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Abstract. RGB video object tracking is a fundamental task in com-
puter vision. Its effectiveness can be improved using depth information,
particularly for handling motion-blurred target. However, depth infor-
mation is often missing in commonly used tracking benchmarks. In this
work, we propose a new framework that leverages monocular depth esti-
mation to counter the challenges of tracking targets that are out of view
or affected by motion blur in RGB video sequences. Specifically, our
work introduces following contributions. To the best of our knowledge,
we are the first to propose a depth attention mechanism and to for-
mulate a simple framework that allows seamlessly integration of depth
information with state of the art tracking algorithms, without RGB-D
cameras, elevating accuracy and robustness. We provide extensive ex-
periments on six challenging tracking benchmarks. Our results demon-
strate that our approach provides consistent gains over several strong
baselines and achieves new SOTA performance. We believe that our
method will open up new possibilities for more sophisticated VOT solu-
tions in real-world scenarios. Our code and models are publicly released:
https://github.com/LiuYuML/Depth-Attention.

Keywords: Visual Object Tracking · Multi-Modal Tracking · Monocu-
lar Depth Estimation · Single object tracking.

1 Introduction

RGB video object tracking[5,27,36,9] is a fundamental task in computer vision,
aimed at accurately tracking a target object across video frames. Despite ad-
vancements in score map generation[5,27,1] and scale adaptation techniques
[16,2,15,68,36], current SOTA algorithms[49,53,42,23,22,55] face challenges in
scenarios with invisible target, motion blur, and fast motion.

These challenges may be addressed by employing depth information in the
tracking algorithms. This integration makes the sudden object disappearances
detectable through depth variation, while motion blur and fast motion have
minimal impact on the depth pattern. However, incorporating RGB-D input for
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Fig. 1. Comparison of our approach (depth attention) with RGB-D Tracking.

video tracking is usually costly and falls into the category of RGB-D video ob-
ject tracking, as highlighted in various studies[50,63,60,62]. On the other hand,
the present RGB datasets employed for RGB video object tracking lacks depth
information. To address this limitation and leverage the access to depth infor-
mation in RGB Tracking, this paper introduces a simple tracking framework
at the core of which is a new depth attention module specifically designed for
RGB tracking algorithms. We would like to emphasize that the proposed mod-
ule aims to enhance the performance of RGB tracking algorithms on the RGB
datasets. Since the estimated monocular depth information is inherently less
precise than the depth information from RGB-D sensors, we choose not to mod-
ify the architecture of existing RGB tracking methods as it is in the existing
RGB-D algorithms [31,32,40,67]. Instead, we present a simple framework that
can be seamlessly integrated into existing RGB tracking algorithms, resulting in
improved performance on RGB datasets (see Figure 1). We summarize our key
contributions as follows:

– To the best of our knowledge, we are the first to leverage depth information
for improving RGB Tracking in a principled manner.

– Our approach is neither dependent on RGB-D datasets nor requires precise
depth information from the RGB-D sensors. Our proposed depth attention
efficiently leverages rapid monocular depth estimation and can be seamlessly
incorporated into existing RGB Tracking algorithms.

– The effectiveness of our proposed method is validated on six challeng-
ing benchmarks. The results consistently demonstrate the state-of-the-art
(SOTA) performance across all RGB benchmarks.
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2 Related Work

RGB Visual Object Tracking: RGB Visual Object Tracking (VOT) has been
a vibrant area of research in computer vision, with a rich history of developments
and a diverse array of approaches. The goal in RGB VOT is to accurately recover
the trajectory of a target object within a sequence of frames, often under various
challenges such as occlusions, illumination changes, and scale variations.

