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Abstract. In this paper, we introduce a novel task called language-
guided joint audio-visual editing. Given an audio and image pair of
a sounding event, this task aims at generating new audio-visual con-
tent by editing the given sounding event conditioned on the language
guidance. For instance, we can alter the background environment of a
sounding object while keeping its appearance unchanged, or we can add
new sounds contextualized to the visual content. To address this task,
we propose a new diffusion-based framework for joint audio-visual edit-
ing and introduce two key ideas. Firstly, we propose a one-shot adapta-
tion approach to tailor generative diffusion models for audio-visual con-
tent editing. With as few as one audio-visual sample, we jointly trans-
fer the audio and vision diffusion models to the target domain. After
fine-tuning, our model enables consistent generation of this audio-visual
sample. Secondly, we introduce a cross-modal semantic enhancement ap-
proach. We observe that when using language as content editing guid-
ance, the vision branch may overlook editing requirements. This phe-
nomenon, termed catastrophic neglect, hampers audio-visual alignment
during content editing. We therefore enhance semantic consistency be-
tween language and vision to mitigate this issue. Extensive experiments
validate the effectiveness of our method in language-based audio-visual
editing and highlight its superiority over several baseline approaches.
We recommend that readers visit our project page for more details:
https://liangsusan-git.github.io/project/avedit/.

1 Introduction

The perception of real-world sounds and visual objects depends on the environ-
ment in which they occur. Similarly, the experience driven by different digital
audio and visual artifacts is also expected to be characterized by the context
around them. When we see an accordion and hear its sound, can we contextual-
ize this audio-visual phenomenon in a different environment? Or can we picture
it being played on a rainy day, accompanied by the pitter-patter of raindrops?
How would it sound in a large hall? As we move more and more towards AI-
driven generation of multimodal content, generative approaches to enable such
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Fig. 1: We propose a novel language-guided joint audio-visual editing approach that
allows users to edit their own sounding objects conditioned on various instructions. It
only requires as few as one audio-visual pair for adaptation and enables the generation
of new audio-visual instances based on creative text prompts. For example, after we
update diffusion models with the user-provided “a bird is chirping” data, we can easily
generate the image of a bird chirping under water and synthesize the same chirping
sound mixed with the audio of water bubbles and wave crashing, conditioned on the
free-form text prompt: “a bird is chirping under water.”

capabilities are desirable. We answer these questions by proposing a new task:
language-guided joint audio-visual editing. For an object that emits sound, we
collect an audio and image pair of this object as the reference for the sounding
object. The goal of our task is to generate new audio-visual content by modify-
ing the reference data as per the user’s natural language guidance. As shown in
Fig. 1, this task edits the user-provided specific bird to generate new audio-visual
samples based on different prompts, e.g., “a bird is chirping under water.” This
novel task enhances user experience by enabling multimedia content editing. To
the best of our knowledge, this is the first work to study natural language-guided
editing of audio-visual content.

Considering the powerful generation capability and language controllability
of generative diffusion models [24, 33, 42, 46, 48], one can adopt existing genera-
tive diffusion models and repurpose them for the language-guided audio-visual
editing task. However, utilizing these diffusion models for this novel task poses
two obstacles. (1) Audio-visual editing necessitates generative models to jointly
replicate the image and sound of the audio-visual object while adhering to the
user’s guidelines for editing. Although text prompts can be utilized to steer
generative models towards producing sounding objects that are similar to the
user-provided data, it is non-trivial to guide these models to generate the same
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sounding object. This is especially difficult for the simultaneous production of
audio and visuals. Thus, designing an effective adaptation approach is crucial
for adjusting audio-visual generative models to audio-visual content editing. (2)
When using language guidance to control the audio-visual editing, we expect
that the edited sample should reflect the prompts both visually and acoustically.
However, we observe that vision models, such as Stable Diffusion [42], tend to
ignore instructions (termed catastrophic neglect [2]) and generate content with
poor audio-visual semantic alignment, failing to meet user expectations.

