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Abstract. Image dehazing aims to restore clean images from hazy ones.
Convolutional Neural Networks (CNNs) and Transformers have demon-
strated exceptional performance in local and global feature extraction,
respectively, and currently represent the two mainstream frameworks in
image dehazing. In this paper, we propose a novel dual-branch
image dehazing framework that guides CNN and Transformer
components interactively. We reconsider the complementary char-
acteristics of CNNs and Transformers by leveraging the differential rela-
tionships between global and local features for interactive guidance. This
approach enables the capture of local feature positions through global
attention maps, allowing the CNN to focus solely on feature informa-
tion at effective positions. The single-branch Transformer design ensures
the network’s global information recovery capability. Extensive experi-
ments demonstrate that our proposed method yields competitive qualita-
tive and quantitative evaluation performance on both synthetic and real
public datasets. Codes are available at https://github.com/Feecuin/Two-
Branch-Dehazing

Keywords: Image dehazing · CNN · Transformer · Interaction-guided
network

1 Introduction

Haze is caused by small particles in the atmosphere scattering light, which re-
duces the visibility of objects and leads to a decline in the performance of visual
systems in practical tasks such as autonomous driving, object detection, and
drone aerial photography. Image dehazing technology[25, 30, 21, 20] can eliminate
the influence of haze, restore scene visibility, and provide high-quality images to
visual systems. In early image dehazing techniques, the relationship between
hazy and clean images was typically described by the following model[18]:

I = J(x̂)t(x̂) +A(1− t(x̂)), (1)
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where x̂ is the 2D spatial location, I is the captured hazy image, J is the clean
image, A is the global atmospheric light, and t(x̂) is the transmission map, which
is expressed as

t(x) = e−βd(x̂), (2)

the transmission map t(x̂) depends on the depth of the scene d(x̂) and the haze
density coefficient β. According to this model formula, many priors[8, 32, 3] were
proposed in the early stages to constrain the ill-posedness it brings. However,
such prior-based approaches rely on empirical knowledge and are difficult to
adapt to different scenarios, and may produce artifacts in areas where priors
are not satisfied. With the rise of deep-learning-based dehazing methods, many
CNN-based dehazing algorithms have emerged[6, 10, 4], which can achieve better
performance than prior-based methods. However, the convolutional mechanisms
of CNNs determines that they are limited by smaller receptive fields.

A pure convolutional model causes a network to focus excessively on the local
features of an image (e.g., edges and texture information), which is not conducive
to the overall restoration of the image. Recently developed Transformer mod-
els[17] have achieved superior global feature extraction capabilities compared to
CNN on various computer vision tasks. Its attention mechanism ensures that
it has good global feature extraction capabilities. However, Transformers of-
ten lead to unwanted blurring and rough details during image reconstruction.
Existing method[7] do not consider the feature correlation between CNN and
Transformer, resulting in feature redundancy. To combine the advantages
of CNN and Transformer for feature extraction, we propose an interac-
tive guidance method that utilizes the ability of a Transformer to extract global
features to provide accurate global information and guide a CNN to focus on
detailed information within an effective feature space.

CNN are able to identify most of the useful details of images, and considering
that Transformer will intersect with CNN during feature extraction, adding fea-
tures directly will lead to information redundancy. Therefore, the down-sampling
operation is introduced into the Transformer branch to distinguish the features
extracted by the two branches as much as possible, avoid redundancy caused
by repeated extraction, and improve the performance of the model. The details
lost by downsampling will be compensated in the CNN branch. The proposed
method makes full use of the complementary advantages of CNN and transformer
to provide high-quality dehazing results with limited computing resources. In
summary, our contributions are as follows:

– We propose an interaction-guided dual-branch image dehazing framework
that utilizes the global information provided by the Transformer to guide
the CNN to focus on local details effectively, while the Transformer branch
ensures the ability of the network to recover global information.