The evolution of RGB VOT algorithms has seen a transition from traditional
methods like Mean Shift [11] and CamShift [6] to more sophisticated approaches
leveraging machine learning and deep learning. Correlation filters, such as the
Discriminative Correlation Filter (DCF) [26] and its Kernelized version (KCF)
[28], have significantly improved tracking performance by learning robust rep-
resentations of the target object. Siamese networks, exemplified by SiamFC [3]
and SiamRPN [37], have introduced a novel way to track objects by learning
to match target appearances across frames. Discriminative models, including
CSRDCF [17] and DiMP [4], have further enhanced tracking by distinguishing
the target from the background using convolutional neural networks (CNNs).
Lately, the introduction of Vision Transformers (ViTs) [20] has revolutionized
the field, with models like Mixformer [12] and SeqTrack [7] demonstrating the
ability to handle long-range dependencies and complex patterns, leading to state-
of-the-art tracking performance on several benchmarks.
RGB-D Tracking:. RGB-D tracking represents a significant advancement in
the realm of visual object tracking (VOT), capitalizing on the depth data pro-
vided by RGB-D sensors to bolster tracking accuracy. The Princeton Tracking
Benchmark[50] has played a pivotal role in the evolution of this domain, estab-
lishing a robust platform for assessing both RGB and RGB-D tracking algo-
rithms. This benchmark comprises 100 diverse RGB-D video datasets, encom-
passing a broad spectrum of tracking challenges, and has enabled a systematic
evaluation of various tracking methodologies[51].

The integration of depth information has been proven to markedly enhance
tracking capabilities, especially in situations of occlusions and model drift. The
work of Ding et al.[18], have highlighted the benefits of incorporating depth im-
ages captured by devices like the Microsoft Kinect to refine conventional tracking
techniques. The Depth Masked Discriminative Correlation Filter (DM-DCF)[33],
introduced by Kart et al., exemplifies an RGB-D tracking algorithm that lever-
ages depth segmentation for occlusion detection and dynamically adjusts the
spatial support for correlation filters, achieving high performance in the Prince-
ton RGBD Tracking Benchmark.

A recent trend is to fuse depth and infra red (IR) imaging information to
build a multimodal tracker[67]. However, none of these methods can be directly
applied to the RGB datasets.
Attention mechanisms:. The introduction of attention mechanism in com-
puter vision aims to mimic the capability of allowing models to dynamically
weight features based on their importance, thereby enhancing performance across
a variety of visual tasks. Over time, attention mechanisms, categorized into chan-
nel, spatial, temporal, and branch attention [24], operate in various domains:
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channel for feature selection, spatial for region focus, temporal for time-series
analysis, and branch for selecting among model components.

Channel attention, like in Squeeze-and-Excitation (SE) Networks [29], boosts
feature importance through channel weight recalibration. Spatial attention, ex-
emplified by Deformable Convolutional Networks (Deformable ConvNets) [14],
selectively focuses on regions of interest for enhanced feature representation.
Temporal attention, as seen in the Temporal Adaptive Module (TAM) [41], cap-
tures intricate temporal relationships for improved video recognition. Branch at-
tention, demonstrated in Highway Networks [52], enables dynamic information
flow across layers, addressing the vanishing gradient problem in deep networks.
In conclusion, attention mechanisms have become an indispensable tool in com-
puter vision, offering a promising avenue for improving model performance and
interpretability. As research continues, the integration of attention with other
deep learning techniques and the development of more efficient and versatile
attention models are expected to further advance the field.

In this work, we introduce a novel approach to RGB Tracking by integrating
depth information estimated from the RGB images. Our approach addresses
some limitations of the traditional RGB-only tracking. We achieve this inte-
gration through a novel depth attention mechanism, offering a depth prior for
the tracking task without requiring expensive RGB-D cameras or retraining the
model.

