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Abstract. Multiview detection uses multiple calibrated cameras with
overlapping fields of view to locate occluded pedestrians. In this field, ex-
isting methods typically adopt a “human modeling - aggregation” strat-
egy. To find robust pedestrian representations, some intuitively incor-
porate 2D perception results from each frame, while others use entire
frame features projected to the ground plane. However, the former does
not consider the human appearance and leads to many ambiguities,
and the latter suffers from projection errors due to the lack of accu-
rate height of the human torso and head. In this paper, we propose
a new pedestrian representation scheme based on human point cloud
modeling. Specifically, using ray tracing for holistic human depth esti-
mation, we model pedestrians as upright, thin cardboard point clouds
on the ground. Then, we aggregate the point clouds of the pedestrian
cardboard across multiple views for a final decision. Compared with ex-
isting representations, the proposed method explicitly leverages human
appearance and reduces projection errors significantly by relatively ac-
curate height estimation. On four standard evaluation benchmarks, our
method achieves very competitive results. The code and data are avail-
able at https://github.com/Jiahao-Ma/MvCHM.
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1 Introduction

Multiview detection, a.k.a. multi-camera detection, usually refers to detecting
objects using images from multiple viewpoints. This setup is especially advan-
tageous when the scene is under heavy occlusion, which causes difficulties for
monocular detection systems.

Existing methods in this field adopt two general steps: human feature model-
ing and aggregation. The former aims to leverage the scene geometry to extract
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Fig. 1: Illustration of modeling humans as cardboard point clouds. A: Our system
detects pedestrians in the 2D bounding boxes. B: After computing the depth of pedes-
trians and the ground plane by ray tracing, we project them to the 3D space. C: We
zoom in on the pedestrian in the yellow box in Figure B. In this procedure, cardboard
modeling refers to the upright, thin cardboard-like human point clouds of size w×h×1,
where w and h are the width and height, respectively, and 1 means 1 channel (a single
plane of thickness 1). The cardboard human point clouds reflect the 3D position, height
and appearance of each pedestrian and are later aggregated to find human locations.

discriminative descriptors for pedestrians (and the scene). The latter fuses what
is extracted from all the viewpoints and locates pedestrians on a common ground
plane. This paper focuses on improving the first step, especially on how to lever-
age the provided calibration parameters to model pedestrians.

Literature broadly has two modeling strategies. Some intuitively and sim-
ply use 2D perception results such as 2D bounding boxes [2, 16, 37], segmenta-
tion/foreground pixels [7,38] to represent individual pedestrians, which are later
clustered on the ground plane. While these methods have strong generalization
ability and are interpretable, they merely use mathematical geometry relations
to cluster pedestrians’ positions without considering their appearance feature,
typically leading to inaccurate aggregation outcomes. Others leverage camera
calibration to project features of entire image frames onto the ground plane,
which are used to collectively represent pedestrians [10,11,21,26,32]. Compared
with the first strategy, these approaches use both pedestrian location and ap-
pearance features, aggregating frame features to obtain improved performance.
However, they exhibit inaccuracies in feature projections due to a missing esti-
mation of pedestrian height, resulting in pixels along identical vertical lines in
the 3D coordinate system not being accurately projected onto the same location
on the ground plane.

Considering the above discussions, we introduce a new multiview detection
method with cardboard human modeling referred to as MvCHM. In a nutshell,
we first detect pedestrians in each camera view in a plain way, estimate their
standing points and then build human point clouds, which are defined as card-
board human modeling, after estimating the depth of the standing point (the
location where a pedestrian stands) and head. The point clouds from all the
views are fed into a neural network for aggregation and location regression. This
pipeline is illustrated in Fig. 2, where an interesting component is the cardboard-
like human point clouds made up of only one channel of pixels, as shown in Fig.1.
Compared with existing works, they contain more accurate human appearance
and location to be further vectorized by the neural network.
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Multiview Detection with Cardboard Human Modeling 3

Fig. 2: The proposed system pipeline. First, given input RGB images from each view,
we apply 2D object detection to obtain per-view pedestrian detection results. Then,
through keypoint detection, we find the standing point of each detected bounding box.
Next, we estimate the depth of the standing point and head of each detected person
and fill the whole body region with the interpolated depth. With the estimated depth
we project the detection results into the 3D space and generate human cardboard point
clouds (with only one channel). Finally, we use an aggregation and regression network
to find the occupancy heat map on the bird’s-eye-view (BEV) plane.

