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Abstract. Underwater Image Enhancement (UIE) is critical for ma-
rine research and exploration but hindered by complex color distortions
and severe blurring. Recent deep learning-based methods have achieved
remarkable results, yet these methods struggle with high computational
costs and insufficient global modeling, resulting in locally under- or over-
adjusted regions. We present PixMamba, a novel architecture, designed
to overcome these challenges by leveraging State Space Models (SSMs)
for efficient global dependency modeling. Unlike convolutional neural net-
works (CNNs) with limited receptive fields and transformer networks
with high computational costs, PixMamba efficiently captures global
contextual information while maintaining computational efficiency. Our
dual-level strategy features the patch-level Efficient Mamba Net (EM-
Net) for reconstructing enhanced image feature and the pixel-level Pix-
Mamba Net (PixNet) to ensure fine-grained feature capturing and global
consistency of enhanced image that were previously difficult to obtain.
PixMamba achieves state-of-the-art performance across various underwa-
ter image datasets and delivers visually superior results. Code is available
at https://github.com/weitunglin/pixmamba.
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1 Introduction

Underwater environments pose unique challenges for image acquisition due to
factors such as severe blurring, color distortion [1], low contrast, and complex
light scattering [22,32] caused by wavelength-dependent absorption. These issues
impede the quality and clarity of underwater images, making effective enhance-
ment methods critical for various applications in marine archaeology, ecological
and biological research. Therefore, Underwater Image Enhancement (UIE) is
a crucial step in improving the underwater images quality. This enhancement
facilitates improved understanding of the underwater world and enables the suc-
cessful execution of high-level oceanography tasks [4, 8].
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Traditional image enhancement methods [1, 2, 45] have relied on statistical
properties and physical assumptions about the image and environment. These
methods often attempt to correct color distortions and improve contrast using
hand-crafted priors. However, they typically struggle with dynamic scenes and
often fall short in restoring texture information and handling extensive blur-
ring. Recent advancements in deep learning have introduced new approaches
to underwater image enhancement. Methods utilizing convolutional neural net-
works (CNNs) are widely used for UIE due to their capability to learn visual
representations end-to-end [6, 9, 15, 20, 21], which is more efficient and effective
compared to traditional UIE methods. However, CNN-based methods have lim-
itations: a small receptive field hinders modeling long-range pixel dependencies,
and fixed convolutional kernels cannot adapt to the images across various un-
derwater scenarios. The Transformer-based model, initially proposed for natural
language processing [39] and further applied to vision tasks [26], could overcome
the limitations of CNNs and archives remarkable performance results. However,
quadratic complexity with respect to sequence length of Transformer poses a
serious problem for its application in real-world underwater image enhancement
(UIE) scenarios that may requires processing high-resolution images in real-time
efficiency.

Recently, State Space Models (SSM) and their improved variants, Mamba [10]
and Mamba-2 [7], have emerged as efficient and effective backbones for long-
sequence modeling. This evolution hints at a potential solution for balancing
global receptive fields and computational efficiency for computer vision tasks.
The discretized state-space equations in Mamba can be formalized into a recur-
sive form, enabling the modeling of very long-range dependencies through spe-
cially designed structured reparameterization. This capability allows Mamba-
based restoration networks learns and interprets the images context better,
thereby enhancing reconstruction quality [14]. Additionally, Mamba’s parallel
scan algorithm facilitates the parallel processing of each token, making efficient
use of modern hardware like GPUs. These promising properties motivate us to
explore the potential of Mamba-based architecture for achieving both efficient
and effective in image restoration tasks.

Given the challenges in underwater image enhancement, we present Pix-
Mamba, a novel approach that utilizes the linear complexity and long-range
modeling capabilities of State Space Models (SSMs). PixMamba is tailored for
efficient and effective underwater image enhancement, consisting of two key com-
ponents operating at different levels: the Efficient Mamba Net (EMNet) and the
PixMamba Net (PixNet). EMNet combines the Efficient Mamba Block (EMB)
for efficient patch-level feature extraction and dependency modeling with the
Mamba Upsampling Block (MUB) for detail-preserving upsampling. However,
relying solely on patch-level processing can lead to inconsistencies and fail to
capture long-range dependencies that govern overall clarity, color balance, and
global consistency.