Depth Attention
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Fig. 2. Proposed depth attention to improve RGB tracking.
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3 Depth Attention Based Tracking Framework

We present a simple framework at the core of which is a new module that uti-
lizes a rapid monocular depth estimation algorithm to create an initial depth
map. Towards addressing potential errors stemming from the estimation pro-
cess, we further refine this depth information using a novel Z kernel, distin-
guishing our proposed method from the current RGB-D Tracking pipeline[62].
The outcome is a probability map serving as a valuable prior for the tracking
algorithms. Notably, this seamless integration into the existing RGB tracking al-
gorithms demonstrates its adaptability and wide applicability. Figure 2 sketches
a schematic diagram of our proposed method.

3.1 Monocular Depth Estimation

Our monocular depth estimation approach leverages the Lite-Mono architecture
[65], a lightweight hybrid of CNNs and Transformers for self-supervised learning.
This method is tailored for applications where stereo or LiDAR data is not
available, enabling depth estimation from single images. The Lite-Mono model
employs Consecutive Dilated Convolutions (CDC) to capture multi-scale local
features and Local-Global Features Interaction (LGFI) to encode global context,
which is crucial for accurate depth inference. The training objective combines
photometric reprojection loss and edge-aware smoothness loss to ensure visually
coherent and spatially consistent depth maps. The photometric reprojection loss
is defined as [65]:

Lr(Ît, It) = α/2 + (1− α) · ∥Ît − It∥ − αSSIM(Ît, It)/2 (1)

where α is typically set to 0.85, and SSIM denotes the Structural Similarity
Index. The edge-aware smoothness loss encourages spatial consistency in the
predicted depth map dt as follows [65]:

Lsmooth =

∣∣∣∣∂d∗t∂x

∣∣∣∣ e−| ∂It
∂x | +

∣∣∣∣∂d∗t∂y

∣∣∣∣ e−| ∂It
∂y |, (2)

where d∗t = dt

d̂t
is the mean-normalized inverse depth, and ∂

∂x and ∂
∂y represent

the spatial gradients. The total loss function is a weighted sum of these two
losses:

L =
1

3

∑
s∈{1,1/2,1/4}

(Lr + λLsmooth), (3)

where s is the output of depth decoder at different scales, and λ is a hyper-
parameter. This approach allows for efficient and accurate depth estimation,
making it suitable for real-time applications.

3.2 Z Kernel and Signal Modulation

Given a single RGB image, monocular depth estimation provides a single-channel
score map, where each pixel value represents an estimated depth. However, this
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raw depth map is not directly suitable for existing RGB tracking algorithms, as
these algorithms typically operate with input channels limited to 3. To address
this, we propose our custom ZK kernel to create a probability map that highlights
the region of interest within the bounding box:

ZK(DI , DT ) =

∣∣∣∣ (DI − ME(DT ))

ME(|DT − ME(DT )|)

∣∣∣∣ , (4)

where DI is the depth matrix of the entire current frame, while DT denotes the
depth matrix confined to the bounding box of the previous frame. The function
ME(.) computes the median of the depth matrix. The ZK kernel measures the
distance of DI and DT . By setting a threshold Th on ZK , a mask is obtained,
focusing on the region of interest. Then we modulate the image with a linear
formula:

Idc = (1− k1)I + k1I ⊙ Mask(ZK , Th), (5)

where ⊙ is element wise multiplication operator, and k1 is the depth atten-
tion confidence. Idc represents the modulated image, the function Mask(ZK , th)
transforms the depth map ZK into a binary mask based on the threshold th.
Balancing computational efficiency and precision, the DT undergoes periodic up-
dates, specifically every 60 frames. Our method’s periodic updates are controlled
by statistical analysis, which indicates that across six key benchmarks, the tar-
get’s movement is relatively small within certain frames, as further discussed in
Section 4. This insight anchors our strategy, ensuring that our approach main-
tains both adaptability and precision in the ever-changing landscape of visual
tracking. The calculation for determining k1 follows the formula:

k1 =
p(vn;µ, σ)∑n
i=1 p(vi;µ, σ)

, (6)

where vi denotes the peak-to-sidelobe ratio (PSR) of the confidence map, p(·)
represents the Gaussian probability density function with parameters µ and σ.
This formula is designed to calculate the proportion of the masked image. Instead
of simply using the masked image on its own, we discovered that blending it
with the original image significantly enhances the overall performance of our
system. We would further verify this in Section 4. µ and σ are estimated from
the collected PSR values vi, i = 1, 2, 3, ..., n. In the code, we specifically set n = 5.
For better understanding, we draw the results in Figure 3. This entire procedure
can be conceptualized as a disentangling process for the target object from the
background. Moreover, note that this method is compatible with all existing
tracking methods.

