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Abstract. NeRF provides high reconstruction accuracy but is slow for
dynamic scenes. Editable NeRF speeds up dynamics by editing static
scenes, reducing retraining and succeeding in autonomous driving simu-
lation. However, the lack of depth cameras and the difficulty in obtaining
precise vehicle poses make real-time dynamic road scene reconstruction
challenging, particularly in swiftly and accurately reconstructing new ve-
hicles entering the scene and their trajectories. We propose EDeRF, a
method for real-time dynamic road scene reconstruction from fixed cam-
eras such as traffic surveillance through collaboration of sub-NeRFs and
cross-field editing. We decompose the scene space and select key areas
to update new vehicles by sharing parameters and local training with
sub-fields. These vehicles are then integrated into the complete scene
and achieve dynamic motion by warping the sampling rays across dif-
ferent fields, where vehicles’ six degrees of freedom(6-DOF) is estimated
based on inter-frame displacement and rigid body contact constraints.
We have conducted physical experiments simulating traffic monitoring
scenes. Results show that EDeRF outperforms comparative methods in
efficiency and accuracy in reconstructing the appearance and movement
of newly entered vehicles.

Keywords: Real-time 3D Reconstruction · Editable Radiance Fields ·
Intelligent Traffic Monitoring

1 Introduction

Real-time dynamic 3D reconstruction within a pre-built road environment is cru-
cial for robotics, intelligent traffic systems and autonomous driving simulations.
A typical application is intelligent surveillance of roads. Performing real-time dy-
namic reconstruction of vehicles within heavily trafficked scenes can significantly
improve capabilities of vehicular forensics and traffic management.

However, achieving this task in real-world road scenarios without extensive
depth cameras is challenging, due to the need for fast and accurate reconstruc-
tion of new vehicles entering the environment and their moving trajectories.
Most traditional methods based on mesh or point cloud for real-time dynamic
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3D reconstruction rely heavily on depth cameras [2, 26]. Due to their lack for
reconstruction speed, some work [1] use generic templates to represent moving
vehicles, preventing them from capturing the true appearance and details of the
vehicles. NeRF [23] has high-fidelity reconstruction capabilities, but it’s very
time-consuming to train dynamic scenes. Although Instant NGP(INGP) [24]
have greatly reduced training time of static to tens of seconds, directly applying
NeRF to the mentioned scenarios still presents difficulties: 1) Existing methods
require a large number of cameras to cover the complete 360° scene and results in
heavy data transmission volumes [15,32,39] , which is difficult to ensure in real
road. 2) Dynamic NeRF methods lack real-time capabilities [4, 15, 28]. For ex-
ample. Hex-plane [3] decomposes 4D scenes to accelerate, but still needs 4 hours
to reconstruct a 10-second dynamic scene on a kitchen bar. D-NeRF and some
works [28, 30, 32] treat dynamics as deformations and train to map each frame
from a canonical field to the deformation field, which is also time-consuming.

Some works [12, 18, 37, 40] propose editable fields, which efficiently achieve
object motion in implicit space by warping sampling rays instead of retraining.
Some of them use proxy meshes for editing [29,40], ideal for traffic scenes as they
separate dynamic vehicles within 3D bounding boxes from the static background.
This feature is also applied in autonomous driving simulations such as Mars [39].
Additionally, GPS, IMU, and roadside BEV data can guide dynamic vehicles as
rigid bodies, reducing the need for densely sampled video viewpoints.

However, editable NeRF methods face several challenges in our real-time
vehicle road monitoring task: First, most methods [12, 18, 29, 37, 40] are lim-
ited to dealing with objects that already exist within the reconstructed scene.
But in traffic monitoring tasks, new vehicles enter the scene from various en-
try points. Introducing new objects requires retraining the entire NeRF, which
is a time-consuming process and significantly degrades real-time performance.
Second, the dynamic reconstruction results of editable NeRF heavily depend on
the input movement information of the target object [39]. In reality, inputs from
sensors or visual localization are often imprecise, causing clipping, floating, and
misalignment. Moreover, temporary input absences can result in reconstruction
failures.