Our method has a few advantages. First, compared with the “2D perception +
clustering” methods [2,7,16,37,38], we incorporate sufficient human appearance
features into this pipeline. Second, compared with the “projection + aggregation”
methods [10, 11, 21, 26, 32], our method significantly reduces projection errors
caused by inaccurate height through the cardboard modeling process and thus
provides more accurate human appearance features.

We evaluate our system on four multiview pedestrian detection benchmarks
WildTrack [4], MultiviewX [11] and their extension. We show that the proposed
point clouds processing procedures enabled by the aggregation network give very
competitive results.

2 Related Work

2.1 Feature-projection based multiview detection

Generally, feature-projection-based methods [10,11,21,26,32] project multiview
high-resolution feature maps to the ground plane, concatenate these features and
regress object positions from the features. Hou et al. [11] project convolution
feature maps to the ground plane via a perspective transformation and adopt a
full convolution network to aggregate the concatenated feature maps. Motivated
by [11], Song et al. [32] introduces stacked homography transformation to project
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4 J. Ma, Z. Duan, L. Zheng, C. Nguyen

frame features to the ground plane at different height levels. Hou et al. [10] deal
with shadow-like distortions in different cameras and positions via a transformer
structure. To align features along the vertical direction of objects, Ma et al. [21]
voxelize 3D features with fixed-size before aggregation. As mentioned above,
projection-based methods are not accurately 3D aware, so would likely encode
noisy image content (e.g., background and misaligned human) in the project
features.

2.2 2D-Perception based multiview detection

The other line of methods [2,7,16,37,38] intuitively utilize 2D perception results
to model each pedestrian, which are clustered on the ground plane. We call them
2D-perception-based methods. For example, Lima et al. [16] forfeit training and
instead estimate the standing point within each 2D detection bounding box and
predict the 3D coordinate of pedestrians by solving the clique cover problem.
Yan et al. [38] calculates the likelihood of pedestrian presence in each foreground
region and clusters pedestrian positions via minimizing a logic function. Fleuret
et al. [7] estimate the probabilities of pedestrian occupancy via a probabilistic
occupancy map. To aggregate multiview detection results, mean-field inference
[2, 7] and conditional random field (CRF) [2, 29] can be exploited. Our work
also starts from using 2D perception results, i.e., 2D bounding boxes, but differs
from existing works in that we explicitly consider the human appearance and use
regression to find human locations (similar to the projection-based methods).

2.3 Estimating point clouds in 3D object detection

In 3D object detection, some existing methods generate scene point clouds us-
ing depth estimation. Since the point clouds are not provided by LiDAR, they
are often called pseudo LiDAR point clouds. Wang et al. [34] show that a key
to closing the gap between image- and LiDAR-based 3D object detection may
simply be 3D representations. MF3D [36] estimates disparity maps to obtain
pseudo LiDAR and fuses input RGB images with front-view features obtained
by the disparity map. Mono3D-PLiDAR [35], a two-stage 3D object detection
pipeline, converts input images into point clouds via DORN [8] and applies
Frustum PointNets [24] to localize 3D objects. While these works use end-to-end
pixel-wise depth estimation methods, we calculate the depth value of detected
pedestrian regions via the ray tracing technique given camera poses, a ground
plane, and pedestrians standing points on the ground.

