paradigm. In prompt
learning, the goal is to introduce new knowledge into a pretrained model by
adding a small number of trainable parameters θ2 while keeping the rest param-
eters θ1 frozen. In this paper, our method not only adapts the RGB base model
to the RGB-D domain, but also enhances 2D models with 3D perceptual abili-
ties. We use point clouds as prompts, allowing the model to gain 3D geometric
understanding, processed by the newly added 3D prompt branch represented by
θ2. This procedure can be formulated as:

Bt = Fθ1,θ2(It, Pt, I1, P1, B1), (2)

where Pt is the point clouds of t-th frame, which can be acquired by projecting
the depth maps into 3D space.

3.2 3D Prompt Tracking

In this section, we present the details of our proposed 3D Prompt Tracking
(3DPT) and its functionalities. For more concretely illustration, we choose Mix-
Former as the base model for demonstration, and our methods can be easily ap-
plied to other Transformer-based RGB trackers. The general structure is shown
in Fig. 2. In this structure, there are two branches: the base model branch, which
processes information from the RGB domain, and the 3D prompt branch, which
is responsible for managing the geometric information.

Given the depth maps Dt for the t-th frame, we first project these depth
maps into the 3D camera view space using the Proj function:

Pt = Proj(Dt). (3)

This function is based on the pinhole camera assumption, and employs cam-
era intrinsic parameters along with translation and rotation matrices resulting
from cropping, flipping, and other data augmentation techniques. For a more
concise presentation, we will illustrate the process using only the template and
its corresponding point cloud. It is important to note that the entire process
remains identical for both the search region and the online template, and the
other components are the same with the base model.

Then, the point cloud Pt is separated into different groups according to the
2D coordinates. These sub-groups of Pt are sent to a point embedding layer. The
outputs from this process are regarded as point cloud prompt features.
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Fig. 3: The structure of the Geometry Prompt (GP) block. The purpose of this
block is to merge 2D features from the base model, highlighted in green, with
3D information, highlighted in yellow. The KNN operation is executed only at
the first layer of a specific scale.

Point Embedding. Due to varying resolutions within the multi-scale architec-
ture in MixFormer, it becomes necessary to downsample the point cloud prompt
features and their corresponding 3D coordinates.

The point cloud Pt ∈ R3×H×W is generated from the depth map Dt ∈
R1×H×W , with its 2D coordinates aligning accurately with the corresponding
depth map. This implies that we can directly downsample the original depth
map to obtain the actual geometric information at different scales. Technically,
we uniformly divide the depth map Ds

t at scale s into H
M × W

M groups, based on
their 2D coordinates. Here, H and W represent the width and height, while M
denotes the downsampling factor. For each group, we select the minimum depth
value among all valid depth values as the downsampled depth value [20], which
can be expressed as follows:

Ds+1
t = min

M×M
(Ds

t ⊙ I(Ds
t > 0)), (4)

where ⊙ represents element-wise production. I(·) serves as an indicator, where
it equals 1 if the condition is true and 0 otherwise. Then, we project the down-
sampled depth map Ds+1

t ∈ R1×Hs+1×Ws+1 into 3D space, resulting in the cor-
responding 3D point cloud P s+1

t ∈ R3×Hs+1Ws+1 at scale s + 1, where Hs+1 =
Hs/M and Ws+1 = Ws/M . As for the point cloud prompt features, we rearrange
it into 2D space. Following this, we utilize an identical downsampling structure
in the corresponding base model to downsample the point cloud prompt features.

Geometry Prompt Block. For a specific scale s at the t-th frame, our ob-
jective is to integrate 2D features, originating from the base model, with 3D
information. The subscripts s and t are omitted for concise illustration. In this
section, we introduce our proposed Geometry Prompt (GP) block, which imple-
ments this goal in a memory and computation efficient manner. The structure
is shown in Fig. 3. This block consists of two branches: one dedicated to incor-
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porating semantic information from the 2D base model, while the other focuses
on incorporating 3D geometric information.