To address limitations mentioned above, PixMamba introduces a novel dual-
level architecture that integrates both pixel-level and patch-level processing. At
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the pixel level, PixMamba Net (PixNet) leverages State Space Models (SSMs) to
capture long-range dependencies with linear complexity, making it the first UIE
approach to process the entire image at the pixel level. This design preserves
fine-grained pixel-level features, addressing the shortcomings of prior methods
that either apply patchification or rely on alternate domain projections, which
compromise detail and global consistency. PixNet further incorporates a Block-
wise Positional Embedding (BPE) technique to manage varying input resolu-
tions, ensuring efficient pixel-level processing without sacrificing image quality.
At the patch level, PixMamba employs the Efficient Mamba Block (EMB) and
the Mamba Upsampling Block (MUB) to enhance the efficiency and accuracy of
image reconstruction. These components optimize the performance of traditional
patch-level processing by preserving intricate textures while mitigating common
issues such as noise introduction and loss of detail during upsampling, as seen
in traditional U-Net architectures. By synergistically combining these two levels
of granularity, PixMamba achieves state-of-the-art performance in underwater
image enhancement, ensuring both microscopic detail preservation and macro-
scopic image clarity. This dual-level approach enables PixMamba to outperform
existing methods that rely solely on patch-level processing or simplified skip
connections, establishing a new standard in the UIE field with state-of-the-art
results across multiple underwater datasets.

Compared to existing SSM-based UIE method [12] only utilizes patch-level
processing, which may potentially loss detailed features and lead to global incon-
sistency of the enhanced image. Our proposed dual-level processing architecture
enables PixMamba to capture fine-grained feature and ensure overall consistency
and clarity.

In this paper, we present the following key contributions:

– PixMamba: PixMamba presents a novel dual-level architecture designed
for efficient and detailed image restoration. By integrating local patch-level
processing through the Efficient Mamba Net (EMNet) with global pixel-
level processing via the innovative PixMamba Net (PixNet), this framework
effectively enhances the quality of underwater images.

– EMNet: The Efficient Mamba Net (EMNet) adeptly integrates the Effi-
cient Mamba Block (EMB) and the Mamba Upsampling Block (MUB). The
EMB excels at capturing essential image features with enhanced memory
efficiency, while the MUB specializes in preserving intricate details during
the upsampling process. This synergistic combination markedly enhances the
quality of restored images and improves overall processing efficiency."

– State-of-the-art Performance: The integration of PixNet’s pixel-level
feature extraction with EMNet’s robust patch-level processing allows Pix-
Mamba to achieve a more refined and enhanced underwater image restora-
tion process, yielding impressive results across a variety of UIE datasets.
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2 Related Works

Traditional physical-based and prior-based methods for underwater image en-
hancement are increasingly being replaced by deep learning-based approaches
due to their superior ability to learn feature representations from underwa-
ter images through the deep learning process. Compared to traditional hand-
crafted algorithms, deep learning-based methods have gained more interests.
Deep learning-based image enhancement approaches have three main categories:
CNN-based, Transformer-based, and the most recent SSM-based. Each category
will be discussed in the following section respetively.

2.1 CNN-based Image Enhancement

Li et al . [20] introduced a network that employs an embedding strategy spanning
multiple color spaces, guided by transmission properties. Their approach utilizes
an encoder that combines different color space representations and a decoder
that enhances degraded regions based on transmission guidance. Fu et al . [9]
models UIE into a distribution estimation problem. It first used a probabilistic
network based on a conditional VAE and adaptive instance normalization that
learns to approximate the posterior over meaningful appearance. Cong et al . [6]
proposed a physical model-guided Generative Adversarial Network (GAN) for
UIE. The network incorporates a Parameters Estimation subnetwork for learn-
ing physical model parameters and a Two-Stream Interaction Enhancement sub-
network with a Degradation Quantization module for key region enhancement,
along with Dual-Discriminators for style-content adversarial constraints. Huang
et al . [15] developed a Semi-supervised Underwater Image Restoration frame-
work (Semi-UIR) based on the mean-teacher model. To address limitations with
the naive approach, they introduced a reliable bank for pseudo ground truth and
incorporated contrastive regularization to combat confirmation bias. However,
CNNs [23, 36, 37] suffer from the inherent limitation of the local receptive field
mechanism and insufficient to learn global representations.