2.4 Existing human modeling methods

Various 3D human body modeling techniques that incorporate appearance fea-
tures and 3D geometry have been widely utilized in other areas. Carving-based
3D reconstruction methods [13,23,31] utilize the visual silhouettes obtained from
multiple cameras to generate 3D carvings of the human body, whereas multiview
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pose estimation methods [33, 39] leverage 3D voxels for precise keypoint detec-
tion. Dense pose estimation methods [6, 9, 12, 30] rely on dense surface meshes
to model targets. However, these modeling techniques have certain limitations.
They necessitate either perfectly overlapped view fields or dense annotations,
rendering them unsuitable for real-world multiview detection scenarios where
camera views are not perfectly aligned and only sparse labels, such as bounding
boxes and standing points, are available.

3 Preliminaries: Ray tracing to compute 3D coordinates
of a 2D point

Ray tracing technique models light transport: a light ray emerges at the light
source, reflects on objects, and goes into the camera. Formally, ray tracing is
formulated as:

P = O + tD. (1)

This formula computes the 3D coordinates of a reflection point on an object,
denoted as P =

[
Px, Py, Pz

]T . O = [Ox, Oy, Oz]
T is the 3D position of the

camera, or origin; D = [Dx, Dy, Dz]
T is the direction of the ray; t ∈ R is the

distance between the camera and the reflection point on the object. where O and
D are accessible with camera pose. Using Eq. 1, we compute the 3D coordinates
and thus the depth of the standing point and the head of each pedestrian.

4 Proposed system

As shown in Fig. 2, our system consists of pre-processing (Section 4.1), human
modeling (Section 4.2) and aggregation (Section 4.3), where human modeling
is our main contribution. Below we will detail these steps with a focus on the
human modeling process, including human depth estimation and human point
clouds generation.

4.1 Pre-processing

Pre-processing, also denoted as ROI localization in Fig. 2 A, aims to find 1)
pedestrian regions in the shape of bounding boxes and 2) the standing point
of each person. Results from both steps will be used in Section 4.2 for depth
estimation and pedestrian height calculation.

Standing point estimation. This could be considered naively as the middle
bottom of the detected bounding box of a pedestrian. However as shown in Figure
4, this approach is inaccurate, leading to errors in 3D space. Therefore, we define
the standing point as the midpoint between the person’s feet. We first adopt a
2D detector CrowdDet [5] to detect bounding boxes. Then following [15,22], we
use a regression neural network to obtain the positions on the ground where
pedestrians stand. Essentially, the detected bounding boxes are used as input,
and the output is a single standing point. In the implementation, we use the
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Fig. 3: Illustration of ray tracing. According to the reversibility of the ray, we define
the camera center (ray origin) as O, the ray direction as D, the object 3D location as
P , and the distance between the camera and reflection points on the object as t. First,
we assume the pedestrian standing point is on the ground surface where Pz = 0, then
given the camera matrix and the 2D coordinates of the standing point in the image,
the depth of the standing point can be accurately calculated, the depth of the head is
further calculated by substitution, finally, the depth of the rest of body region is linearly
interpolated. Detailed derivations are presented in the supplementary material.

global standing point annotations provided by the benchmarks and mainly use
[15] for regression, with a comparison with [22].

4.2 From 2D to 3D: Cardboard human modeling

In this section, we describe the proposed cardboard modeling that transforms
2D bounding boxes into 3D point clouds shaped as standing cardboard on the
ground plane. Specifically, based on the located ROI, a human in a 2D image is
modeled as a cardboard-like point clouds of size w × h × 1 (refer Fig. 1) in the
3D space. These point clouds reflect a pedestrian’s appearance, height and 3D
spatial position, and will be used for human feature extraction and localization
(Section 4.3). Generating the cardboard human is simple: we calculate the depth
of each pedestrian using ray tracing, and then project the pedestrian into the
3D space.

Human depth estimation. Due to the lack of pixel-wise human depth
annotations, it is infeasible to estimate accurate depth for each human pixel. To
get around this problem, we compute the depth of the standing point and the
head using the ray tracing technique [1] (Section 3). The two depth values are
subsequently used to interpolate the depth of other pixels in the bounding box
in a linear way.