Technically, the l-th block at scale s inputs the base model feature F l−1
B ∈

RCs×Hs×Ws , which is the output of the l−1-th transformer block, and the point
cloud feature F l−1

P ∈ RCs×HsWs , subsequently generating the prompted point
cloud feature F l

P ∈ RCs×HsWs .
In this block, the base model feature F l−1

B is initially passed through a Linear
layer to reduce the channel dimensions from Cs to Ch. The resulting hidden
feature F ′l−1

B with a channel dimension of Ch is then fed to a fovea smoothing
block, which enhances the relevant information from the base model [46]:

F 2D
P = Fovea(F ′l−1

B ) = softmax(αF ′l−1
B )⊙ F ′l−1

B , (5)

where softmax(x) denotes the softmax operation along the spatial dimension,
and α is a learnable parameter initialized to 10 in our experiments, which follows
the same settings in [46]. The fovea smoothing block highlights tokens with high
responses while suppressing those with low responses.

Meanwhile, the point cloud feature F l−1
P ∈ RCs×HsWs is passed through an-

other Linear layer to reduce the channel dimension to Ch. For any arbitrary to-
ken f3D

i ∈ RCh×1 within the reduced geometric feature F ′l−1
P and its correspond-

ing 3D coordinate pi ∈ P s, we select the K nearest neighbors PKNN
i ∈ RK×3 in

the 3D camera view space. We then model the geometric relationship between
the point pi ∈ P s and the point pj ∈ PKNN

i as follows:

fKNN
i,j = f3D

j ⊖ f3D
i , i ∈ [1, N ], j ∈ [1,K], (6)

where N is the number of points, and ⊖ is elemental-wise minus. Subsequently,
we feed both fKNN ∈ RCh×HsWs×K and the original point feature F ′l−1

P to
a lightweight DGCNN (Dynamic Graph Convolutional Neural Network) [31]
to capture local geometric structures. It is important to note that we perform
the KNN grouping only once per scale, as the actual 3D relationships remain
constant within a specific scale.

Furthermore, since the 3D points may contain unreliable points, we incorpo-
rate an additional confidence layer. This layer comprises a linear layer followed
by a sigmoid operation, which serves to re-weight the geometric point feature
f3D
geo, the output of the DGCNN:

F 3D
P = σ(Linear(f3D

geo))⊙ f3D
geo, (7)

where σ denotes the sigmoid operation. The final prompted feature F l
P is derived

by rearranging F 3D
P ∈ RCh×HsWs into 2D coordinates, then adding it to F 2D

p .
This resultant feature is subsequently passed through another linear layer, which
upsamples the channel dimension from Ch to Cs.

For the l-th transformer block, the input feature denoted as F l
inp ∈ RCs×Hs×Ws

is elemental-wise summation of two features:

F l
inp = F l−1

B ⊕ F l
P , (8)

where F l−1
B is the output of the l − 1-th transformer block in the base model,

and F l
P is the output of the l-th geometry prompt block.
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3.3 Optimization and Losses

We choose two RGB trackers as our base models: OSTrack and MixFormer. In
our experiments, our goal is to predict the bounding box Bt of the t-th frame by
utilizing both the base model Fθ1 and the 3D prompt branch Fθ2 . The former
aims to process 2D information, while the latter is intended for processing 3D
point cloud information. During training, only the 3D prompt branch updates
the parameters θ2. Thus, the entire optimization can be formulated as follows:

θ2 = argmin
θ2

[
1

|I|
∑

L (Fθ1,θ2 (I, P,B1) , Bgt)

]
, (9)

where I represents the entire dataset, encompassing RGB images I, their corre-
sponding point clouds P , and ground truth bounding box Bgt.

Regarding the loss functions, different base models utilize different loss func-
tions. For OSTrack, being a one-stage RGB tracker, it has the capability to gen-
erate both regression and prediction confidence simultaneously. Consequently,
the loss functions of OSTrack [39] are consistent with the original settings:

L = Lcls + λiouLiou + λL1
L1, (10)

where Lcls denotes the classification loss, while Liou and L1 represent the IoU
loss and L1 loss, respectively.

On the other hand, MixFormer requires training the score branch at another
stage. For the sake of simplicity, we only employ the losses of the first stage to
train the 3D prompt branch [7]:

L = λiouLiou + λL1
L1, (11)

During testing, we load the score branch checkpoint directly, without retraining.

4 Experiments

Our proposed 3D prompt tracking integrates 2D features and 3D geometric
information within a unified framework. To evaluate the effectiveness of our ap-
proach, we conduct experiments on three widely-used RGB-D tracking datasets:
DepthTrack [37], VOT-RGBD2022 [16], and CDTB [23]. Among these datasets,
only DepthTrack provides access to its training set. In order to evaluate the
precision and generalization of 3D prompt tracking, we train our models only
on the training set of DepthTrack and subsequently evaluate their performance
across all three datasets mentioned above.