To overcome these challenges, we propose a multimodal one-shot adapta-
tion approach. This adaptation involves jointly transferring the audio and vision
models to the domain of the sounding object. We extract a compact yet repre-
sentative feature from the given audio-visual sample, capturing its unique and
multimodal characteristics. This feature serves as a guide for fine-tuning the
diffusion model. By incorporating this meaningful representation, we enable the
diffusion models to learn and memorize the specific audio-visual sample. Follow-
ing fine-tuning, the optimized audio-visual diffusion model is capable of editing
the given event based on textual instructions while retaining the characteristics
of the given audio-visual sample.

Moreover, we design a cross-modal semantic enhancement method to mit-
igate the issue of catastrophic neglect within the vision branch. This method
aims to enhance the semantic correlation between language and vision, achieved
by adjusting the weights of vision-language attention maps. By emphasizing the
user requirements during the vision editing process, we ensure that the gener-
ated images faithfully adhere to the language cues. Consequently, our approach
facilitates consistent audio-visual content editing under language guidance.

Considering that our work is the first to study the language-based audio-
visual editing problem, there is no publicly available benchmark to assess the
editing performance. Therefore, we collect a one-shot audio-visual editing (OAVE)
dataset comprising 44 distinct sounding events for benchmarking purposes. This
dataset encompasses a diverse range of audio-visual samples, including animals,
vehicles, musical instruments, human speech, tools, and natural phenomena. We
believe this dataset will lay the foundation for studying more general and more
complex sounding objects. Extensive experiments on the OAVE dataset demon-
strate that our approach can effectively edit audio-visual content conditioned on
language guidance. Our framework shows promising editing performance from
both subject fidelity and prompt faithfulness aspects.

2 Related Work

Our work is related to one-shot content editing, audio-visual generation, and
diffusion models. We discuss each of these topics in the following sub-sections.

2.1 One-Shot Content Editing

One-shot content editing based on generative models can be classified into two
categories. The first category [5, 16, 49] achieves content editing without model
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fine-tuning. DDIM Inversion [5, 49] inverses an input image into a latent noise
by performing the diffusion process in reverse order. It edits the image by
controlling the denoising process of this latent noise with a text condition.
Prompt2Prompt [16] conducts content editing based on the DDIM Inversion.
It adjusts the cross-attention map to alter the effects of language on content
editing. The second category [3, 10, 15, 20, 29, 45, 47, 54, 56] realizes content edit-
ing by fine-tuning the generative model with a one-shot sample. Textual In-
version [10] introduces an inversion approach to find in the embedding space
a special token that enables Stable Diffusion to reconstruct the user-provided
images. During optimization, the parameters of the diffusion model and the text
encoder are frozen. DreamBooth [45] enhances the editing fidelity by fine-tuning
the whole diffusion model. Custom Diffusion [29] is a compromise between Tex-
tual Inversion and DreamBooth, which only updates key and value matrices
in cross-attention modules to improve training efficiency and avoid overfitting.
Animate-A-Story [15] further suggests using low-rank adaptation technique [19]
to achieve one-shot editing. While these methods yield satisfactory results for
vision editing, their direct application in audio-visual editing often results in
misaligned content due to the isolation of audio and vision learning.

2.2 Audio-Visual Generation

Audio-visual generation aims to synthesize audio and visual content by utilizing
cross-modal correlation between the two modalities. Several recent studies [25,
30,38,51] perform audio-to-image generation by aligning audio features with la-
tent conditions for controllable image synthesis. Conversely, some works [6, 21,
22,24,31,32,34–36] focus on the vision-to-audio generation, extracting semantic
and temporal information from visual input for audio synthesis. Meanwhile, MM-
Diffusion [44] proposes jointly generating audio-visual content to enhance audio-
visual relevance built upon unconditional diffusion models. CoDi [52] introduces
a language-based modality “bridging”, that projects different modalities into a
joint multimodal space, enabling text-to-audio-visual generation. MUGEN [14]
presents a unified auto-regressive transformer for audio-visual generation on a
synthetic dataset. While these works achieve promising results, none have ef-
fectively addressed language-based audio-visual editing. MM-Diffusion does not
consider generation conditions, resulting in random audio-visual content. The
language conditions used by CoDi and MUGEN provide only coarse and limited
control over content creation, failing to meet specific user requirements.