To address these challenges, we propose a real-time reconstruction method
based on fast local updating and editable NeRF for dynamic road scenes. First,
we decompose the scene space, using sub-fields to handle the static background
and new vehicles individually. By sharing network parameters, training local
area and implementing composite rendering, we address the challenge of quickly
and faithfully integrating new objects into a pre-built static scene. Second, we
extend editable field from operating in a single radiance field to multiple sub-
fields. By manipulating ray warping to sample across sub-fields, we integrate
vehicles into the complete scene and achieve dynamic motion, and accurately
reflecting occlusion relationships in composite rendering of sub-fields. Third,
we estimate the 6-DOF of vehicles using sequences of target coordinates and
scene information to guide their movement, reducing the reliance on precise pose
inputs for editing. The process involves two steps: initially, we roughly estimate
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the rotation angles through displacement projection between frames. Then, we
refine pose from road constraints, which is achieved by assessing the collision
relationship between the vehicle and the road surface through sampling some
volumetric density points. We perform our approach on a series of real-world
experiments. In summary, our contributions are as follows:

– We propose a method for fast updating part of static scenes through scene
decomposition, network parameters sharing and collaboration between dif-
ferent sub-fields. It addresses the challenge of quickly reconstructing new
targets within pre-built scenes.

– We propose a method for real-time reconstruction of dynamic road scenes
with multi-vehicles by cross-field editing. By warping sampling rays across
sub-fields, we efficiently integrate vehicles and achieve dynamic motion while
accurately reflecting occlusion relationships in composite rendering. It ad-
dresses the challenge of maintaining both real-time performance and quality.

– We propose a two-step method for estimating the 6-DOF of vehicles, in-
cluding roughly estimating rotation angles through displacement projection
between frames first and then refining based on volumetric density-based
geometric contact constraints. It addresses the challenge of heavy reliance
on precise pose inputs for dynamic by editing.

2 Related Work

2.1 Static 3D scene Reconstruction

Methods for 3D scene representation include meshes, point clouds, signed dis-
tance functions (SDF), voxels, NeRF and 3D Gaussian. Some works [8] use
triangulation and Poisson surface reconstruction for efficient rendering, though
high-quality mesh reconstruction is time-cosuming [14]. Structure from Mo-
tion (SFM) [31] represents scenes with point clouds, while Multi-View Stereo
(MVS) [9] enhances point density and performance. Some works [27] use SDF
to reconstruct textureless geometries. And some other work leverages neural
volumes [22] or multi-plane depiction [33].

NeRF [23] leverages volume rendering to reconstruct 3D scenes with high fi-
delity from images. Lots of NeRF works aim to enhance scene quality, efficiency,
performance in sparse views or large-scale scenes. Some works improve efficiency
by accelerating sampling [11, 25] or using hybrid representations with sparse
data structures such as octrees [17, 43]. InstantNGP [24] employ hash encoding
and multi-resolution frameworks to reduce training times to tens of seconds and
enable real-time rendering. Blocknerf [34,38] employ multiple sub-NeRFs to rep-
resent a complete scene, greatly boosting efficiency in large-scale environments
by replacing a single large MLP with several smaller MLPs.
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2.2 Dynamic Scene Reconstruction

Many classic works exist for dynamic scene reconstruction. Some works require
extensive depth cameras [1], LiDAR [26], cameras and optical flow input [7].
Some works [2] interpolate dynamic scenes but have small viewpoint changes.

Dynamic NeRF reconstruct realistic dynamic scenes from video but is very
time-consuming. Work like VidoNeRF [4,15] treats each frame as a static scene.
D-NeRF [28,30] train to map each frame from a canonical field to the deformation
field, still struggle with real-time capability and larger 360° scenes. Hexplane [3,5]
enhance efficiency by multi-plane decomposition or hash grids to reduce MLP
size. NeRFPlayer [32] achieve real-time rendering for the result, but still needs
hours training for a 10s video.