4 Experiments

Datasets: Our approach has been rigorously validated on several benchmark
datasets, which are widely recognized for their role in assessing the performance
of visual tracking algorithms.
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Original Image Depth Estimation ZK Idc Tracking Results

Ground
Truth

Baseline

Proposed
Method

Fig. 3. This figure shows the original images, their depth estimations, ZK values, Idc,
and tracking outcomes across four different sequences. Noticeably, when the baseline
tracker starts to drift, our proposed method effectively prevents this by generating a
mask with zero values in the background area. The proposed depth attention based
masking enhances the overall tracking performance.

– OTB100 [58]: This dataset consists of 100 video sequences with a diverse
range of tracking challenges, such as illumination changes, occlusions, and
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camera motion. It is one of the most popular benchmarks for evaluating
tracking algorithms due to its comprehensiveness and difficulty.

– NfS [34]: The Need for Speed (NfS) dataset is designed to test tracking
algorithms under high frame rates, capturing videos with high-speed motion
and rapid scene changes. It pushes the boundaries of tracking algorithms by
introducing extreme tracking scenarios.

– AVisT [47]: The AVisT dataset focuses on tracking under adverse visibility
conditions, such as low-light and high clutter. It presents a significant chal-
lenge for trackers, as it requires robust tracking in scenarios where visual
information is limited.

– UAV123 [45]: This dataset is specifically tailored for tracking small ob-
jects in aerial videos, often at high altitudes and with significant perspective
changes. It introduces unique challenges due to the scale and motion of the
objects in the context of aerial imagery.

– LaSOT [21]: The LaSOT dataset is a large-scale single object tracking
benchmark that includes a diverse set of 1,550 videos. It is designed to
provide a comprehensive evaluation of tracking algorithms across various
challenging conditions, such as occlusions, scale variations, and fast motion.

– GOT-10k [30]: The GOT-10k dataset is a large-scale benchmark for generic
object tracking in the wild, containing over 10,000 video clips with a wide
variety of object classes and tracking scenarios. It is known for its high
diversity and the complexity of the tracking tasks it presents.

– NT-VOT211 [43]: This dataset represents a novel benchmark, specifically
designed for evaluating visual object tracking algorithms under challenging
low-light conditions. It comprises 211 videos and 211k annotated frames. It
poses the unique challenges inherent to the nighttime tracking scenarios.

Implementation Details: All results in this paper were obtained within a
consistent computational environment, utilizing Python 3.8.10, PyTorch 1.11.0
with CUDA 11.3, NumPy 1.22.3, and OpenCV 4.8.0. The Depth Estimation
model was initially trained following the procedures outlined in [65]. The training
process was conducted on a single Tesla V100 GPU, while subsequent evaluations
were performed using a Nvidia A5000 GPU. Here, the sole hyperparameter Th
in equation 5 was maintained at a constant value of Th = 1.5.
Evaluation metrics: We use a range of metrics, including AUC, success
scores, and AO, tailored to each benchmark as specified in their respective
papers[58,21,30,34]. NT-VOT211 dataset[43] adheres to the evaluation protocol
of LaSOT[21], ensuring a consistent and fair assessment of tracking performance.
Results: We integrate the proposed method into ODTrack [66], the SOTA on
LaSOT [21], TrackingNet [46], TNL2k [54], and ITB [38]. We have listed all the
results in Table 1. As shown, we have achieved new SOTA on all six benchmarks.
The better performance highlighted in red bold font, and ‘+DA’ indicates the
integration of proposed Depth Attention (DA) module.