We now leverage Eq. 1 to find the 3D coordinates of the standing point
and the head, denoted as Pstandpoint = [P s

x , P
s
y , P

s
z ] and Phead = [P h

x , P
h
y , P

h
z ],

respectively, as shown in Fig 3. On the one hand, to compute Pstandpoint, we
assume that all pedestrians are standing on the ground plane with P s

z = 0. This
assumption intuitively holds in normal scenarios. Based on the ground plane
assumption above, we just need to calculate O and D to get Pstandpoint. We
first use the provided camera pose to obtain the camera 3D position O, then
we calculate the ray direction D through the standing point with the image
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Fig. 4: An illustration of the benefit of standing point estimation. Figures C1 - C4
record four different views capturing the same person. In each view, the green box is
the 2D detection result of the person, the red dot is the bottom center of the detected
box, and the yellow dot represents the estimated standing point using [15]. Figures A
and B show the projection results when regarding the bottom center or the estimated
point as the standing point. In figure A and B, each human cardboard is marked with
the corresponding view number. We observe that the projected cardboards form denser
clusters in figure B, which validates the effectiveness of standing point estimation.

coordinates of the standing point and camera intrinsic, and then obtain P s
x and

P s
y by substituting O and D into Eq. 1. Next, to find the pedestrian head in a 3D

coordinates system, we assume the standing point and head of each pedestrian
have the same x and y coordinates, i.e., P s

x = P h
x , P s

y = P h
y . Similar to calculating

the z coordinate of the standing point Pstandpoint, we solve the z coordinate of
the head P h

z by substituting P h
x or P h

y into Eq. 1. After computing the 3D
coordinates of the standing point and head in the world coordinate system and
then converting them into the camera coordinate system, we default the value
of the Z of the camera coordinate to the depth value.

Finally, we use linear interpolation to fill the rest of the detection region
with a rough depth value, the generated depth map is shown in Fig. 2B. More
derivation details are provided in Section 4 of the supplementary material.

Point clouds generation. After assigning each pixel in the pedestrian re-
gion with a depth value, we project the pedestrian region from the 2D to 3D
space as point clouds according to the intrinsic and extrinsic parameters and
estimated depth. Projection details are shown in Section 5 of the supplementary
materials. Our experiments in Section 4.6 show that the ground plane point
clouds introduce noisy features and additional computational cost, leading to
poorer model performance. Therefore, we only project the pedestrian region to
the 3D space.

4.3 Aggregation and regression using 3D point clouds

Aiming to aggregate features from multiple views, we process point clouds into
feature vectors, using the network proposed in [14]; features are then concate-
nated to regress pedestrian position on the ground plane. Specifically, we dis-
cretize point clouds into an evenly spaced grid in the BEV plane, creating a set
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of pillars (voxels with ultimate spatial extend in the Z direction [14]). Then,
we randomly sample the point clouds in each pillar and adopt PointNet [25] to
extract high-dimensional features (pillar feature) in each pillar. Based on the
pillar representations, we follow [41] to flatten pillar features to the BEV plane
and regress the final pedestrian position. Similar to [3, 11], we represent binary
ground truth pedestrian occupancy as Gaussian distribution maps. We use the
focal loss [18] as position regression loss:

Lreg = −α(1− p)γ logp , (2)

where α and γ are two hyper-parameters. We use the same values of α and γ
as [18].

4.4 Experimental settings

Dataset. We compare our method on two standard multiview pedestrian bench-
marks [4, 11], and two newly created datasets Wildtrack+ and MultiviewX+.

Wildtrack [4] is a real-world multiview pedestrian detection benchmark cap-
turing people on a square of 12 × 36 meters with 7 calibrated cameras. The
image resolution is 1080 × 1920, making it the largest in the community, and
the square is discretized to a 480 × 1440 grid. The dataset contains 400 images,
the first 360 frames for training and the last 40 for testing.