2.3 Diffusion Models

Diffusion models have shown impressive success in text-to-image [37, 41, 42, 46],
text-to-video [12, 18, 26, 48, 55], and text-to-audio tasks [11, 23, 24, 33, 34, 57].
GLIDE [37] proposes text-conditional diffusion models for controllable image
synthesis. DALL-E 2 [41] introduces a two-stage diffusion model that utilizes
the joint CLIP representation [39] for textual condition extraction. Imagen [46]
discovers that a pretrained large language model (e.g., T5 [40]) can effectively
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Fig. 2: Our framework for language-guided audio-visual editing. During training, we
extract unimodal information from the audio-visual sample using pretrained encoders.
Then, we fuse audio and visual features with an MLP and feed the output along with
the text prompt into the text encoder. The text encoder generates textual conditions
to guide the audio-visual diffusion model. We update the parameters of the MLP
and diffusion models. During inference, we freeze all parameters of our model. We
replace the training prompt with an editing prompt, e.g., we append “beside a crackling
fireplace” to the training prompt “a telephone is raining.” We inject the cross-model
semantic enhancement module into the vision branch to improve semantic consistency.
The generated audio and image accurately reflect the editing requirements.

encode text prompts for image generation. Latent Diffusion Model (Stable Dif-
fusion) [42] suggests conducting diffusion and denoising processes in the latent
space to improve training efficiency while retaining generation quality. Sev-
eral works, such as DiffSound [57], AudioLDM [33], Make-An-Audio [24], and
TANGO [11], extend diffusion models to the audio domain. Even though these
methods exhibit promising generation capabilities, they face challenges in ac-
commodating users’ specific editing demands.

3 Method

We propose a diffusion model-based content editing framework to solve the
language-guided joint audio-visual editing task. We first introduce preliminary
knowledge about diffusion models in Sec. 3.1. Our audio-visual diffusion model
is detailed in Sec. 3.2. Then, we illustrate our multimodal one-shot adaptation
approach in Sec. 3.3, which jointly adjusts the audio-visual generative model
to content editing. Moreover, we present a cross-modal semantic enhancement
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method to emphasize the targeted editing effects (Sec. 3.4). In Fig. 2, we provide
an overview of our language-guided audio-visual editing framework, including
both training and inference pipelines.

3.1 Background

Latent diffusion models. Latent Diffusion Model [42] conducts diffusion and
denoising processes in the latent space to improve the training efficiency. A pair
of autoencoders E and D, implemented as VQ-GAN [9] or VQ-VAE [53], are
used to perform dimension reduction and dimension recovery. Specifically, given
an input X ∈ RC×H×W , where C is the number of channels and H and W are
the spatial dimensions of the input, the latent diffusion model firstly reduces its
spatial dimension to x0 = E(X) ∈ Rc×h×w, where H

h = W
w are the downsampling

scale and c is the number of channels of x0. Subsequently, the diffusion process
iteratively injects Gaussian noise into the latent feature x0 to destroy it:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), t = 1, . . . , T, (1)

where {βt}Tt=1 are hyper-parameters to control the strength of injected noise. T
represents the number of diffusion steps and is usually set to 1000. After noise
injection, the latent feature xT is expected to follow N (0, I). The denoising
process iteratively eliminates injected noise from the latent feature xt to recover
the initial signal x0:

p(xt−1|xt) = N (xt−1;µθ(xt, t), Σθ(xt, t)), t = 1, . . . , T, (2)

where µθ and Σθ are trainable models to estimate the mean and variance of the
distribution. Once the signal x0 is recovered, the decoder D projects x0 to the
original space X.