Next, we integrate the proposed Depth Attention (DA) module into 2023
SOTA and evaluate on different benchmarks. We have listed all the results in
Table 2. We observe a consistent performance improvement highlighted in red
bold font.
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Table 1. Comparison of state-of-the-art methods with and without the proposed Depth
Attention (DA) module on six benchmarks: GOT10K, LaSOT, TrackingNet, TNL2k,
UAV123, and NfS. The best results are highlighted in red and the second best in blue
colors.

GOT10k[30] LaSOT[21] TrackingNet[46] TNL2k[35] UAV123[45] Nfs[34]Method (AO) (AUC) (Success) (AUC) (AUC) (AUC)
TransT[9] 64.9 67.1 81.4 50.7 - -
OSTrack[64] 73.7 71.1 83.9 55.9 - -
SwinTrack[39] 72.4 71.3 84.0 - - -
Mixformer-22k[13] 70.7 69.2 83.1 - 69.5 -
SeqTrack-B384[8] 74.5 71.5 83.9 - 68.6 66.7
VideoTrack[59] 72.9 70.2 83.8 - - -
RTS[49] 73.5 69.7 81.6 54.7 67.6 65.4
RTS+DA (31 fps) 74.2 70.3 82.1 55.6 68.1 66.0
DropTrack[57] 75.9 71.8 84.1 57.7 69.5 66.7
DropTrack+DA (22 fps) 77.0 72.4 84.6 58.2 70.4 67.2
ARTrack[56] 76.6 70.4 84.0 57.5 67.7 66.8
ARTrack+DA (21 fps) 77.5 70.7 84.2 57.7 68.1 67.4
ODTrack[66] 77.0 73.4 85.7 61.7 69.5 67.6
ODTrack+DA (8fps) 78.8 74.3 86.1 61.9 70.3 68.5

Comparison with SOTA RGBD tracking methods: First, we evaluate
VIPT[67] (RGBD tracker) and ODTrack + DA (ours) on GOT10k. ODTrack[66]
is a recent SOTA on many datasets. To incorporate depth information into VIPT,
a necessity for RGBD tracking algorithms, we utilize depth estimates from a
monocular architecture to estimate the depth information of GOT-10k video.
Second, we compare VIPT and VIPT + DA (ours) on DepthTrack dataset[61],
a RGBD dataset.
Ablation study on k1: As stated in Equation 5, the confidence of the depth
attention mechanism significantly influences the extent to which the original
image is modulated. We conducted experiments by varying the parameter k1
across different constants in the RTS method [49]. See Tables 4 and Table 5.

Subsequently, we applied the optimal constant k1 = 0.02 to the module and
compared it with the proposed module, where k1 is estimated using Equation 6.
The results are illustrated in Figure 4. It is evident that the adaptive estimation
process for k1 plays a vital role in enhancing performance.
Qualitative Results: Figure 5, illustrates the tracking process of KeepTrack[44]
and KeepTrack with our depth attention. Our proposed method is adept at
handling challenging scenarios e.g., occlusion, motion blur, and camera motion.
Attributes-wise Evaluation: In addition, we assessed KeepTrack+DA and
other top trackers in NT-VOT211[43], with the results illustrated in Fig 6. This
is attributes-wise evaluation. The results demonstrate that the proposed method
excels in challenging scenes, such as out-of-view, motion blur, and fast motion. It
tends to maintain original performance on camera motion, deformation, occlu-
sion and distractor scenarios, while potentially exhibiting reduced performance
in tiny target scenarios.
Frequency Analysis: Inspired by the work of park et al. [48], we selected a
Resnet-50[25] and a ViT Tiny Patch 16/224[19] and applied the proposed method
to both. Subsequently, we conducted Fourier analysis on these models, with the
results depicted in Figure 7. It is evident from the analysis that the proposed
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10 Yu Liu et al.