2.2 Transformer-based Image Enhancement

Ren et al . [34] proposed a novel approach using the U-Net based Reinforced
Swin-Convs Transformer. By embedding Swin Transformer into U-Net, they en-
hanced the model’s ability to capture global dependencies while reintroducing
convolutions to capture local attention. Zamir et al . [43] introduced an efficient
Transformer model, designed to handle high-resolution image restoration tasks.
It makes strategic modifications to the multi-head attention and feed-forward
network modules, enabling it to capture long-range pixel interactions while being
computationally manageable. Gu et al . [11] presented a hierarchical CNN and
Transformer hybrid architecture. This architecture includes a residual-shaped
hybrid stem combining convolutions with an Enhanced Deformable Transformer
(DeTrans), capable of learning both local and global representations and ex-
ploiting multi-scale features effectively. Nervertheless, self-attention mechanism
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in Transforms [5] scales massively for high-resolution images, which is impracti-
cal for real-world applications.

2.3 SSM-based Image Enhancement

Shi et al . [38] proposed the Residual State Space Block (RSSB), which demon-
strated a significant breakthrough in Mamba-based image restoration. By pro-
cessing both local and global information while maintaining linear complexity, it
achieved high efficiency and commendable performance, highlighting the poten-
tial of local-global integration in image enhancement. Guan et al . [12] introduced
a state space model (SSM) for underwater image enhancement (UIE) that aims
to combine linear computational complexity with effective degradation handling.
To address spatial and channel dependencies, their model incorporates spatial-
channel omnidirectional selective scan blocks and multi-scale feedforward net-
works, promoting coordinated information flow and fine-tuning image details.
By leveraging SSM, they have shown superior performance in overcoming the
limitations of convolutional neural networks (CNNs) in generalizability and the
computational inefficiency of Transformers.

3 Methods

3.1 Preliminaries

Structured State Space Models (S4) are a recent class of sequence models that
build upon and extend principles from Recurrent Neural Networks (RNNs), Con-
volutional Neural Networks (CNNs), and classical state space models. Inspired
by continuous systems, S4 fundamentally transforms an input sequence x(t) ∈ R
into an output sequence y(t) ∈ R through the use of a hidden state h(t) ∈ RN .
Continuous systems can be modeled by linear ordinary differential equations
(ODEs) as follows:

h′(t) = Ah(t) +Bx(t), (1)
y(t) = Ch(t) +Dx(t) (2)

where h(t) ∈ RN represents the hidden state, and A ∈ RN×N , B ∈ RN , C ∈ RN

are parameters associated with a state size of N , while D ∈ R accounts for the
skip connection.

In practice, discretizing equations (1) and (2) is necessary. Using the zero-
order hold (ZOH) method, we obtain the discrete form by converting A and
B into their discrete equivalents via the time scale parameter ∆. The resulting
discretization is defined as:

h′(t) = Aht−1 +Bxt, (3)
y(t) = Cht +Dxt, (4)

A = e∆A, (5)

B = (∆A)−1(e∆A − I) (6)

where ∆ ∈ RD represents the time scaling parameter, and B,C ∈ RD×N .
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Fig. 1: Overall architecture of PixMamba. (a). EMNet: Efficient Mamba Net; (b).
EMB: Efficient Mamba Block; (c). PixNet: PixMamba Net; MUB: Mamba Upsampling
Block; DS: Downsampling Block; DWConv: Depth-wise Convolution Block; S6: Mamba
SSM [10].