– Our method effectively reduces the redundant information generated by the
repeated feature extraction of Transformer and CNN, thereby improving the
performance of the two-branch model.
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– Extensive experiments on existing synthetic and real datasets consistently
confirm the superiority of our model, and the ablation experiments demon-
strate the effectiveness of each module.

2 Related Works

Single Image Dehazing. Image dehazing has always been a challenging and
important task in computer vision and image processing. It can restore hazy
images to clean images and has important applications in many fields. In re-
cent years, many image dehazing methods[8, 32, 3] have been proposed, and early
methods generally considered the effects of particle scattering in the atmosphere.
They attempted to derive the parameters of atmospheric scattering using math-
ematical formulas, but these manually derived priors such as dark channel pri-
ors[8], color attenuation priors[32], and non-local priors[3] were derived based on
empirical knowledge and are often difficult to adapt to diverse scenarios. When
the scene does not meet these priors, these prior-based dehazing algorithms often
output some results that do not meet expectations. For example, the dark chan-
nel prior[8] cannot handle the sky region, which can lead to image distortion.
The saturation line prior (SLP)[14] reveals the linear relationship between the
inverse of the saturation component and the brightness component in the local
pixels of the normalized hazy image, and proposes a novel image dehazing frame-
work to exploit the linear distribution of local pixels, which helps to improve the
transfer estimation for better detail restoration and color preservation. In recent
years, many deep learning-based methods for image dehazing have emerged, and
these methods have gradually become mainstream. Early deep learning methods
were still related to Atmospheric Scattering Model(ASM), for example, the CNN
model DehazeNet[4] aims to estimate the transmission map t, and then substi-
tute the estimated transmission map into the ASM for calculation to obtain
dehazed images. DehazeNet represents a pioneering effort in image dehazing.

Afterwards, AOD-Net[11] simultaneously estimates the transmission map t
and atmospheric light A, and obtains the restored haze-free image through ASM.
However, methods based on prior estimation often have some bias. Many recently
proposed deep learning models do not require parameter estimation to be substi-
tuted into ASM for computation. Instead, these models directly restore blurry
and hazy images to clean images. For example, GridDehazeNet[16] proposed
that learning to recover images is better than directly estimating t, and de-
signed attention-based multi-scale estimators to achieve dehazing. FFA-Net[19]
introduced feature attention (FA) blocks, utilizing pixel and channel attention
to improve the model’s dehazing performance. MSBDN[6] skillfully combines the
enhancement strategy and back-projection technology for image dehazing, and
proposes a multi-scale enhanced dehazing network. SG-Net[9] proposes a novel
end-to-end network to restore haze-free images, and the simple and efficient SG
mechanism can be embedded into existing network families at will, with only a
little extra time consumption while improving accuracy. In the early days, CNN
dominated most computer vision tasks. In recent years, Transformer[26, 22] has
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been widely used in computer vision, such as object detection, image segmenta-
tion, and other tasks.

Recently, many Transformer-based deep learning methods have emerged for
image restoration[7, 28, 24, 13, 29]. For example, Restormer[28] designed multi-
head attention and feedforward networks to enable models to capture remote
pixel interactions, and DehazeFormer[21] adds reflection filling to the sliding win-
dow mechanism to reduce the loss of edge information in Swin Transformer[17]
when processing hazy images. Fourmer[31] adds a Fourier-based general image
degradation prior to the core structure of Fourier spatial modeling and Fourier
channel evolution, which provides new insights into the design of image inpaint-
ing based on global modeling.