Editable NeRF [6,12] is a specific type of deformation field, it offer the pos-
sibility to quickly realize dynamic by editing. Editable NeRF creates a proxy
mesh in reconstructed scenes, using ray warping to apply mesh edits in volumet-
ric space for scene content editing. Editable NeRFs have a low cost for avoiding
retraining, some works apply them to dynamic scenes treating vehicles as rigid
bodies [21, 39]. Mars [39] leverages editing for vehicles movement simulations,
achieving high-quality result. Yet, it lacks real-time capability, demands tens of
hours of training, and depends on precise 3D vehicle bounding boxes and addi-
tional data for each frame, challenging to achieve in practice. Current editable
methods quickly modify existing content but fail to rapidly reconstruct emerging
objects.

2.3 3D Detection and 6-DOF Estimation

For 6-DOF estimation, works [19] require precise 3D models for guidance. Vehi-
cles commonly use GPS, IMU, and integrated navigation for pose. 3DRCNN [10]
estimates poses in images, while 3DSSD [42] leverage LiDAR for enhanced out-
comes. Vision-centric bird’s eye view (BEV) detection methods [13, 16, 41] use
queries and image features for view transformation. Roadside monitoring-based
BEV methods like BEVHeight [41], predict pixel heights instead of depths, suit
for 3D road monitoring.

Pose information in reality includes noise. Liu et al. [20] correct sensor poses
with explicit maps. But NeRF don’t have clear geometric data. Nerf2Mesh [36]
can generate meshes from volumetric density, shifting to a traditional approach.
However, these require extensive training hours.

3 Method

Our work focuses on the rapid reconstruction of newly emerged vehicles and
achieving dynamic process within a complete scene. Our pipeline consists of 3
key parts as shown in Fig. 1: 1) We efficiently update and reconstruct newly
appearing vehicles in the complete reconstructed scene by leveraging scene de-
composition, parameter sharing, and combined rendering strategies. (Sec. 3.1).
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Fig. 1: An overview of our pipeline, our approach mainly consists of 3 key parts.

2) We achieve vehicle motion in the full scene by extending editing deformation
methods across multiple neural fields (Sec. 3.2). 3) We estimate complete 6-DOF
from vehicle XYZ sequences and geometric constraints based on volumetric scene
density when precise 6-DOF input is unavailable (Sec. 3.3).

The general process is as follows: First, we reconstruct static scenes from
videos and align coordinate systems of different fields as initialization. The cam-
era parameters of images are obtained from COLMAP [31]. The neural field
of static scene will stop training once the reconstructed background is suffi-
ciently clear. Then it will only participate in composite rendering to conserve
computational resources. When new vehicles enter the key area, fixed cameras
synchronously capture images to detect the 3D-Box and input images to train
the key field. Shortly after, vehicles are distilled from the key area to the vir-
tual garage based on the 3D-Box, which serves as the vehicle’s proxy mesh. We
achieve multi vehicles’ motion in the entire scene by editing across the field of
the static scene and the garage. We estimate the 6-DOF to guide vehicle motion
from the projection of displacements and road constraints, interpolating for time
steps where the XYZ data is missing.

3.1 Scene Decomposition and Fast Reconstruction of New Vehicles

We divide the scene into static background and key areas, represented by global
static field and local key field respectively. We use another field as a virtual
garage. We first explain these areas separately, as shown in Fig. 1:

– Static background, such as roads and brick buildings, has a constant lo-
cation and appearance. They don’t need frequent update after initialization.
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Fig. 2: Sharing hash encoding. Since point A2 in the key field can directly query
its attribute values from the pretrained hash table, backpropagation gradients
focus more on reconstructing the new vehicle.

– Key areas serve as entry points or necessary paths for new vehicles into the
full scene, such as parking lot checkpoints or campus driveway entrances.
Fixed cameras here don’t need frequent re-calibration. As the full scene’s
scale grows, it’s not necessary to increase the number of cameras here.