3.2 Overall Architecture

The architecture of our proposed framework, termed PixMamba, builds on an
Efficient Mamba Network (EMNet) as the backbone while incorporating Pix-
Mamba Net (PixNet) in parallel, as depicted in Fig. 1. Given an underwater
degraded image I ∈ RH×W×3, the EMNet processes the input by first encoding
it via PatchEmbed, which generates a patched image I0E ∈ RH

P ×W
P ×D. This en-

coded image is subsequently passed through three stages of the Efficient Mamba
Block (EMB), with a downsampling layer applied after each stage. The im-
age features are progressively downsampled to dimensions I1E ∈ R H

2P × W
2P and

I2E ∈ R H
4P × W

4P . Following this, the features are decoded across three upsampling
stages using the Mamba Upsampling Block (MUB) and the EMB, producing
feature maps I2D, I1D, I0D of sizes H

4P × W
4P , H

2P × W
2P , H

P × W
P , respectively. Fi-

nally, the decoded image I0D ∈ RH
P ×W

P ×D is projected back to the original image
resolution IFD ∈ RH×W×3.

To capture finer, pixel-level details, PixNet is introduced. PixNet enhances
the deep features of the input image in a sequential manner, processing it
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through L stages using Mamba Blocks. At each stage l, the image features
I lP ∈ RHW×D are progressively enriched, where l ∈ {1, 2, . . . , L}. PixNet be-
gins by embedding the image I pixel-wise into a feature map I0P ∈ RHW×D

and then augments local information through Block-wise Positional Embedding
(BPE), BPE ∈ R

HW
B2 ×D, which is bilinearly sampled. After processing the image

through all L stages, PixNet projects the refined features into the final pixel-level
output IFP ∈ RH×W×3.

By combining the patch-level information from EMNet (IFD) and the pixel-
level information from PixNet (IFP), we generate a final enhanced image IF =
IFD + IFP, where IF ∈ RH×W×3, B is the block size, P is the patch size, and
H,W,D are the height, width, and hidden dimension of the image, respectively.

3.3 EMNet

Our proposed EMNet, as illustrated in Fig. 1(a), integrates the SSM, which
effectively captures both global and local feature dependencies, into a U-Net-
inspired architecture for image restoration [35]. A direct integration of SSM into
the U-Net architecture, however, significantly increases computational complex-
ity by doubling the hidden dimension at each stage. To mitigate this, EMNet
reduces the number of stages in the U-Net by one, thereby optimizing memory
usage and computational efficiency. Additionally, the patch size in the initial
stage is doubled to maintain the original U-Net’s receptive field, which enhances
restoration performance. EMNet further incorporates two key components: the
Efficient Mamba Block (EMB) and the Mamba Upsampling Block (MUB).

Efficient Mamba Block As shown in Fig. 1(b), the Efficient Mamba Block
(EMB) processes image patches using the Efficient SS2D (ESS2D) operation, a
more computationally efficient variant of the 2D selective scan operation pro-
posed in VMamba [25]. While the original SS2D models feature dependencies
using four-directional scans, ESS2D simplifies this by reducing computational
overhead with minimal impact on performance. Following feature extraction, a
spatial and channel attention module [16] refines the representation by eliminat-
ing channel redundancy and adjusting attention weights. The module consists
of two branches: one for channel attention, which captures global feature rep-
resentations, and another for spatial attention, which assesses the significance
of individual tokens. This attention-based filtering improves the overall feature
quality.

Mamba Upsampling Block Traditional U-Net architectures employ a sym-
metric encoder-decoder structure, with upsampling used to restore the original
image’s spatial dimensions. However, this upsampling process often leads to a
loss of fine details and the introduction of noise, which may degrade performance.
To address these limitations, we propose the Mamba Upsampling Block, which
incorporates SSM mechanisms before upsampling. By leveraging SSM to selec-
tively maintain important feature dependencies, the Mamba Upsampling Block
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preserves details during the upsampling process, leading to higher-quality image
restoration. This process is formalized as:

Is−1
D = Norm(TransposeConv2D(EMB(IsDW ))) (7)

where W is a learnable projection matrix, and IsD represents the decoded feature
at stage s.