In recent years, some image dehazing algorithms with a two-branch struc-
ture have emerged, combining the advantages of CNN and Transformer to im-
prove their dehazing performance. However, none of these two-branch dehazing
algorithms considers the relationship between the features in the two-branch
setup, and do not design the network in terms of feature differences and fea-
ture redundancy caused by repeated extraction. In contrast, we scrutinize the
complementary properties between the two, integrate their strengths to enhance
feature extraction, and also utilize the different relationships between features
for interactive guidance to improve network performance. As shown in Fig.1,
from left to right are the hazy image, and the dehazing results of SG-Net[9],
Dehazeformer[21] and the proposed method, and the rightmost is the ground
truth image. It can be seen that the image details recovered by SG-Net are
clear, but the global consistency is poor, the overall tone and brightness are not
natural enough, and there is a loss of details. The overall results appears fuzzy;
Dehazeformer is superior to SG-Net in terms of global features and hue, and
the overall image is harmonious, but its local details processing is weak, and
some residual noise remains. Our method combines the advantages of CNN and
Transformer model, and the recovered image not only maintains global consis-
tency and naturalness but also handles local details carefully. This results in an
overall high-definition image with significantly reduced noise.

Fig. 1. (a) hazy image, (b) and (c) represent the dehazing results of CNN method
and the Transformer method, respectively, (d) Dehazing result of our method, and (e)
groundtruth image.
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Fig. 2. Our method utilizes Transformer and CNN branches, where the output features
in the middle of each layer are utilized in a CPA generated attention map to guide the
CNN. The CNN results are combined with the results of the Transformer branch to
perform CNN upsampling to recover image details.

3 Proposed Method

An overview of the proposed framework is presented in Fig.2. A blurred image
is input into two branches, namely a CNN and a Transformer, to extract local
and global features, respectively. The global information extracted by each layer
of the Transformer is used to guide the CNN to focus on effective local infor-
mation. Downsampling is performed on the blurred image before it enters the
Transformer block to expand its receptive field and reduce computational com-
plexity. The image details are then restored by the CNN decoder, and a final
haze-free image is obtained. Various experiments have demonstrated that our
network provides good performance on real datasets.

Network Structure

Global Perception Module. We utilize a DehazeFormer module to extract
global features, and its improvements in normalization layer and spatial ag-
gregation scheme make it more efficient in dehazing than the original Swin-
Transformer. The normalization layer preserves the mean and standard deviation
of the original image, ensuring that the restored image has the same contrast and
brightness as those of image. The normalization layer is represented as follows:

y = F

(
x− µ

σ
γ + β

)
· (σWγ +Bγ) + (µWβ +Bβ), (3)

the feature map x ∈ Rb×n×c ,where n = h× w (i.e. height and width), µ and σ
represents the mean and standard deviation, respectively; γ and β denote scaling
factors and biases, respectively; Wβ and Wγand Bβ and Bγ are the weights and
bias used for transformation µ and σ, respectively.

The sliding window mechanism of DehazeFormer utilizes reflection filling to
ensure that the size of the edge window is the same as that of the set win-
dow to prevent missing edge information in an image, which can improve the
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performance of the network. Additionally, DehazeFormer adds a layer of convo-
lution after ordinary aggregation because the attention mechanism aggregates
information within the edge window while ignoring information between win-
dows. Therefore, convolutional operations can be used to aggregate information
between neighboring windows, which is represented as follows:

Aggregation(Q,K, V ) = Softmax
(
QKT

√
d

+B

)
+ Conv(V̂ ), (4)

where V̂ ∈ Rb×h×w×c, is V prior to window division.
In the proposed method, we use four transformer layers to extract global fea-

tures, with a downsampling layer preceding the transformer input. The receptive
field of the Transformer branch is increased, and the redundant information gen-
erated by the repeated feature extraction of the Transformer and CNN branches
is reduced, thereby improving the model’s performance.
Local Perception Module. To achieve the function of extracting local fea-
tures, we introduce CNN as another branch of the model. Due to the fact that
CNN is mainly based on local perception, its convolutional mechanism also de-
termines that it has a smaller receptive field, which can effectively extract local
detail information. However, pure convolutional models can lead to the exces-
sive extraction of image edges and texture details, which can lead to a decrease
in model performance and an increase in computational costs. Therefore, we
propose leveraging the advantages of the Transformer to extract global features
to guide the CNN in local feature extraction. We use a four-layer CNN corre-
sponding to the Transformer structure, where each layer has two outputs. One
output is added to the output of the Transformer, and then an attention map is
generated by the channel and pixel attention block (CPA). The attention map
is then multiplied by the other output of the current CNN layer, and the results
are input into the next layer of the CNN to provide global guidance for local
extraction, thereby helping the CNN extract detail information more effectively.
In the decoder, we utilize four convolution layers, corresponding to the number
of layers in the Transformer and CNN branches.