For the base models, we select two RGB trackers, i.e. OSTrack and Mix-
Former, and initialize them using the pretrained weights of OSTrack256 and
MixFormer256, respectively. These two base models are representative of differ-
ent transformer architectures. MixFormer employs a multi-scale approach, which
means it captures more detailed information at different scales. Conversely, OS-
Track adopts a large kernel-size patch embedding and applies self-attention [27]
only on the 1/16 scale. Furthermore, we also conduct experiments to investigate
the influence of our proposed method on different structures in Stark, which is
shown in Sec. 4.5.
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Table 1: Quantitative results of different trackers on the DepthTrack test dataset,
VOT-RGBD2022, and CDTB. The values ranked in the first, second, and third
place are marked in red, blue, and green, respectively.

Modality
DepthTrack test VOT-RGBD2022 CDTB

F(↑) Rec(↑) Pre(↑) EAO(↑) Acc(↑) Rob(↑) F(↑) Rec(↑) Pre(↑)
DiMP [1] RGB 0.436 0.418 0.456 0.543 0.703 0.731 0.570 0.570 0.570

DRefine [18] RGBD 0.465 0.448 0.484 0.592 0.775 0.76 0.708 0.708 0.708
DMTracker [16] RGBD 0.608 0.597 0.619 0.658 0.758 0.851 0.648 0.644 0.652

DAL [25] RGBD 0.429 0.369 0.512 - - - 0.592 0.565 0.662
DeT RGBD 0.532 0.506 0.560 0.657 0.760 0.845 0.657 0.642 0.674

SPT [47] RGBD 0.538 0.549 0.527 0.651 0.798 0.851 0.688 0.726 0.654
ProTrack [38] RGBD 0.578 0.573 0.583 0.651 0.801 0.802 0.757 0.767 0.747

ARKitTrack [44] RGBD 0.612 0.607 0.617 0.661 0.813 0.806 0.696 0.674 0.721
ViPT [46] RGBD 0.594 0.596 0.592 0.721 0.815 0.871 0.687 0.692 0.682

Un-Track [34] RGBD 0.610 0.610 0.610 0.718 0.820 0.864 - - -
OSTrack [39] RGB 0.529 0.522 0.536 0.676 0.803 0.833 0.726 0.733 0.720

OSTrack_3DPT
(Ours) RGBD 0.617

(+16.3%)
0.616

(+18.0%)
0.619

(+15.5%)
0.733

(+8.4%)
0.822

(+2.4%)
0.883

(+6.0%)
0.725

(−0.1%)
0.736

(+0.4%)
0.714

(−0.8%)
MixFormer [7] RGB 0.509 0.482 0.540 0.620 0.800 0.774 0.696 0.704 0.688

MixFormer_3DPT
(Ours) RGBD 0.620

(+21.8%)
0.610

(+26.6%)
0.629

(+16.5%)
0.700

(+12.9%)
0.818

(+2.2%)
0.847

(+9.4%)
0.711

(+2.2%)
0.708

(+0.6%)
0.713

(+3.6%)

4.1 Experimental Settings

We conduct our experiments on four NVIDIA 3090 GPUs with a batch size of
64 in total. The training process comprises 35 epochs, each consisting of 6× 104

sample pairs. We employ the AdamW optimizer with a weight decay of 1×10−4.
The learning rate is set to 2 × 10−4 for OSTrack and 5 × 10−5 for MixFormer.
The learning rate is not adjusted during the entire training process.

The evaluations are based on the official VOT protocol. For a fair comparison,
all base models and our proposed method operate under short-term settings,
which means templates are not updated during the tracking process.

4.2 Comparing with SOTA

The results are presented in Tab. 1. Our proposed methods outperform other
recent RGB-D trackers and the base models on the DepthTrack and VOT-
RGBD2022 datasets. On the CDTB dataset, our proposed methods achieve
similar or better performance compared to the corresponding base models.

When compared with similar prompt-learning-based RGB-D trackers like
ViPT and ProTrack, our proposed methods exhibit superior generalization across
different datasets, highlighting the effectiveness of combining 2D features with
3D geometric information. Further comparisons between 2D and 3D prompt
learning will be discussed in Sec. 4.4.