Following DDPM [17], we set Σθ to untrained constants. We use the following
objective to train a latent diffusion model:

Ex,ϵ∼N (0,1),t

[
||ϵ− ϵθ(xt, t)||22

]
, (3)

where xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ᾱt =

∏t
i=1 αi, and αt = 1− βt. ϵθ is a learnable

diffusion model and commonly implemented as a U-Net network [43].
Language-guided diffusion models. To enable the diffusion model for text-
conditioned generation, a text encoder τ (e.g., CLIP [39] or CLAP [7] text en-
coder) is used for extracting textual embedding from the input prompt y. The
textual embedding τ(y) is then fed into the U-Net ϵθ to control the denoising
process via the cross-attention mechanism. The training objective in Eq. 3 is
updated with

Ex,ϵ∼N (0,1),t

[
||ϵ− ϵθ(xt, τ(y), t)||22

]
. (4)

3.2 Language-Guided Audio-Visual Generative Model

To accomplish language-guided joint audio-visual editing, we first develop a text-
conditioned audio-visual generative model. Instead of training a text-to-audio-
visual diffusion model from scratch, we leverage pretrained unimodal diffusion
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models, namely Stable Diffusion [42] and AudioLDM 2 [34]. These unimodal
diffusion models have been trained on extensive datasets and demonstrate robust
generation capabilities, facilitating content synthesis guided by language.

We begin with an audio-visual pair (A, V ), where A ∈ RL represents the
waveform audio of length L, and V ∈ RC×H×W represents an image with di-
mensions C,H, and W . We convert the audio A to the mel-spectrogram A′ ∈
R1×H′×W ′

using STFT, where H ′ and W ′ are the time-frequency sizes of A′.
We utilize the pretrained autoencoder EA from AudioLDM 2 [34] to project A′

into the latent space with a0 = EA(A′) ∈ RcA×hA×wA . Similarly, we use the
pretrained autoencoder of Stable Diffusion [42] EV to map V to a latent feature
v0 = EV (V ) ∈ RcV ×hV ×wV . Then we sample a diffusion step t ∈ [1, 1000] and
use Eq. 1 to generate altered samples at and vt.

Given a text prompt y, we adopt the CLIP text model τV [39] to extract
vision-related textual conditions from y, and the CLAP text model τA [7] to
obtain audio-sensitive conditions. The extracted conditions τA(y) and τV (y) are
used to guide the denoising process of the audio-visual diffusion model, i.e.,
ϵθA(at, τA(y), t) and ϵθV (vt, τV (y), t). ϵθA and ϵθV are U-Net networks introduced
in [34] and [42], respectively. Once the a0 and v0 are generated, we use the
pretrained decoder DV to recover the spatial dimension of v0. Similarly, we use
DA to decode a0 to A′. We utilize the HiFi-GAN vocoder [28] to recover the
waveform audio A from the reconstructed mel-spectrogram A′. Consequently,
we can synthesize an audio-visual pair based on the input prompt.

3.3 Multimodal One-Shot Adaptation

We aim to adapt the text-conditioned audio-visual generative model to address
the language-guided joint audio-visual editing problem. Audio-visual editing ne-
cessitates the generative model to learn and memorize the audio-visual content
of a given sample. However, generative models face challenges in accurately re-
producing specific audio-visual content solely based on textual cues. To tackle
this limitation, we propose a multimodal one-shot adaptation approach that
transfers generative models to the target domain of this particular audio-visual
sample. We illustrate our approach in Fig. 3 and the training part of Fig. 2.

Specifically, given the same audio-visual pair (A, V ), we utilize the pretrained
CLIP image encoder to extract a compact visual feature fV ∈ Rd from V and
use the pretrained CLAP audio encoder to convert A to a latent audio feature
fA ∈ Rd, where d is the dimension of feature vectors. We concatenate fV and fA
as an audio-visual feature fAV to represent the multimodal characteristics of the
sounding event. Since the diffusion model is controlled by the language condition,
we convert the audio-visual feature fAV to text-compatible representations using
Multi-Layer Perceptrons (MLPs). We design two MLPs to project the fAV to
the embedding spaces of τA and τV , respectively.

e1 = MLP1(fAV ), e2 = MLP2(fAV ). (5)
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Fig. 3: Multimodal one-shot adaptation.
We extract meaningful audio-visual repre-
sentations from user-provided data. We in-
corporate representations into textual em-
beddings and feed them to the text model
to generate multimodal conditions.