Image upsampling is performed by the decoder to restore detail information.
Skip connections are made with the CNN in the dual branches to help preserve
the details of the original image. These connections also serve to avoid the loss
of detail information caused by network training and improve overall network
performance. Finally, this process outputs a clean and haze-free image.
Channel and pixel attention. We extracted the features between each layer of
the dual branches and add them together to obtain effective information regard-
ing the entire image space to guide the CNN. After these features pass through
the CPA block, a weight matrix is obtained to guide the CNN. The CPA block
comprises channel attention[23] and pixel attention[15], with x and y as input
and output, respectively. The channel attention formula is defined as follows:

channelatt = Sigmoid (FC(avgpool(x),maxpool(x))) , (5)

channelatt is the channel attention weight of the feature map. Channel attention
models the global information of the entire channel, capturing the global impor-
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tance of each channel in the input feature map, reducing redundant information,
and improving the attention paid to key features. The pixel attention formula is
defined as follows:

pixelatt = Sigmoid (conv1(mean(x),max(x))) , (6)

pixelatt is the pixel attention weight of the feature map. Pixel attention models
the local information at each pixel location and can capture the importance of
each location in the input feature map, enhancing the model’s perception of the
local features of the input image, with enhanced attention to detail information.

y = channelatt × pixelatt × x, (7)

The combination of channel attention and pixel attention leverages their respec-
tive advantages, such that the model can pay attention to both channels and
pixels at the same time, and has the ability to extract both local and global
features, which can better guide the CNN to capture information in the effective
feature space, thus improving the performance of the model.

4 Experiment

In this section, we conducted extensive experiments to demonstrate the effec-
tiveness of our proposed method. Firstly, we introduce the experimental setup,
and then compare it with advanced dehazing methods on both synthetic and
real datasets. Additionally, ablation studies are presented to demonstrate the
effectiveness of each component of the proposed model.

4.1 Experimental Setups

Training Detail. The proposed method was implemented in Python on an
Nvidia GeForce RTX 3090 GPU. We used the Adam optimizer with default pa-
rameters to optimize our algorithm, setting the initial learning rate to 0.0001
and using only L1 loss. We use randomly cropped image blocks for training,
gradually scaling up the size of the image blocks from 128× 128 to the full size
during training.
Dataset. Experiments were conducted on the synthetic dataset RESIDE-6K[12],
the real dataset NH-HAZE[2], and DENSE-HAZE[1]. RESIDE-6K is a mixed
dataset of indoor and outdoor images on RESIDE, hence it is called SOTS mix.
Its training set includes 3000 OTS image pairs and 3000 ITS image pairs, and
its test set is also divided into mixed indoor and outdoor image pairs, with a
total of 1000 image pairs combined. The DENSE-HAZE dataset and NH-HAZE
dataset are both composed of 45 training images, five validation images, and five
test images. The haze of DENSE-HAZE is dense and uniform, while the haze of
NH-HAZE is dense and uneven.
Compared Methods and Metrics. To demonstrate the effectiveness of our
method, we compare it with GridDehazeNet[16], FFA-Net[19], MSBDN[6], PSD[5],
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SG-Net[9], D4[27], SLP[14], Dehazeformer[21] (Dehazeformer-T variant) and
fourmer[31] on synthetic and real data. If no pretrained model is provided, we
retrain the model using the authors’ code. Otherwise, we evaluate them using
their online code for a fair comparison. All of these representative methods are
selected for visual comparison. For the quantitative evaluation of image quality
assessment, we use the commonly used PSNR, SSIM, Entropy, and LPIPS to
compare the performance of each method.