3.4 PixMamba Net

We introduce PixMamba Net (PixNet), illustrated in Fig. 1(c), as a comple-
mentary method that operates at the pixel level to capture finer details. While
EMNet processes image patches (e.g., 2x2 or 4x4 pixels), PixNet performs pixel-
wise operations, enabling it to extract more granular features and improve noise
reduction. The core of PixNet is the Mamba Block, which leverages SSM to
exploit each pixel’s full potential, resulting in enhanced global consistency and
finer feature extraction. To provide spatial information for SSM, we introduce
Block-wise Positional Embedding (BPE), which splits the positional embedding
into blocks and resizes it to the input sequence. The process is defined as follows:

PE = Upsample(BPE) (8)

I0P = [I0W ; I1W ; . . . ; IHWW ] + PE (9)

I lP = MambaBlock(I l−1
P ) + I l−1

P (10)

IFP = Project(ILP ) (11)

where W ∈ RHW×D is the learnable projection matrix, and Ii denotes the i-th
pixel of the input image.

4 Experiments

4.1 Implementation Details

The proposed PixMamba was built using the PyTorch 2.1.0 and MMagic [29]
toolkits. We used an NVIDIA RTX 3090 GPU for all training and testing ex-
periments. The model was trained end-to-end using the Charbonnier Loss [19]
and the AdamW [28] optimizer. The learning rate was set to 4e−4, with β1 = 0.9
and β2 = 0.99. All images were resized to 256 × 256 pixels. Training batch size
was set to 16, and PixMamba network was trained for 800 epochs. Learning
rate was adjusted using a 20-epoch warm-up, followed by a cosine annealing
scheduler [27].
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Table 1: Quantitative comparisons across C60 and UCCS datasets, model parame-
ters, and FLOPs. Best highlighted in bold and second in underline.

Method Venue
C60 UCCS

Params ↓ FLOPs ↓
UIQM ↑ UCIQE ↑ UIQM ↑ UCIQE ↑

Ucolor [20] TIP 21 2.482 0.553 3.019 0.550 157.4M 34.68G

PUIE-Net [9] ECCV 22 2.521 0.558 3.003 0.536 1.41M 30.09G

URSCT [34] TGRS 22 2.642 0.543 2.947 0.544 11.41M 18.11G

Restormer [43] CVPR 22 2.688 0.572 2.981 0.542 26.10M 140.99G

PUGAN [6] TIP 23 2.652 0.566 2.977 0.536 95.66M 72.05G

MFEF [44] EAAI 23 2.652 0.566 2.977 0.556 61.86M 26.52G

Semi-UIR [15] CVPR 23 2.667 0.574 3.079 0.554 1.65M 36.44G

Convformer [11] TETCI 24 2.684 0.572 2.946 0.555 25.9M 36.9G

X-CAUNET [33] ICASSP 24 2.683 0.564 2.922 0.541 31.78M 261.48G

WaterMamba [12] arXiv 24 2.853 0.582 3.057 0.55 3.69M 7.53G

PixMamba (Ours) - 2.868 0.586 3.053 0.561 8.68M 7.60G

(a) WaterMamba [12] (b) Semi-UIR [15] (c) Ours (d) reference

Fig. 2: Enhanced image detail visualization. Our method improves the detail features
of the degraded image compared to WaterMamba [12] and Semi-UIR [15] As high-
lighted in the red circle, our approach shows superior result on the detail features over
WaterMamba [12] and Semi-UIR [15], demonstrating the advantage of our proposed
MUB and PixNet techniques.

4.2 Datasets

The experiments used two publicly available underwater image datasets: UIEB
[21] and UCCS [24]. UIEB dataset has total of 950 images, and was split into
a train set of 800 samples (U800), a validation set of 90 samples (T90), and
a challenge set of 60 samples (C60). Each sample in U800 and T90 includes a
raw degraded underwater image and its corresponding human-curated reference
image, while C60 has only degraded image [21]. The UCCS dataset includes
three different underwater color settings: bluish, greenish and blue-green tones,
each setting contains 100 images, totaling 300 images [24].
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Table 2: Quantitative comparisons on T90 dataset, model parameters, and FLOPs.
Best highlighted in bold and second in underline.