Wildtrack+ is an extension of the Wildtrack [4] dataset, in which we ad-
ditionally annotate the unlabelled pedestrians outside the detection area. Note
that labels inside the detection area remain unchanged. The new annotations al-
low us to train a 2D detector on Wildtrack instead of borrowing an off-the-shelf
detector trained on other datasets.

MultiviewX [11] is a synthetic dataset created by Unity for pedestrian de-
tection in crowded scenes. This dataset covers an area of 16 × 23 meters with
6 synchronized cameras. The ground plane is quantized into a 640 × 1000 grid,
and the resolution is 1080 × 1920. It also has 400 frames with the last 40 frames
for testing.

MultiviewX+ is newly generated using the same Unity engine following the
same labeling mechanism as MultiviewX [11]. Compared with the MultiviewX
dataset, our MultiviewX+ dataset 1) additionally annotates the pedestrians out-
side the detection area to train 2D detectors locally 2) introduces new characters
different from that in MultiviewX 3) provides more accurate camera calibrations.

Evaluation metrics. Four metrics are used: Multiple Object Detection
Accuracy (MODA), Multiple Object Detection Precision (MODP), Precision,
and Recall. Specifically, MODA accounts for the normalized missed detections
and false positives and MODP assesses the localization precision. We estimate
the empirical precision and recall, calculated by P = TP/(TP + FP ) and
R = TP/(TP + FN) respectively. We view MODA as the primary indicator. A
threshold of 0.5 meters is used to decide true positives.

For evaluating detection models on the Wildtrack and Wildtrack+ datasets,
we observe severe annotation missing near the border of the detection area,
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Multiview Detection with Cardboard Human Modeling 9

Method Wildtrack∗ MultiviewX

MODA MODP Precision Recall MODA MODP Precision Recall

RCNN & clustering [37] 11.9§ 18.1§ 66.1§ 44.9§ 18.7 46.4 63.5 43.9
Deep-Occlusion [2] - - - - 75.2 54.7 97.8 80.2
MVDet [11] 88.7 73.6 93.2 95.4 83.9 79.6 96.8 86.7
SHOT [32] 90.8 77.7 96.0 94.3 88.3 82.0 96.6 91.5
MVDeTr [10] 92.1 84.1 96.1 94.5 93.7 91.3 99.5 94.2
3DROM [26] 93.9 76.0 97.7 96.2 95.0 84.9 99.0 96.1
MvCHM (ours) 95.3 84.5 98.2 97.1 93.9 88.3 98.5 94.8

Wildtrack+∗ MultiviewX+

RCNN & clustering [37] 10.1§ 17.2§ 65.1§ 42.3§ 19.9§ 48.9§ 64.1§ 44.0§

Deep-Occlusion [2] - - - - - - - -
MVDet [11] 87.8 74.9 95.1 90.7 84.5 80.9 96.4 85.2
SHOT [32] 90.2 77.5 95.7 94.1 88.5 82.7 97.1 90.2
MVDeTr [10] 92.2 84.2 96.3 94.1 93.8 91.5 99.6 93.9
3DROM [26] 93.8 77.1 96.9 96.1 95.2 85.1 99.2 96.7
MvCHM (ours) 94.6 84.7 98.3 96.6 93.8 87.9 98.6 95.3

Table 1: Comparison with the state-of-the-art methods on the standard evaluation
benchmarks. For each metric, the best, second best, and third best numbers (in per-
centage) are highlighted in red, blue and green, respectively. Our method yields state-
of-the-art performances on the Wildtrack/Wildtrack+ datasets and very competitive
results on the MultiviewX/MultiviewX+ datasets. On the Wildtrack and MultiviewX
datasets, due to the lack of pedestrian training labels outside the detection area, we
adapt a pre-trained 2D detector in the ROI localization procedure mentioned in Sec-
tion 4.1, while on the Wildtrack+ and MultiviewX+ datasets, we train a 2D detector
using the proposed complete annotations, all other methods follow the same training
scheme for fair comparisons. * denotes that we use a mask to reduce the effect of the
inaccurate labeling, details are discussed in the evaluation Section 4.6. § indicates the
results are from our implementation.

leading to an accuracy drop for existing methods. To reduce the impact of missing
labels, we mask the border area on both regressed and ground truth heatmap
during evaluation, and as a result, all the compared methods now have higher
accuracy. The Section 1 in the supplementary materials provides more details of
the mask.