4.2 Experimental Results

Results on the Synthetic Datasets. We first test on the synthetic hazy image
dataset RESIDE-6K. The images contained in RESIDE-6K can be divided into
two types: indoor and outdoor, and the dehazing results of different methods are
shown in Fig.3 and 4.

Fig. 3. Visual comparison of outdoor scenes of different dehazing methods on RESIDE-
6K dataset. (Zooming in can obtain a clearer view)

As shown in Fig.3, there are significant differences between the restored im-
ages and the ground truth images for all comparison methods in the outdoor
scene. There are residual haze and some undesired details (artifacts, blur, etc.),
such as D4,GridDehazeNet and PSD, and most methods have color bias, such
as MSBDN and SLP. As shown in Fig.4, for indoor scenes, almost all images
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Fig. 4. Visual comparison of indoor scenes of different dehazing methods on RESIDE-
6K dataset. (Zooming in can obtain a clearer view)

of FFA-Net, SLP, and Dehazeformer have problems such as color deviation (red
or purple), blurred details, and low contrast. In contrast, for both outdoor and
indoor scenes, the images generated by our method are closest to real haze-free
images in terms of details as well as overall image tone.

Table 1 presents a comparison of the quantitative measures obtained on the
synthetic datasets. Table 1 shows that our method is second only to Dehaze-
former in PSNR and SSIM in the RESIDE-6K test set, and also shows good
performance in Entropy and LPIPS. It can be seen that the experimental re-
sults show that the proposed method has excellent dehazing performance on the
synthetic dataset.
Results on the Real Datasets. To further verify the dehazing ability of our
method in real scenarios, we tested various methods on the uniform haze dataset
DENSE-HAZE and the nonuniform haze NH-HAZE. The dehazing results are
shown in Fig.5 and 6.

As shown in Fig.5, the NH-HAZE dataset test shows that D4, PSD and
SLP still have obvious haze, and methods such as GridDehazeNet, MSBDN and
Dehazeformer have some problems of details blur and distortion. As shown in
Fig.6, in the DENSE-HAZE dataset test, D4, PSD and SLP still have a lot of
residual haze, while other methods have serious color deviation and relatively
obvious noise. Overall, in terms of subjective evaluation, the comparison methods
produce some problems such as blur, distortion or noise in both NH-HAZE
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Table 1. Quantitative comparison of the proposed algorithm and different comparison
methods on the RESIDE-6K dataset. Bold is the best, Red is the second.

Methods Venue& Year
RESIDE-6K

PSNR ↑ SSIM ↑ Entropy ↑ LPIPS ↓

GridDehazeNet [16] ICCV’19 25.65 0.9371 7.4597 0.1915
FFA-Net [19] AAAI’20 27.26 0.9567 7.4151 0.1757
MSBDN [6] CVPR’20 27.44 0.9511 7.4309 0.1751

PSD [5] CVPR’21 15.47 0.8149 7.4673 0.1697
SG-Net [9] ACCV‘22 - - - -

D4 [27] CVPR 22 18.97 0.8422 6.5999 0.1635
SLP [14] TIP’23 21.35 0.9261 7.3925 0.0978

Dehazeformer-T [21] TIP’23 30.36 0.9730 7.4419 0.0303
Fourmer[31] ICML’23 - - - -

Ours - 30.20 0.9643 7.4325 0.1749

and DENSE-HAZE scenes. In contrast, the images recovered by our method
are closest to the real haze-free images in terms of both dehazing and color
restoration, so our method has the best dehazing performance in subjective
evaluation.