Method Venue
T90

PSNR ↑ SSIM ↑ MSE ↓ UIQM ↑ UCIQE ↑
Ucolor [20] TIP 21 21.093 0.872 0.096 3.049 0.555

Shallow-uwnet [30] AAAI 21 18.278 0.855 0.131 2.942 0.544
UIECˆ2-Net [40] SPIC 21 22.958 0.907 0.078 2.999 0.599

PUIE-Net [9] ECCV 22 21.382 0.882 0.093 3.021 0.566
NU2Net [13] AAAI 23 23.061 0.923 0.086 2.936 0.587
FiveA+ [17] BMVC 23 23.061 0.911 0.076 2.828 0.616

WaterMamba [12] arXiv 24 24.715 0.931 - - -
PixMamba (Ours) - 23.587 0.921 0.061 3.048 0.617

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 3: The qualitative comparisons. T90 [21] samples are presented in each row from
top to bottom. (a) raw; (b) Ucolor [20]; (c) PUGAN [6]; (d) MFEF [44]; (e) Semi-UIR
[15]; (f) Convformer [11]; (g) X-CAUNET [33]; (h) WaterMamba [12]; (i) PixMamba;
(j) reference.

4.3 Evaluataion Metrics

We evaluated our PixMamba method using five criteria. First, there’s the Mean
Squared Error (MSE) calculates average squared per-pixel error. Then, Peak
Signal-to-Noise Ratio (PSNR) [18] gauges the ratio between the image’s signal to
its noise, offering a measure of the overall image quality. The Structural Similar-
ity Index (SSIM) [41] measures how similar the image structure is, which aligns
closely with human vision. Underwater Image Quality Measure (UIQM) [31]
comprises of three underwater image attributed measures: image colorfulness,
sharpness, and contrast. Lastly, the Underwater Color Image Quality Evalua-
tion (UCIQE) [42] metric assesses the overall image smoothness, clarity, and
contrast. It is worth noting that both UIQM and UCIQE are no-reference eval-
uation methods, designed to assess the quality of images without the need for a
reference.

4.4 Qualitative Comparison

The visual qualitative comparison of our proposed PixMamba and other state-
of-the-art models is depicted in Fig. 3 and Fig. 4. We reported most representa-
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(a) (b) (e) (d) (e) (f) (g) (h) (i)

Fig. 4: The qualitative comparisons. First and second row are C60 [21] samples. Third
row is UCCS [24] samples. (a) raw; (b) Ucolor [20]; (c) PUGAN [6]; (d) MFEF [44];
(e) Semi-UIR [15]; (f) Convformer [11]; (g) X-CAUNET [33]; (h) WaterMamba [12];
(i) PixMamba.

tive samples from the datasets. Additional, we illustrated the detail comparison
in Fig. 2. By zooming in on fine-grained details, PixMamba enhances the entire
degraded underwater image while preserving the quality of image. This advance-
ment enables UIE to be further applied in high-resolution scenarios.

4.5 Quantitative Comparisons

As shown in Tab. 1, we compare our PixMamba with several state-of-the-art
models included UColor [20], UIECˆ2-Net [40], Shallow-UWNet [30], PUIE-
Net [9], URSCT [34], Restormer [43], PUGAN [6], MFEF [44], Semi-UIR [15],
Convformer [11], X-CAUNET [33], Five A+ [17], NU2Net [13], and Water-
Mamba [12]. The proposed PixMamba outperforms other state-of-the-art models
across various datasets. Compared to Semi-UIR [15], our method has improved
UIQM and UCIQE by 0.201 and 0.012 on C60 dataset, and improved UCIQE by
0.007 on UCCS datasets. On T90 dataset, compared to NU2Net [13], the PSNR,
UIQM, and UCIQE were improved by 0.526, 0.112, and 0.03, respectively.

4.6 Ablation Studies

Table 3: Ablation study. Trained on U800 dataset and validated on T90 dataset.