For a training prompt y, we add a
placeholder token <c> before the to-
kens of the sounding object that we
aim to memorize. For instance, in the
prompt “church bells are ringing,” we
insert <c> before “church bells.” Next,
we tokenize the modified prompt by
mapping each word to a unique dic-
tionary id. We generate an embedding
sequence by looking up the embed-
ding of each token according to its
id. Since <c> is a placeholder with no
corresponding embedding, we use the
text-compatible representations e1, e2
as its embedding. The embedding se-
quence is then fed into the text model
to encode conditions with rich multi-
modal information about the sounding object. We feed the embedding sequence
with e1 into τA, and the embedding sequence with e2 into τV . To maintain clarity,
we depict only one text model in Fig. 2 and Fig. 3.

We leverage these multimodal conditions to optimize the audio-visual diffu-
sion model to learn and memorize the particular sounding object. We use the
following objective to accomplish multimodal one-shot adaptation:

Ea,ϵA∼N (0,1),t

[
||ϵA − ϵθA(at, τA(e1, y), t)||22

]
+

Ev,ϵV ∼N (0,1),t

[
||ϵV − ϵθV (vt, τV (e2, y), t)||22

]
.

(6)

Once we finish the one-shot adaptation, the fine-tuned model is capable of gen-
erating audio-visual pairs that closely resemble the given audio-visual sample.

3.4 Cross-Modal Semantic Enhancement

After we adjust the audio-visual model, we can utilize it for language-guided joint
audio-visual editing. By replacing the training prompt y with a new editing
prompt y∗, we can edit the user-provided sounding object and generate new
audio-visual content. For example, we alter the environment of the sounding
event or we add another sounding object into the audio-visual event.

However, we observe that the vision branch tends to ignore some editing
requirements specified by the text prompt. In Fig. 4, we present examples gen-
erated by our model to highlight this issue. While the audio branch is capable of
synthesizing the sound of raindrops to complement the editing requirement “in
the rain” and can include the sound of waves crashing to match “on a beach,”
the vision branch fails to produce the corresponding visual elements. This phe-
nomenon, termed “catastrophic neglect” [2], leads to inconsistent audio-visual
editing outcomes, consequently reducing overall user satisfaction.
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Fig. 4: Cross-modal semantic enhancement. The vision model tends to neglect the
editing requirements while the audio model can accurately generate targeted content.
We adjust the weights of vision-language attention maps to mitigate this issue. Even-
tually, we achieve consistent audio-visual content editing conditioned on language.

To address this limitation, we propose a cross-modal semantic enhancement
approach. Our approach is built upon the following analysis. When we use a
text prompt y∗ to edit the visual latent feature vt, we project vt to a query
matrix, and convert textual conditions τV (e2, y

∗) into key and value matrices.
A cross-modal attention map M is calculated between the image query and
the text key, representing the contribution of each token to each image patch.
When employing a prompt y∗ for content editing, we expect that all meaningful
tokens, rather than just a subset, should have certain attention weights to guide
the image generation process. However, as shown in Fig. 4, we notice that (1)
the ignored tokens have low cross-attention weights, which means these tokens
have limited influence over image editing; (2) a special token <sot>, marking
the beginning of the text, is assigned significantly higher cross-attention weight
compared to other tokens, thereby dominating the cross-modal guidance.

To enhance the semantic correlation between language and vision, we propose
adjusting the cross-attention map M , where Mi,j ∈ R indicates the influence of
the j-th token on the i-th image patch. We decrease the importance of the
token <sot> and emphasize the editing requirements (tokens that are in the
editing prompt y∗ but not in the training prompt y). For a token sequence
P = {p1, p2, . . . , pN}, we scale the cross-modal attention weights as follows:

M∗
i,j :=


α ·Mi,j if pj = <sot>,
β ·Mi,j if pj ∈ y∗and pj /∈ y,

Mi,j otherwise.
(7)
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Fig. 5: We show some samples from the OAVE dataset, including animals, vehicles,
tools, natural phenomena, musical instruments, and human speech.