Additionally, ARTKitTrack [44] also extends 2D to 3D space by project-
ing features into a Bird’s Eye View (BEV), but the projection only uses the
depth map of the search region. Furthermore, BEV primarily aims to detect
larger objects, such as cars and people, and the predefined BEV grid size (e.g.
0.2m×0.2m) may not be sufficiently fine-grained to capture objects of arbitrary
shapes. This limitation could result in a loss of details and potential performance
degradation, particularly in unseen scenarios. In contrast, our approach lever-
ages point clouds, offering enhanced flexibility and appropriateness for tracking
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Table 2: Ablation of the main componets in the proposed method. The input
of prompt branch can be categorized into three types: no input (None), depth
maps (depth), and point clouds (PC). Prompt blocks (PB) are classified as no
prompt (None), 2D prompt (2D), and our proposed Geometry Prompt (GP).
Score Branch (SB) indicates whether the output of the score branch is utilized.

input PB SB Params F(↑) Pre(↑) Rec(↑)
None None ✘ 0 (0%) 0.499 0.489 0.509
None None ✔ 0 (0%) 0.503 0.522 0.486
depth 2D ✘ 1.2M (3.2%) 0.583 0.572 0.594
PC 2D ✘ 1.2M (3.2%) 0.605 0.592 0.618
PC GP ✘ 1.1M (3.0%) 0.615 0.602 0.628
PC GP ✔ 1.1M (3.0%) 0.620 0.629 0.610
PC GP ✔ 37.2M (100%) 0.586 0.593 0.579
PC GP ✘ 37.2M (100%) 0.575 0.563 0.587

objects of any shape. Experimental results demonstrate that the performance of
our method not only matches ARTKitTrack on DepthTrack but also surpasses
it on the other two datasets, even when ARTKitTrack employs a stronger base
model setting, i.e. OSTrack384.

In conclusion, our method not only achieves state-of-the-art performance on
both the DepthTrack and VOT-RGBD2022 datasets but also shows stronger gen-
eralization. This dual achievement underscores the effectiveness of our approach,
marking a significant advancement in object tracking.

4.3 Ablation Study

We conduct an ablation study of the Geometry Prompt block using MixFormer
as the base model on the DepthTrack dataset. The model is divided into two
components: transformer backbones and the score branch, with the latter not
fine-tuned to focus on the impact of the backbones. In Tab. 2, the first two rows
show the performance of MixFormer with and without the score branch, while
the last two rows represent the fully fine-tuned version of our method.

Comparing point clouds and 2D depth maps as inputs reveals a significant
advantage for point clouds. However, using point clouds alone does not fully
capture 3D spatial relationships. Our Geometry Prompt (GP) block enhances
the understanding of 3D geometry, enabling better discernment of spatial rela-
tionships between targets and distractors.

Additionally, our 3D prompt learning method outperforms full fine-tuning.
We believe that the smaller training set for RGB-D tracking leads to catastrophic
forgetting in full fine-tuning methods. In contrast, our 3DPT method, based on
prompt-tuning, preserves the generalization ability of pre-trained models while
enhancing their 3D perception cost-effectively.

4.4 Comparison between 2D and 3D Prompt

Quantitative Results. We compare the effectiveness of 2D and 3D prompt
learning in tracking tasks on DepthTrack, CDTB, and VOT-RGBD2022 datasets.
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Fig. 4: The metric curves on different datasets. 4a, 4b, 4d and 4e are based on
VOT RGB-D 2021 format, and 4c as well as 4f are based on VOT RGB-D 2022.
All quantitative results are calculated by using official VOT toolkit.

The metric curves in Fig.4 illustrate the performance of two base models along-
side our 3D Prompt Tracking (3DPT) methods and the 2D prompt learning
method ViPT[46]. Our 3DPT methods consistently outperform their counter-
parts, demonstrating significant enhancements across diverse settings and base
models. In contrast, ViPT exhibits suboptimal performance and generalization.
These factors show that our 3D prompt learning approach not only achieves
superior performance but also shows stronger generalization, highlighting the
effectiveness of 3D information integration in tracking tasks.

Visualizations. To further investigate the influence of various components
in our proposed method, we provide the score maps under different settings with
the base model OSTrack, which is shown in Fig. 5a. The first column is the RGB
images and depth maps of different templates, and second and third columns
are the RGB images and depth maps of search regions. The corresponding score
maps, visualized under different experimental setups, are arranged in the last
three columns. These setups include: (1) using 2D depth maps and 2D prompt
blocks, (2) using point clouds and 2D prompt blocks, and (3) using point clouds
alongside 3D prompt blocks (our GP blocks).