4.5 Implementation details

We train the pedestrian detector on the Widltrack+ dataset and MultiviewX+
dataset while borrowing the best-trained model provided by CrowdDet [5] on
the Wildtrack dataset and the MultiviewX dataset. In training the pedestrian
detector, we use the Earth Mover’s Distance loss (EMD Loss) and Set NMS [5]
which are shown to improve robustness against occlusions. For standing point
estimation, we apply the MSPN [15] network and train it with the provided
standing point ground truths provided in all four datasets. When constructing
human point clouds, to avoid projection noise, we directly remove the back-
ground and merely project pixels in each bounding box to the 3D space. To
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train the aggregation and regression network, we use an Adam optimizer with
L2 regularization of 5×10−3. α and γ in Eq. 2 are set to be 2 and 4, respectively.
The learning rate is set to 2× 10−4. During the evaluation, the heatmap thresh-
olds are set to be 0.8, 0.86, 0.8, 0.8 on the Wildtrack, Wildtrack+, MultiviewX,
and MultiviewX+ datasets respectively. We conduct all experiments on a single
RTX-3090 Ti GPU.

4.6 Evaluation

Comparison with the state-of-the-art methods. Table 1 summarizes this
comparison. On the Wildtrack dataset, our pipeline achieves state-of-the-art
performance: MODA=95.3%, MODP = 84.5%, Precision = 98.2%, and Recall
= 97.1%. Regarding MODA, our method is 1.4% higher than the second best
method 3DROM [26] based on feature projection. On the Wildtrack+ dataset,
our approach outperforms other methods with similar margins.

Regarding the MultiviewX and MultiviewX+ datasets, our method is slightly
outperformed by the previous state-of-the-art method [26] but remains very com-
petitive. The main reason is that the camera positions in the MultiviewX are
lower than that in the Wildtrack dataset, which causes the cameras to look in
a relatively horizontal direction, making it difficult to capture the pedestrians’
feet. The detection results on the evaluation benchmarks are visualized in Fig.
7 in the supplementary materials.

Necessity of estimating the standing point. We perform an ablation
study on this module in Fig. 6B. For convenient, the standing point is denoted as
SP in Fig. 6B. During the Pre-processing process introduced in Section 4.1, the
standing point estimator (MSPN) regresses the standing point of each person
(yellow dot in Fig. 4 C1∼4), where “W/o SP estimation” indicates directly re-
garding the bottom center of the pedestrian bounding box as the standing point
(red dot in Fig. 4 C1∼4). From Fig. 6B and Tab. 2, we observe that without the
standing point estimation step, system accuracy drops significantly from 95.3%
to 42.1%. A probable reason for this drop is that the bottom centers of detection
bounding boxes usually do not stably indicate the human position (refer to the
comparison in A and B of Fig. 4 for the scattered centers).

Importance of having human appearance features. As mentioned be-
fore, 2D detection-based methods undesirably discard human appearance fea-
tures, which is unavoidable due to their method designs [2, 7, 16, 37, 38]. In Fig.
5, we conduct ablation studies to verify the importance of integrating human ap-
pearance features. In this figure, w/o feature means we directly remove RGB from
normal point clouds, i.e., changing each point from [x, y, z, r, g, b] into [x, y, z].
“full black”, “full white” and “mean value” replace the RGB pixels on the human
with black pixels, white pixels and the mean RGB value, respectively. Therefore,
these four variants of our method merely encode human location. Ablation re-
sults in Fig. 5A and Tab. 2 indicate the importance of having human appearance
features and these results further validate our design since our method exceeds
other variants with a clear margin.
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Method Detector SP AF MODA

MvCHM

✓ 20.4
✓ ✓ 42.1
✓ ✓ 78.1
✓ ✓ ✓ 95.3

Table 2: Modular ablation study reported on the Wildtrack dataset. SP: Standing
Point estimation, AF: Appearance Feature.