We set α ∈ [0, 1] to reduce the impact of the <sot> token and β ∈ [1, 4] to em-
phasize the editing requirements. By enhancing the semantic correlation between
vision and language, we attain consistent audio-visual content editing.

4 Experiment

4.1 Dataset and Setup

Datasets. We curate the One-shot Audio-Visual Editing (OAVE) dataset to
evaluate different language-guided joint audio-visual editing approaches. The
OAVE dataset consists of 44 distinct sounding events for benchmarking purposes,
encompassing animals, vehicles, tools, natural phenomena, musical instruments,
and human speech. We collect data from the MUSIC [58], AVSpeech [8], and
VGGSound [4] datasets. Fig. 5 presents some examples from the OVAE dataset.
This dataset lays a foundation for future work on more complex and diverse
sounding objects. We will release this dataset to the research community.

For each audio-visual sample, the dataset provides one video, from which
we extract one 10-second audio clip and 10 corresponding frames. We collect
25 prompts for language-guided joint audio-visual editing. These prompts either
inject new sounding objects (e.g., dog, train, child) into the user-provided content
or adjust the environment (e.g., cathedral, forest, underwater) of the given audio-
visual event, influencing the visual context and acoustic property.
Evaluation Metrics. We evaluate the performance of language-based audio-
visual editing from subject fidelity and prompt faithfulness perspectives. From the
first aspect, we design metrics to measure the similarity between training samples
and the content synthesized by generative models, indicating whether generative
models can replicate the user-provided content after adaptation. Specifically, we
use CLIP-I and DINO metrics to assess the image similarity, following the ap-
proach in [45]. CLIP-I metric calculates the pairwise similarity between reference
and generated images using CLIP image encoder [39]. DINO metric computes
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Table 1: Comparison with existing one-shot language-guided content editing ap-
proaches. We reproduce these methods on our OAVE dataset and report their perfor-
mance results. We design various metrics to measure the editing quality from subject
fidelity and prompt faithfulness aspects. The method “Real” represents performance
results evaluated using ground-truth samples, serving as an upper bound for this task.

Methods CLIP-I ↑ DINO ↑ CLAP-A ↑ FAD ↓ CLIP-T ↑ CLAP-T ↑ AVSS ↑

Real 0.952 0.937 0.948 – – – 0.139

Animate-A-Story [15] 0.578 0.385 0.526 16.139 0.626 0.157 0.053
Textual Inversion [10] 0.714 0.574 0.300 38.049 0.788 0.150 0.068
Custom Diffusion [29] 0.788 0.699 0.538 17.172 0.664 0.154 0.118

DreamBooth [45] 0.662 0.576 0.530 15.927 0.824 0.209 0.108

Ours 0.823 0.737 0.593 15.541 0.788 0.228 0.120

the pairwise similarity with self-supervised DINO ViT [1]. Similarly, we adopt
CLAP-A and FAD [27] to measure the audio similarity.

From the second perspective, we utilize CLIP-T, CLAP-T, and AVSS to
measure the prompt faithfulness of generated content. CLIP-T works similarly to
CLIP-I but calculates the similarity between generated images and text prompts.
CLAP-T calculates the audio-text similarity. For measuring semantic consistency
between generated audio and image pairs, we define a new metric called Audio-
Visual Semantic Similarity (AVSS). AVSS determines the semantic consistency
between generated audio and image using the AudioCLIP model [13].
Implementation Details. We select AudioLDM 2 as the audio diffusion model
and Stable Diffusion v1.5 as the image diffusion model. The two MLPs used in
Eq. 5 have the same structure. Each MLP consists of two linear layers with a
width of 1024, and a ReLU activation layer is applied between linear layers.
When conducting multimodal one-shot adaptation, we set the learning rate of
the audio branch as 5e−5, the vision branch as 5e−5, and the MLP as 1e−4.
We use the Adam optimizer to optimize parameters, performing 300 steps with
a batch size of 1. We use the DDPM scheduler [17] (1000 diffusion steps) for
training and the DDIM scheduler [50] (50 steps) for inference.
Baselines. To the best of our knowledge, this is the first work to tackle the
language-guided joint audio-visual editing task via one-shot adaptation. Thus,
we adopt existing one-shot text-based vision editing approaches as baselines,
including Textual Inversion [10], DreamBooth [45], Custom Diffusion [29], and
Animate-A-Story [15]. We extend these methods for this new task by applying
the proposed approaches to both audio and vision branches. The audio and vision
models learn the modality-specific features of the sounding object individually.