As shown in Fig. 5a, leveraging only 2D information may confuse the net-
work, trained to detect low-level features (e.g. edges, contours), especially when
distractors have depth values close to the target. Point clouds can offer richer
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Fig. 5: (a) is the score maps based on the base model OSTrack. (b) are attribute
F-scores on DepthTrack test dataset. We select 13 different attributes provided
by the dataset, including aspect change (AC), background clutter (BC), depth
change (DC), fast motion (FM), dark scene (DS), camera motion (CM), non-
rigid deformation (ND), out of plane (OP), out of frame (OF), partial occlusion
(PO), size change (SC), similar objects (SO) and unassigned (NaN).

and more discriminative information as depicted in Fig. 1b, mitigating this is-
sue but still fall short in fully understanding the 3D environment. In the last
column, considering that the target maintain similar 3D geometric relationship
across different frames, our proposed GP blocks can model this relationship in
3D space, and enables the network to focus on the right object more accurately.

Attribute Analysis. We provide F-scores for various attributes as provided
by the DepthTrack, following the approach in [19]. For each attribute, we gather
all frames labeled with it into a super-sequence to calculate its F-score. This
method slightly differs from the standard evaluation [17]. Hence, we provide an
overall performance (OA) F-score, derived by combining all sequences into a
super-sequence for F-score computation.

The results are shown in Fig. 5b. Our proposed methods outperform the base
models and the 2D prompt learning method across most attributes. Notably, for
scenarios that demand trackers to possess stronger discrimination capabilities,
such as fast motion (FM) and similar objects (SO), MixFormer_3DPT exhibits
better performance. We conjecture that multi-scale settings can provide more
discriminative information than single-scale settings in such scenarios.

4.5 Generalization on the other Architecture

Beyond MixFormer and OSTrack, we also apply our proposed method to another
transformer-based RGB tracker, namely Stark [36]. We evaluate the impact of
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Table 3: Applying our method to Stark on DepthTrack Test set. Enc refers to the
type of encoder utilized for encoding the additional modality, i.e. point clouds.
GP denotes whether the proposed 3D geometry prompt block is employed.

Enc GP params F(↑) Pre(↑) Rec(↑)
None ✘ None 0.469 0.519 0.428

OL ✔ 1.1M(3.8%) 0.577
(+23.0%)

0.587
(+13.1%)

0.568
(+32.7%)

ML ✔ 3.0M(9.6%) 0.564
(+20.3%)

0.584
(+12.5%)

0.546
(+27.6%)

GP block on different architectures by integrating it into both a transformer en-
coder and a ResNet image encoder, subsequently evaluating performance differ-
ences. To extract 3D geometric features, we explore two different configurations
in our experiments:

– OL (OSTrack-like): Similar to OSTrack_3DPT, we embed our proposed GP
block bypassing the transformer encoder, which contains only the 1/16 scale.

– ML (MixFormer-Like): Similar to MixFormer_3DPT, we embed the GP
block before the first ResBlock in every scale.

The training settings remain consistent with those mentioned above. As
shown in Tab. 3, when applying the proposed method to transformer encoder
and ResNet both bring significant improvement comparing with the base model
Stark. However, applying our proposed method to ResNet results in a slightly
lower performance improvement. This suggests that the proposed Geometry
Prompt (GP) block is better suited for transformer architectures. In the case
of convolutional architectures like ResNet, the effective incorporation of 3D in-
formation remains an open question.

5 Conclusion

Our paper introduces a novel framework, 3D prompt tracking, which enhances
2D RGB trackers with 3D perceptual capabilities. Utilizing prompt learning
techniques, this method demonstrates efficient parameter usage and significant
improvement in video object tracking. Extensive experiments, which include
attribute analysis and extensive testing across different datasets, consistently
highlight the superiority of our 3D prompt tracking approach over traditional
methods. These results reveal that our method not only achieves better perfor-
mance but also exhibits robust generalization across various datasets, namely
DepthTrack, CDTB and VOT-RGBD2022 respectively, even when facing some
challenging scenarios. This integration of 3D perceptual abilities into existing
2D base trackers may pave the way for further exploration and progress in the
domain of object tracking.
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