Fig. 4. We compare the original algorithm, the depth attention module with a fixed
hyperparameter (Th=1.5, k1 = 0.02), and the depth attention module with an adaptive
hyperparameter on k1. We elaborate on the base algorithm, dataset, and the metrics
used along the axes.

d让我。

Occluded

Lost Target

Motion
Blur

Drifted

Relocated

Camera
MotionPartial

Occlusion

Wrong Scale Estimation

Ground Truth

KeepTrack
KeepTrack
with Depth
Attention

Fig. 5. Visual comparison between KeepTrack and KeepTrack+DA (ours). It can be
seen that, our method is robust under the challenging scenarios of occlusion and motion
blur.
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(a)

(b)

Fig. 6. Evaluation of attributes on NT-VOT211. In subfigure (a), we display the attri-
bution radar graph, comparing the original model with the model incorporating depth
attention. Subfigure (b) features a detailed plot, highlighting the attributes where our
module showed the most improvement, specifically Motion Blur and Out-of-View.
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Table 2. More comparisons with SOTA methods. Addition of Depth Attention (DA)
module has consistently improved performance. The evaluation measures Average Over-
lap (AO), Success (S), Precision (P), Normalized Precision (NP) are used; OP50 refers
to the Overlap Precision at 50% threshold and OP75 refers to the Overlap Precision
at 75% threshold, SR50 refers to the Success Rate at a 50% IoU threshold, SR75 refers
to the Success Rate at a 75% IoU threshold. The ’rank’ column denotes the ranking of
each method on their corresponding datasets, with the specific metric used for ranking
provided in parentheses.

Method Dataset rank Metric

ARTrack-L [56](24 fps) GOT-10k [30] 3(AO) AO SR50 SR75
76.6 85.6 75.4

ARTrack-L+DA(21 fps) 2(AO) 77.6 87.2 76.6

STMTrack [22](43 fps) OTB100[58] 2(S) S P
71.43 92.64

STMTrack+DA(39 fps) 1(S) 71.88 93.01

Neighbor-OSTrack [10](53 fps) UAV123 [45] 2(AUC) AUC P NP OP50 OP75
72.56 93.37 88.51 87.75 68.15

Neighbor-OSTrack+DA(49 fps) 1(AUC) 72.99 94.12 89.00 89.01 68.78

Mixformer(ConvMAE)-L [13](27 fps) LaSOT [21] 5(AUC) AUC P NP OP50 OP75
72.31 78.93 81.66 83.63 72.17

Mixformer(ConvMAE)-L+DA(25 fps) 3(AUC) 73.01 80.83 83.57 84.39 73.87

AiATrack [23](35 fps) NfS [34] 2(AUC) AUC P NP OP50 OP75
68.40 84.70 87.29 87.37 55.08

AiATrack+DA(33 fps) 1(AUC) 69.27 85.38 88.98 88.84 55.05

KeepTrack [44](19 fps) NT-VOT211 [43] 2(P) AUC P NP OP50 OP75
39.59 55.50 85.06 50.52 12.83

KeepTrack+DA(15 fps) 1(P) 39.99 55.72 85.88 50.90 12.77

Table 3. Comparison with RGBD trackers.

Strategy 1 Method Strategy 2 Method
VIPT 72.1 VIPT 57.8GOT10k

(AO) ODTrack+DA 78.8
DepthTrack
(F scores) VIPT+DA 58.6

method exhibits greater similarity to the Conv-based approach in terms of fre-
quency analysis. In the initial segments of the network, the proposed method
demonstrates minimal differences, except in the vicinity around 0.2π. However,
as the network progresses deeper, these distinctions become more pronounced,
contributing to enhanced performance. Notably, for multi-head self-attentions
(MSAs), the impact of incorporating the proposed method is particularly promi-
nent within the interval [0.1π, 0.8π], and this effect intensifies with increasing
network depth.