4.2 Quantitative Evaluation

Comparison with existing approaches. We report one-shot language-guided
joint audio-visual editing results of different methods in Tab. 1. The method

1021
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Table 2: Ablation studies. We analyze the influence of different design choices on
language-guided joint audio-visual editing.

Methods CLIP-I ↑ DINO ↑ CLAP-A ↑ FAD ↓ CLIP-T ↑ CLAP-T ↑ AVSS ↑

Adaptation
Text 0.701 0.545 0.529 20.741 0.814 0.231 0.110

Unimodal 0.775 0.636 0.529 21.673 0.784 0.233 0.118
Multimodal 0.823 0.737 0.593 15.541 0.788 0.228 0.120

Feature Fusion Early 0.823 0.737 0.593 15.541 0.788 0.228 0.120
Late 0.848 0.758 0.598 16.921 0.750 0.232 0.120

Enhancement

α = 0.4, β = 4.0 0.712 0.532 – – 0.790 – 0.110
α = 0.6, β = 3.0 0.823 0.737 – – 0.788 – 0.120
α = 0.8, β = 2.0 0.829 0.743 – – 0.778 – 0.124
α = 1.0, β = 1.0 0.766 0.618 – – 0.756 – 0.111

“Real” denotes the performance measured between ground-truth samples, mean-
ing an upper bound of this task. Our method surpasses other baselines, achieving
0.823 in the CLIP-I metric and 0.737 in the DINO metric, showing our approach
can accurately replicate the visual details. Furthermore, our method scores 0.593
in the CLAP-A metric and 15.541 in the FAD metric, highlighting its robust-
ness in retaining auditory features. Regarding prompt faithfulness, our method
attains 0.788 CLIP-T similarity and 0.228 CLAP-T similarity. Our method gen-
erates audio-visual pairs with the highest audio-visual semantic similarity score
of 0.120, demonstrating consistent audio-visual content editing through cross-
modal semantic enhancement. DreamBooth achieves superior performance in
the CLIP-T metric, possibly due to its fixed text model during finetuning.

Ablation Studies. We conduct the following ablation studies (see Tab. 2) to
analyze the influence of each component of our model on language-guided joint
audio-visual editing. We first examine the effects of different adaptation ap-
proaches, including text-only finetuning, unimodal finetuning, and multimodal
adaptation (our proposed approach). The text-only adaptation approach [10,
15, 29, 45] uses textual information to finetune diffusion models. The unimodal
adaptation method [3,54,56] utilizes modality-specific information to update the
corresponding model, e.g., updating the image model with the visual information
and the audio model with the audio data. As shown in the table, our multimodal
approach effectively memorizes user-provided audio-visual samples and retains
attributes of these samples during content editing. While our multimodal adap-
tation approach causes a marginal performance decline in CLIP-T and CLAP-T
metrics, it notably enhances subject fidelity and audio-visual semantic similarity.