Method EMNet MUB PixNet BPE
T90

Params ↓ FLOPs ↓
PSNR ↑ SSIM ↑

U-Net (ResBlock) [35] 18.102 0.822 3.35M 17.42G

PixMamba ✓ 22.857 0.913 7.05M 7.15G
PixMamba ✓ ✓ 22.969 0.919 8.66M 5.99G
PixMamba ✓ ✓ ✓ 23.295 0.920 8.68M 7.60G
PixMamba ✓ ✓ ✓ ✓ 23.587 0.921 8.68M 7.60G
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To evaluate the contributions of each component in our proposed PixMamba
model, we conduct an ablation study, summarized in Tab. 3. U-Net (ResBlock)
[35], reaches 18.102 PSNR and 0.822 SSIM with 3.35M parameters and 17.42G
FLOPs. Introducing the Efficient Mamba Net (EMNet) module and replaced
the Mamba Upsampling Block (MUB) with vanilla patch expand upsampling [3]
to form the initial PixMamba architecture boosts the PSNR to 22.857 and the
SSIM to 0.913, albeit with a higher parameter count of 7.05M and reduced
FLOPs of 7.15G. Adding the Mamba Upsampling Block (MUB) to PixMamba
further improves the PSNR to 22.969 and SSIM to 0.919, though it increases
the parameter count to 8.66M while reducing the FLOPs to 5.99G. Adding the
PixMamba Net (PixNet) without integrates our proposed Block-wise Positional
Embedding (BPE) improves the PSNR to 23.29 and SSIM to 0.920, with a slight
increase in parameters to 8.68M and FLOPs to 7.60G. Finally, incorporating the
PixMamba Net (PixNet) into the architecture enhances the performance further,
achieving a PSNR of 23.587 and an SSIM of 0.921. This comprehensive analysis
demonstrates that each module in the PixMamba architecture incrementally
contributes to the overall performance.

Table 4: Comparison of PixMamba and Restormer [43] performance across different
image resolutions. Speed is measured in seconds per image, and GPU memory is mea-
sured in MB.

Image Resolution
PixMamba Restormer [43]

Speed GPU Mem. Speed GPU Mem.
2562 0.0166 1578 0.0478 1296
5122 0.0303 4183 0.2059 3650
10242 0.1335 14880 0.8637 12934

4.7 Efficiency Comparisons

The computational efficiency analaysis of our proposed SSM-based PixMamba
and the Transformer-based Restormer [43], as shown in Tab. 4. The evaluation
focuses on their performance in terms of processing time per image and GPU
memory consumption during the inference phase. PixMamba demonstrates a lin-
ear growth in inference time across varying image sizes (256x256, 512x512, and
1024x1024). In contrast, Restormer [43] exhibits a non-linear increase in pro-
cessing time as image dimensions expand, suggesting potential scalability lim-
itations for high-resolution imagery. Regarding GPU memory utilization, both
models show comparable consumption patterns across different image sizes, with
PixMamba slightly exceeding Restormer [43] memory usage. This marginal dif-
ference can be attributed to the relatively small size of the PixMamba model,
where the overhead associated with the State Space Model (SSM) architecture
may surpass that of the Transformer architecture. The efficiency evaluations are
conducted on a single NVIDIA RTX 4090 GPU.
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5 Conclusion

In this paper, we introduced a novel architecture for underwater image enhance-
ment (UIE) task: PixMamba, which leverages State Space Models (SSM) for
linear complexity and effective feature modeling. PixMamba employs a dual-
level processing approach, which contains Efficient Mamba Net (EMNet) for
patch-level modeling and PixMamba Net (PixNet) for pixel-level modeling to
improve overall image quality and model efficiency. Specially, PixNet contains
Block-wise Positional Embedding (BPE) while modeling at pixel-level patch, it
allows PixNet to have both spatial information and global fine-grained features
seamlessly. EMNet utilizes an SSM-based U-Net architecture at the patch level.
It incorporates two key components: Efficient Mamba Block (EMB) for lower
memory computational cost and Mamba Upsampling Block (MUB) for more
detail-preserving restoration. Comprehensive experiments demonstrate that Pix-
Mamba performs advantageously against existing methods, substantiating its
efficiency and effectiveness.
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