Tables 2 and 3 present a comparison of the quantitative measures obtained on
the real datasets NH-HAZE and DENSE-HAZE. As can be seen from Table 2, in
the DENSE-HAZE dataset, our method has the best values in PSNR and SSIM,
and Entropy and LPIPS are only 0.133 and 0.0237 lower than Dehazeformer-T.
Table 3 shows that in the NH-HAZE dataset, our method has the best values
in PSNR, Entropy and LPIPS, and SSIM is only 0.0498 lower than Fourmer.
The experimental results show that our method also has the best performance
in objective evaluation.

Table 2. Quantitative comparison of the proposed algorithm and different comparison
methods on the DENSE-HAZE dataset. Bold is the best, Red is the second.

Methods Venue& Year
DENSE-HAZE

PSNR ↑ SSIM ↑ Entropy ↑ LPIPS ↓

GridDehazeNet [16] ICCV’19 14.49 0.4401 5.8736 0.7168
FFA-Net [19] AAAI’20 15.17 0.3243 6.3659 0.7069
MSBDN [6] CVPR’20 15.51 0.3478 6.9032 0.7197

PSD [5] CVPR’21 9.73 0.4345 5.5030 0.8184
SG-Net [9] ACCV’22 14.91 0.4641 - -

D4 [27] CVPR’22 11.49 0.4821 6.3123 0.7555
SLP [14] TIP’23 13.81 0.4857 6.7357 0.8489

Dehazeformer-T [21] TIP’23 15.52 0.4635 7.093 0.6459
Fourmer[31] ICML 23 15.95 0.4917 - -

Ours - 16.42 0.5235 6.9600 0.66966
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Fig. 5. Visual comparison of different dehazing methods on NH-HAZE
dataset.(Zooming in can obtain a clearer view)

Fig. 6. Visual comparison of different dehazing methods on DENSE-HAZE
dataset.(Zooming in can obtain a clearer view)
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Table 3. Quantitative comparison of the proposed algorithm and different comparison
methods on the NH-HAZE dataset. Bold is the best, Red is the second.

Methods Venue& Year
NH-HAZE

PSNR ↑ SSIM ↑ Entropy ↑ LPIPS ↓

GridDehazeNet [16] ICCV’19 17.23 0.5042 7.2881 0.3787
FFA-Net [19] AAAI’20 18.09 0.5173 7.2727 0.3635
MSBDN [6] CVPR’20 17.12 0.4539 7.3045 0.3989

PSD [5] CVPR’21 10.32 0.5274 7.0658 0.5247
SG-Net [9] ACCV‘22 18.68 0.6609 - -

D4 [27] CVPR’22 12.66 0.5072 7.1318 0.5259
SLP [14] TIP’23 15.84 0.5956 6.9696 0.4687

Dehazeformer-T [21] TIP’23 18.73 0.5326 7.3274 0.3649
Fourmer[31] ICML’23 19.91 0.7214 - -

Ours - 20.10 0.6716 7.5319 0.3210

The subjective and objective experimental results described above demon-
strate the superiority of our method and the effectiveness of the proposed interaction-
guided global and local feature extraction models. We also attach in Table 4 the
number of parameters for each deep learning model along with MACs.

Table 4. Performance comparison of the comparative methods on the quantity of
model parameters and MACs.

Methods GridDehazeNet FFA-Net MSBDN PSD SG-Net D4 SLP Dehazeformer-T Fourmer Our

Parameters 0.956M 4.456M 31.35M 6.21M 3.33M 10.7M - 0.686M 1.29M 22.87M
MACs 21.49G 287.8G 41.54G 143.91G 3.34G 2.25G - 6.658G 20.6G 17.52G

4.3 Ablation Study

In this section, we conducted ablation analysis on each component of the pro-
posed method and verified the impact of each component on the performance
of dehazing. Firstly, we build the basic network framework as the Base of the
dehazing network, which consists of two branches of Transformer and CNN as
Encoder then the features are summed up and pass through the Decoder com-
posed of CNN. Then we add different modules to base, including:
(1) Base+DownS: downsample the image once before feeding it into the Trans-
former.
(2) Base+DownS+FA: downsample an input image before it is fed into the
Transformer and outputs the features of the Transformer and CNN between each
layer to be summed.
(3) Base+FA+CPA: between each layer, the Transformer and CNN feature
outputs are summed and fed into the CPA to obtain a weight matrix, which is
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multiplied by the CNN outputs.
(4) Ours: Our model includes all the above blocks.