– The virtual garage is used to maintain all new vehicles learned by the key
field. Otherwise, updating images in key areas and training the key field can
overwrite historical vehicle information.

We modify Instant-NGP for static 3D scenes reconstruction. Quickly adding
new vehicles into the static background is challenging due to the extensive im-
ages required for high-quality, large-scale reconstruction. Retraining the entire
scene wastes computation on the static background. Adjusting sampling on new
vehicles will degrade the background quality.

We address this with a multi-field approach: First, we make the MLP of
key radiance field more focused by constraining the key field’s sampling points
to only key areas; Second, we use the pre-trained hash encoders and bitfields
from the global radiance field to initialize the local radiance field. Because the
hash tables and density bitfields in INGP almost explicitly store the density
information of points in space as shown in Eq. 1. Note T as hash table size, d as
the dimension of the input vector, and xi are the components of the input, πi

are unique prime numbers, the spatial hash function is given in the form:

h(x) =

(
d⊕

i=1

xiπi

)
mod T (1)

⊕
denotes the bit-wise XOR operation and in INGP π1 = 1, π2 = 2654435761,π3 =

805459861. We share parameters to avoid retraining the entire encoding, and the
bitfields help quickly skip over a large number of meaningless points. As shown
in Fig. 2, the hash encoding obtained from training the static scene radiance field
is shared with key areas field for initialization. For points A1 and A2 with the
same coordinates, the same hash encoding directs them to the same position in
the hash table, allowing to obtain the attribute values of these sampling points
immediately. For sampling points like point B within the 3D bounding box of
newly appearing vehicles, training is conducted after setting the right bitfield
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attributes to valid to avoid overlooking. This strategy helps focus the gradients
on the training of new vehicles during backpropagation. After that, we distill
new vehicles learned into the "virtual garage" by re-sampling in the box.

3.2 Reconstruct Vehicles’ Dynamic Process by Cross-field Editing

Most editable NeRF methods only support warping rays within a single radi-
ance field. Our method extends this capability to efficiently warp rays between
multiple fields. This allows for low-cost integration of reconstructed vehicles and
static scenes, thereby improving real-time performance. The task of aligning the
coordinate systems of different radiance fields has already been completed dur-
ing initialization. During rendering, if a sampling ray passes through a vehicle’s
proxy mesh, we use the garage’s radiance field to calculate the color and opacity
of the sampling points within the mesh. For sampling points outside the proxy
mesh, we use the radiance field of the static scene. Note Field(x, y, z) as which
radiance field we use to calculate the properties of point (x, y, z):

Field(x, y, z) =

{
Fieldgarage(x, y, z), if(x, y, z) ∈ BBoxV ehicles

Fieldglobal(x, y, z), else
(2)

In this way, we can appropriately replace the sampling points along the rays
and accurately obtain the occlusion between vehicles and the scene, as well as
between vehicles, in the volumetric rendering results.

3.3 Two-step 6-DOF Estimation Method

We developed a two-step method assuming vehicles’ wheels attempt to align with
the road surface, enabling full pose estimation from XYZ sequence and sampling
scene information, as shown in the part of Fig. 1. For the input pose, rotation’s
accuracy is often lower than position’s. We start with the vehicle’s initial pose
as global initialization, using each frame to initialize the next.

First, due to the consistent rotation and direction caused by small frame
intervals, we calculate the frame-to-frame displacement vector from the XYZ
sequence and project it onto the vehicle’s coordinate plane. By calculating the
angle between the vector and its projection, we obtain preliminary estimates
of the heading and pitch angles. Note D as the inter-frame displacement, note
projxz as the projection of D on vehicle’s XZ plane, RT as the vehicle’s trans-
form matrix in NeRF, p as the coordinates of vehicle, and θ as the rotation angle
for the vehicle:

D = RT (pnew − pold), projxz =
√
|D|2 − (D.y)2,

θyaw = sig(RT.x[2]×RT.z[2]) · arccos
(

|D.x|
projxz

)
θpitch = sig(RT.x[2]×RT.y[2]) · arcsin

(
|D.y|

D.norm

) (3)
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Second, assuming vehicles are rigid bodies not flying, we refine initial poses with
rigid contact constraints between the vehicle and the road surface by sampling.
We achieve it by querying volumetric density around the vehicle’s bottom, in-
stead of extracting full surfaces from NeRF. We map the vehicle to a rough pose
within the global scene. As shown in Fig. 1, by sampling 5 points along each
line extending vertically from the 4 bottom corners of the BBox, we query the
density from the sub-NeRF of global scene to approximate the road surface’s po-
sition. Then we assess the vehicle-road relationship, including floating, clipping
through the road, or tilting to a side. Then we incrementally adjust the pose.
The first sampling point t greater than the gradient threshold is considered as
the road surface:

if : |∇D(xt, yt, zt)| > τ, t ∈ surface
otherwise : not

(4)

For occasional missing time step inputs, we use Lagrange interpolation method
to estimate their XY Z. Considering road complexity and randomness, we use
position data from 5s before and after the target time to interpolate, then cor-
recting with mentioned volumetric density-based geometric contact constraints.
Note li(t) as the Lagrange basis function, L(x, y, z, t) as the interpolation result:

L(x, y, z, t) = (L(x, t), L(y, t), L(z, t))

=
∑

xi ∗ li(t) +
∑

yi ∗ li(t) +
∑

zi ∗ li(t)

li(t) =

n∏
j=0,j ̸=i

t− tj
ti − tj

, tj = ti + 5

(5)

4 Experiment

We demonstrate the performance of our approach to reconstruct dynamic multi-
vehicle scenes in real-time through a series of indoor and outdoor experiments in
real-world settings. Additionally, we conduct two ablation studies to verify the
effectiveness of the shared parameter strategy in the new vehicle reconstruction
module and the effectiveness of road constraints in the 6-DOF estimation.

4.1 Data

Our method learns new vehicles entering the entire scene from fixed surveillance
cameras in the local key area. Therefore, we require images for static recon-
struction and images from fixed cams in areas like toll booths. Given the lack
of similar public datasets, we built a series of physical experimental scenes and
collected data for testing to ensure the validity of comparison in Fig. 3.
Indoor Scene The main indoor setup includes an RC car track and a train
track, with their starting positions as the local key area in Fig. 3a. A truss
platform with 16 fixed cams captures images simultaneously when new vehicles
enter. Static reconstruction images of resolution 1920x1080 are recorded with
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(a) Main exp. site and partial data. (b) Part of data.

Fig. 3: We designed physical experiments simulating traffic monitoring scenes.
Fixed cameras on the marked truss continuously update images of the key area.

a cam. We first reconstruct an empty local key area as a training checkpoint.
Then, fixed cams capture vehicles as they enter it. Vehicle positioning signals
are provided by a motion capture system mimicking GPS.
Outdoor Scene We used a handheld camera to capture video in a parking lot
as shown in Fig. 3b, extracting 300 images for static reconstruction. Although
some artifacts exist due to camera shake, they don’t affect our method’s work-
flow. The onboard navigation system provided the vehicle’s position in the map
coordinate system, which was aligned with the NeRF space.

4.2 Baseline

In the static scene update experiments, we compared Nerfacto [35], INGP [24],
and INGP with the combined field strategy, with INGP demonstrating SOTA
performance in reconstruction speed. For the dynamic reconstruction comparison
experiments, we chose NeRF-T, Hexplane [3], and INGP-T as baselines.

4.3 Implementation Details

The Optitrack motion capture system we used provides vehicle coordinates at
a frequency of 10Hz. The cameras on the truss platform are connected to a
Mivii industrial PC that is part of the local network. The intrinsic and extrinsic
parameters of the cameras are estimated using COLMAP [31]. By considering
camera calibration and the results provided by COLMAP together, the extrinsic
parameters of the fixed cameras are unified into the world coordinate system.