The observed trend in deeper networks indicates that the proposed method
tends to rectify high-frequency components with larger amplitudes. In essence,
the proposed method aims to attenuate the processing of the ViT-based method,
preventing it from acting as a low-pass filter in the context of frequency analy-
sis, as discussed in [48]. This observation is further supported by the fact that
Conv-based methods, specifically STMTrack and KeepTrack, exhibit the least
improvement compared to ViT-based trackers.
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Table 4. Ablation study on k1, We evaluated the RTS under different parameters on
OTB100

Hyper-parameter k1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.02
(Th=1.5)

AUC 34.60 56.47 59.13 61.55 63.14 64.87 64.40 64.60 65.45 66.09 66.17 66.35
Precision 43.63 75.15 79.14 82.85 84.66 87.02 85.92 86.04 87.10 88.14 87.94 88.45
Norm Precision 38.38 65.41 69.11 72.82 74.29 76.52 75.93 75.77 76.75 77.74 77.66 78.36

Table 5. Optimal fixed k1 and Th

Hyper-parameter OTB LaSOT AVisT GOT-10k
(Th=1.5) RTS RTS+DA RTS RTS+DA RTS RTS+DA RTS RTS+DA(k1=0.02)
AUC 66.17 66.35 69.46 70.04 49.98 50.81 AO 73.5 74.1
Precision 87.94 88.45 73.21 73.89 47.78 48.74 SR0.5 83.1 83.7
Norm Precision 77.6 78.36 76.05 76.83 65.46 66.12 SR0.75 68.3 68.7

Normalized
depth 1.00.0

Fig. 7. First row: frequency component analysis, where different depths are represented
by distinct colors. A depth-indicating bar is provided at the top for reference. Second
row: we present statistics on the overall amplitude corresponding to different depths.
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(a) (b)

Fig. 8. In subfigure a, we analyzed Manhattan Distance displacement across six bench-
marks, totaling 717,428 frames. For each set of five consecutive frames, we measured
the target’s movement relative to its own dimensions (one unit representing length
or width). Findings indicate that, in most cases, the target remained stationary, with
movements not exceeding its dimensions. In subfigure b, we computed the Peak-to-
Sidelobe Ratio (PSR) of the score map generated by Tracker STMTrack, showing
exponential decay within a time interval. Though the algorithm may correct this in
subsequent intervals, the deteriorating PSR value ultimately leads to tracker failure,
marked by the red point. This highlights the need for a periodically updated prior.

Why every five frames? Through statistical analysis of datasets including
Nfs[34], AVisT[47], LaSOT[21], OTB100[58], GOT-10k[30], and NT-VOT211,
we identified a distinct motion pattern for the target, as illustrated in part a
of Figure 8. This pattern exhibits a long-tail distribution. This can be mathe-
matically expressed as limx→0 P (|m − x| < ϵ) = 1. Where ’m’ represents the
movement, and it suggests that as the degree of movement within the 5 frames
decreases, the likelihood of the statement being true increases. This ensures that
the subsequent 4 frames can be roughly regarded as the Value Component asso-
ciated with the initial frame.

5 Conclusion and Limitations

Our work presents a novel approach to Visual Object Tracking (VOT) by in-
tegrating monocular depth estimation in a principled way, resulting in a ro-
bust tracking system capable of handling occlusions and motion blur. We note
state-of-the-art performance of our method on multiple benchmarks, including
OTB100, UAV123, LaSOT, and GOT-10k. The ablation study and Fourier anal-
ysis confirm the effectiveness of our approach in overcoming occlusions and main-
taining tracking continuity. However, the effectiveness of depth attention could
be further enhanced through an end-to-end training approach, which is an in-
teresting avenue for future work.
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