Fig. 5: (A) Ablation study on integrating human appearance feature. (B) Comparing
with variants in human height estimation.

Comparison of various pedestrian detectors and keypoint detec-
tors. 2D human detection and standing point detection are two important com-
ponents of our system. In Fig. 6A, we compare CrowdDet [5] used in our system
with SSD [20], YOLO-v3 [27], Faster RCNN [28], and RetinaNet [19] on the
Wildtrack dataset. We find that the multiview detection performance has the
same trend as 2D detection accuracy. For example, the best 2D detection method
CrowdDet also gives the highest MODA in multiview detection. These results
suggest that 2D detection has a profound influence on our method. On the other
hand, we compare MSPN [15] used in our system with Hourglass [22] as Fig.
6B shown. We find that MSPN with a higher standing point estimation accu-
racy contributes to better system performance. This is because correct standing
point estimation plays an important role in constructing cardboard humans as
the actual position on the ground plane.

Comparing different human height estimates. In Fig. 5B, we compare
a few variants in human height estimation. “Fixed height” of 1.8m is used in
some existing feature projection-based methods [10,11,21,32], which inevitably
introduces noise given its inaccuracy. Moreover, we expect insufficient human
description if we consider half of the body or only the foot region. These consid-
erations are verified in this experiment, where using the whole body region found
by 2D detection yields the highest MODA accuracy. Using the feet region only
is the worst variant because too little appearance is integrated. This experiment
confirms that relatively accurate height estimates are beneficial for appearance
feature extraction and avoiding background noise.

Impact of point clouds sampling rate and ground plane modeling.
By default, for each cardboard we use 50% of its points; we also discard all

the ground plane points. Here we evaluate how these two aspects (both related
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12 J. Ma, Z. Duan, L. Zheng, C. Nguyen

Fig. 6: (A) Comparing various pedestrian detectors on their 2D detection accuracy
and overall system performance. (B) Ablation study on having keypoint estimation
modules. Verify the impact of standing point detection accuracy on the overall system
performance. The results are reported on the Wildtrack dataset.

Fig. 7: Comparing the performance of additional 3D modeling ground plane in our
system. Two aspects are considered: (A) GPU memory consumption and (B) detection
accuracy MODA (%).

to point clouds) impact our system, in Fig. 7, where “Sample rate” means the
preservation rate of the point clouds. In Fig. 7A, when we gradually increase the
point clouds sampling rate, the GPU memory consumption increases linearly,
and modeling the ground plane would incur additional memory costs because
the ground plane itself takes up a considerable amount of memory. On the other
hand, Fig. 7B shows that detection accuracy remains stable with increased sam-
ple rates when the ground plane is not included in the modeling; conversely, the
performance declines when it is included.

This is probably because the modeling of the ground plane introduces noise
which compromises our system. Hence, considering both memory consumption
and accuracy, we choose to remove the ground plane and to use 50% of the points
for each cardboard.

Different human appearance descriptors in cardboard modeling.
By default, our method simply encodes human appearance features with thin
cardboard-like point clouds. In this section, we explore the impact of applying
different human appearance representation strategies on model performance. We
compare our point clouds descriptor with two other types of human feature de-
scriptors, namely, the re-ID features from an off-the-shelf person re-identification
(re-ID) model [40] and the feature from the Feature Pyramid Network (FPN) [17]
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Multiview Detection with Cardboard Human Modeling 13

Fig. 8: (A): Comparing multiple human feature representation strategies with the de-
fault point clouds representation. (B): Comparison with the feature-projection-based
method MVDet [11] under various pedestrian density levels on the MultiviewX dataset.

used in our detection model [5]. Both variants follow the same training and test
protocol as our system. Results are summarized in Fig. 8A. We observe that
models with different feature representations perform similarly because all of
them include similar human feature appearances to some extent.