Table 5. Ablation studies with different modules on the NH-HAZE dataset.

Methods DownS FA CPA PSNR SSIM

Base - - - 17.70 0.5324
Base+DownS ✔ - - 19.14 0.5985
Base+DownS+FA ✔ ✔ - 19.48 0.6530
Base+FA+CPA - ✔ ✔ 18.96 0.5608

Ours ✔ ✔ ✔ 20.10 0.6716

For all models, we used L1 loss for image reconstruction and used the NH-
HAZE dataset for training and testing in our ablation experiments. The quanti-
tative evaluation results of the models described above are presented in Table 5.
All modules improved model performance compared to the Base model, demon-
strating the overall effectiveness of our design.
(1) Base+DownS: Although Transformer and CNN tend to extract inconsis-
tent feature information, there will still be many redundant features extracted
by dual-branch feature extraction under the same dimension, which affects the
performance of the model. Therefore, we add downsampling before the Trans-
former branch to increase the global receptive field of the Transformer branch
and reduce the feature redundancy caused by the repeated extraction of double-
branch features. Therefore, as shown in Table 5, adding downsampling increased
the PSNR and SSIM of the Base model from 17.70 and 0.5324 to 19.14 and
0.5985, respectively.
(2) Base+DownS+FA: On the basis of downsampling, the features of each layer
of the two branches are extracted and added together, and then used to guide
the CNN, so that the CNN branch has the ability to extract local features and
global context, so that the model can better take into account global features
and local features. Incorporating downsampling and feature addition is observed
to increase the PSNR and SSIM from 19.14 and 0.5985 to 19.48 and 0.6530,
respectively, compared to the model above.
(3) Base+CPA+FA: The model adds feature summation to the base model, and
uses CPA to generate a weight matrix to guide the CNN, so that the model can
focus on channels and pixels at the same time, which can better guide the CNN
to capture information in the effective feature space. Without downsampling,
these two modules improve the PSNR and SSIM of the Base model from 17.70
and 0.5324 to 18.96 and 0.5608.
(4) Ours: The full proposed model includes includes all the above blocks, and
yielded the highest performance with PSNR and SSIM values of 20.10 and 0.6716,
respectively, representing a PSNR increase of 2.40 dB compared with the Base
model. These results clearly demonstrate the effectiveness of each module in the
proposed model.
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Fig. 7. Visual comparison of different dehazing methods on NH-HAZE
dataset.(Zooming in can obtain a clearer view)

The visual comparison of the ablation model is shown in Figure.7. It can be
seen from the figure that our complete model has better dehazing performance,
the overall tone and brightness of the image are natural, the overall picture
is full, and there is no edge blur or distortion. The visual comparison further
verifies the effectiveness of the proposed module.

5 Conclusion

In this paper, we proposed an interaction-guided two-branch image dehazing
network. The proposed model leverages the global and local feature extraction
capabilities of a Transformer and CNN, respectively. It outputs the features be-
tween each layer for synthesis. The CPA block then considers these global and
local features simultaneously to generate a weight matrix, which is multiplied
by the outputs of the CNN to guide local feature extraction using global fea-
tures. Additionally, the introduction of downsampling before the Transformer
branch can effectively reduce computational complexity and increase the recep-
tive field to improve overall model performance. The results of extensive exper-
iments demonstrate that our method performs competitively in terms of both
subjective and objective evaluations on synthetic and real datasets. Additionally,
ablation analyses demonstrates the effectiveness of each module of the proposed
method.
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