We conduct experiments on an RTX Laptop 4080. Our code is primarily
written in CUDA and C++, including both the reconstruction part and the
ROS-based coordinate transmission part. We use the GStreamer framework for
real-time image transmission.
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Fig. 4: Newly entering objects update speed experiment. PSNR, SSIM, LPIPS
in regions highlighted in red are calculated.

Table 1: Quantitative comparison results of indoor exps. on new objects update.
Scene 1 Scene 2 Scene 3

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LIPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Nerfacto 18.908 0.716 0.386 21.685 0.834 0.274 19.275 0.549 0.578
INGP 18.974 0.713 0.375 23.961 0.869 0.232 20.428 0.586 0.532
INGP+submodules 21.398 0.752 0.337 25.411 0.895 0.206 21.948 0.625 0.499
Ours 23.387 0.815 0.325 29.082 0.929 0.165 24.055 0.699 0.453

4.4 Result

Updating Local Areas We test the speed of updating local areas in indoor ex-
periments as shown in Fig. 4. All methods share the same images, starting with
a 20-minute training of an empty scene as a checkpoint. Upon new vehicle enter,
cameras captured a simultaneous shot, followed by 8 seconds of training. Our
method outperformed others, including CUDA version INGP with sub-modules
strategy. It also serves as an ablation study, demonstrating the effectiveness of
sharing parameters between fields in our method. We calculate PSNR, SSIM,
LPIPS in regions highlighted within red, as shown in Tab. 1. Additional exp. on
the 3DGS is in the Supple.

Indoor Dynamic Process Reconstruction We initially trained the empty
static scenes without vehicles using different methods and saved the training
checkpoints. The dynamic process contains 15 frames once vehicles enter. In
Fig. 5, the static scene reconstruction time is shown on the left side of the brack-
ets below each method name, and the dynamic reconstruction time on the right.
Our render effect at 15s is close to INGP-T at 6min, but minor deviations due
to vehicle pose errors decrease pixel-wise metric PSNR, as shown in Tab. 2.
Notably, 15s for 15 frames is too short for INGP-T, making the average train-
ing of all frames meaningless as the results are nearly identical to an empty
scene. So we set the first frame’s training time to 15s, yielding geometrically
clear but detail-deficient results, akin to Fig. 4. Then we compute the average
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Fig. 5: Results of dynamic process reconstruction quantitative experiments.

Table 2: Quantitative comparison results on dynamic process experiments.
Method PSNR↑ SSIM↑ LPIPS↓ Input Images↓ Training Time↓

NeRF-T 19.171 0.816 0.379 240 30min
Hexplane 22.979 0.819 0.381 240 15min
INGP-T 26.077 0.842 0.339 240 6min
INGP-T 19.435 0.818 0.376 240 15s
Ours 22.995 0.823 0.348 61 15s

metrics across 15 frames. Our editing-based method outperforms in real-time
performance. Our method used 16 images of the first frame to reconstruct the
vehicle’s appearance, while the remaining to detect and provide vehicle positions
at the corresponding time steps. The mentioned 15s time in the bracket is solely
dedicated to reconstructing the vehicle in the first frame; subsequent frames were
modified through editing without training. As the number of frames increases
and the dynamic process extends, the advantages of our method become more
evident, because other methods require reconstructing each frame from scratch.
This is also a key factor enabling us to achieve real-time performance.

As shown in Fig. 6, our approach continues dynamic reconstruction when
vehicles drive out of a well-covered local area, by utilizing the previously learned
yellow car model. The 6-DOF of the vehicles are estimated by our 2-step method,
with necessary coordinates provided by both Optitrack and roadside BEV meth-
ods. Our approach renders at a resolution of 807x454 at 20fps, 1.6s delay. As
new vehicles enter the scene, our approach rapidly integrates cars into the scene,
maintaining real-time interactive rendering. New vehicles rendered in reconstruc-
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Fig. 6: Results of dynamic reconstruction without cameras well-covered.