Impact of pedestrian density. In Fig. 8B, we evaluate our system un-
der various levels of crowdedness on the MultiviewX dataset and compare it
with MVDet [11]. We find decreased detection accuracy with increasing crowd-
edness, which is consistent with the findings in [11]. In fact, a crowded scene
deteriorates the 2D detector and adds noise to the subsequent feature learning
process. Furthermore, our method consistently outperforms MVDet, indicating
the robustness of the proposed system.

5 Discussion

Ours vs. projection-based methods: less susceptible to projection noise.
As mentioned in previous sections, feature projection-based methods [10,11,21,
32] suffer from inaccurate projections due to wrong human height estimation. In
the latter case, part of the pedestrian torso is wrongly projected on the planes
with an inaccurate height, and the projected pedestrian features are intermingled
with background features or noise.

Our method estimates an accurate height using bounding boxes before pro-
jecting the pedestrian region to the corresponding 3D space. Thereby, the pro-
posed method effectively recovers the pixel’s 3D position along the Z axis and
separates human features from the background, which alleviates projection noise.

Ours vs. clustering-based methods: can take advantage of human
appearance. By extracting features from the human point clouds, we seam-
lessly integrate human appearance into the system. In comparison, existing 2D-
perception and clustering-based methods [2, 7, 16, 37, 38] merely use pedestrian
2D position features to predict target position. The drawback of not using human
appearance features is experimentally analyzed in Section 4.6.

Ours vs. 3D-carving-based methods: robust 3D in single-camera,
occluded scenes. Unlike traditional 3D carving methods [13,23,31] that require
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Fig. 9: 3D carving (B) can only reconstruct and detect people in the red region shared
by at least two cameras, while our method (A) can succeed with only one camera.
Also, the 3D carving [13,23,31](B) fails in the occluded scenes, like the artifacts in the
purple box.

objects to be captured by at least two cameras and also fail in the presence
of occlusion, our proposed cardboard human modeling can generate accurate
3D representations from a single camera in occluded scenes. Refer to Fig.9 for
comparison. This expands its potential applications to large ground planes where
camera fields of view may not overlap and allows for reliable 3D reconstruction
in challenging scenarios.

Multiview detection vs. multiview pose estimation: sparse labels
vs. rich annotations. Compared to pose estimation methods [6, 9, 12, 30, 33,
39]that necessitate rich annotations such as dense surface labels or human joint
labels, the multiview detection task provides considerably sparser labels such as
bounding boxes, which pose estimation techniques are unsuitable for, while our
proposed approach is specifically customized to fit this situation.

Two major performance influencers. Our system effectiveness relies
on 2D detection and standing point (keypoint) detection performance, demon-
strated by experiments using various detectors and keypoint estimators in Fig.
6. Stronger detectors lead to higher accuracy. Instead, we don’t claim these mod-
els as our contribution. The novelty lies in the 3D cardboard representation of
humans. If we use the same detectors and pose estimators but a different human
representation, the multiview detection accuracy will drop significantly (see Fig.
5). As such, the use of these existing models does not affect our novelty.
Acknowledgment. We would like to express our gratitude to Yunzhong Hou for
his valuable guidance and suggestions, which greatly contributed to the success
of this work.

6 Conclusion

We propose a new pedestrian representation for multiview detection, modeling
humans as cardboard-like point clouds. This approach leverages scene geometry
to fuse height and appearance features, and less noise is included compared with
previous feature projection based methods. Our system is evaluated on two ex-
isting multiview detection datasets and their extension datasets where we report
very competitive results compared with previous state-of-the-art methods.
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