Moreover, we explore the impact of different feature fusion methods when
conducting multimodal one-shot adaptation. Early fusion involves feeding audio-
visual features, denoted as e1 and e2, directly into the text embedding space,
which serves as the input of the language model. Conversely, late fusion entails
feeding these features into the text feature space, which is the output of the
language model. We empirically find that both early fusion and late fusion yield
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Input Audio-Visual Pairs

Textual Inversion

DreamBooth

Custom Diffusion

Animate-A-Story

Ours

Fig. 6: Visualization of edited audio-visual content. For each baseline approach, we
show generated images and spectrograms with the prompt, “A person plays accordion.”
We challenge our method with two more complex prompts, “A woman plays accordion”
and “A girl plays accordion on the grass.” for content editing. The original training data
is displayed in the top-left corner for reference.

similar results. However, due to the higher CLIP-T score achieved with early
fusion, we choose it as our default feature fusion approach.

Finally, we investigate the optimal hyperparameters, α and β, for cross-modal
semantic enhancement. A low α value diminishes the influence of the token <sot>
on both image layout and semantics. A high β score amplifies the impact of edit-
ing requests. With α = 1.0 and β = 1.0, cross-modal semantic enhancement is
disabled. Since this enhancement primarily affects the vision branch, we present
all vision-related metrics in the table. Our findings are (1) increasing α and
decreasing β effectively enhance prompt faithfulness and audio-visual semantic
consistency; (2) however, setting α = 0.4 and β = 4.0 diminishes subject fidelity
as the semantic information embedded in <sot> is nearly eliminated; (3) both
α = 0.6, β = 3.0 and α = 0.8, β = 2.0 strike a similar trade-off. We opt for
α = 0.6 and β = 3.0 as our default hyperparameters.

4.3 Qualitative Evaluation

Comparison with existing approaches. We present visualization results in
Fig. 6 to intuitively evaluate performance. For each baseline approach, we show
two pairs of audio-visual data edited using the prompt “A person plays ac-
cordion.” To evaluate our model, we select two more challenging prompts, “A
woman plays accordion” and “A girl plays accordion on the grass.” We include
the input training data in the top-left corner. As shown in the figure, (1) our ap-
proach accurately reproduces the sounding object with the highest fidelity. The
reconstructed accordion resembles the accordion used for training, capturing its
dedicated appearance and texture. The generated audio shares the same melody
as the training data. (2) Our approach enables editing instances and environ-
ments while preserving the details of the audio-visual sample. In the illustrated
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Input Audio-Visual Data

“… in a small room”

“… in a large cathedral”

Echo

Echo

Energy Loss

(a) Room Acoustic Adjustment.

Input Audio-Visual Data

“a dog is barking and playing …”

“a child is laughing and playing …”

Bark
Bark

Laughter
Laughter

(b) Audio-Visual Composition.

Fig. 7: (a) We place audio-visual samples in new environments and adjust the sam-
ples’ visual and acoustic properties jointly. (b) We compose user-provided audio-visual
samples with common sounding objects.

figures, our approach successfully replaces the person who plays accordion with
a woman and a girl, and we adjust the environment from indoor to outdoor.
Room Acoustic Adjustment. Using our language-guided joint audio-visual
editing framework, we can place sounding objects in new environments. We not
only visually render the appearance and structure of an environment but also
accordingly adjust the sound effects to match the audio with the room acous-
tics. In Fig. 7a, we place the sounding objects “in a small room” and “in a
large cathedral.” Spectrograms produced in large cathedrals demonstrate notice-
able reverberation and energy loss compared to those generated in small rooms,
aligning with the acoustic characteristics of cathedrals.
Audio-Visual Composition. Our model can compose the user-provided audio-
visual sample with common sounding objects. In Fig. 7b, we merge sounding
objects with “dog” and “child.” This results in an image depicting a dog playing
the violin, accompanied by an audio clip of violin music and barking sounds.
Additionally, we synthesize a photo of a joyful child playing the ukulele and
laughing, with a corresponding audio track blending ukulele music with laughter.

5 Conclusion

This paper investigates the novel language-guided joint audio-visual editing
problem and proposes a new diffusion-based editing framework. We incorpo-
rate multimodal one-shot adaptation and cross-modal semantic enhancement to
achieve superior editing quality. We present both quantitative and qualitative
results, demonstrating the advantages of our approach over existing methods.
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