Fig. 7: Real-time dynamic reconstruction results. The 2nd row displays the ren-
dered result after a 1.7s delay, with vehicle positions in orange boxes.

tion space change from an initial fog-like state to a refined appearance for 16s,
and the frame rate drops to 6fps during this process.

We also conducted experiments in a LEGO town model. Our tests showed
that at a rendering resolution of 807x454, our real-time reconstruction method
had a delay of approximately 1.7 seconds. The first row shows the camera footage,
while the second row displays the delayed rendering results, with the vehicle
positions marked by yellow boxes in Fig. 7. It is important to note that the
camera resolution differs from the rendering resolution.

Outdoor Dynamic Process Reconstruction We reconstruct two driving
sequences along different routes in an outdoor parking lot, and present real-
time rendering results at 4 different moments from 2 perspectives for each scene
as shown in Fig. 9. We utilized the onboard integrated navigation system to
obtain vehicle coordinates(XYZ) and estimate the complete pose. Affected by
network signals delay, the total system delay from the real vehicle movement to
rendering the corresponding images is approximately around 6s, still reaching
real-time standard. The accompanying video contains more information.

4.5 Ablation Study

Effectiveness of sharing parameters To validate its effectiveness in enhanc-
ing the update speed of local areas, we compare our method with INGP with
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Fig. 8: Experiment on 6-DOF estimation with ablation studies. Results show
that the introduced road constraints effectively enhance scene interaction and
prevent clipping.

Table 3: Accuracy of Our 6-DOF Estimation in Our Experiment
Error Range Accuracy

≤ 10◦ 63.2%
≤ 30◦ 85.7%

submodules strategy in Fig. 4. The results show that sharing hash encodings
and density bitfields for initialization effectively improves the update speed of
the key field, as evidenced in Tab. 1. This approach essentially shares the scene
information learned by the implicit radiance field with the local field through an
explicit storage structure.
Effectiveness of road constraints To validate the effectiveness of volumetric
density-based geometric constraints for estimating 6-DOF from XYZ, we design
an experiment that a long strip-shaped silicone semicylinder placed on the left
side of the racetrack, causing the remote-controlled car to lift and change its ro-
tation angle as it moves forward. As shown in Fig. 8, vehicles would clip through
the model without road constraints. Our method enables organic interaction be-
tween vehicles and the scene by sampling. Upon detecting a significant increase
in volumetric density around the left tire, it adjusts the roll angle to align with
expectations. We selected 80 instances from dynamic sequences within the full
track and rail system, including curves and slopes, using Optitrack as ground
truth to assess the accuracy of our 6-DOF estimation. The quantitative results
are shown in the Tab. 3.

5 Conclusion

Existing methods fail to reconstruct and monitor the appearance and motion
of multiple vehicles in road scenes in real time. In this paper, we address this
task based on the concept of key areas, dynamic-static separation, utilizing ed-
itable fields as the foundation. Our system supports real-time interaction and
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Fig. 9: Outdoor vehicle driving reconstructed in real-time. The first 2 rows show
a longer distance, the last 2 rows a shorter one.

rendering at resolution of 807*454, 20fps with 2s delay. Based on the experi-
ments presented, the following conclusions can be drawn: (1) Efficiently update
and reconstruct newly appearing vehicles in the complete scene by leveraging
scene decomposition, parameter sharing, and combined rendering strategies. (2)
Handle vehicle motion across the full scene by extending editing deformation
methods across multiple neural fields. (3) Estimate the 6-DOF to guide vehicle
motion using the projection of displacements and road constraints, thereby re-
ducing the reliance on precise pose inputs.
Limitations and future work. We restricted continuous updating of the global
scene because this would result in performance overhead and real-time capabil-
ity decline. This area merits future exploration. Furthermore, update vehicle
appearances while maintaining real-time performance would broaden applica-
tions, and implement this task using 3D Gaussians is worth attempting.
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